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We consider several coordination games with multiple equilibria each of which is a different 
division of a fixed pie. Laboratory experiments are conducted to address whether "task 

complexity'' affects the selection of equilibrium by subjects. Three measures of task complexity­
cardinality of choice space, level of iterative knowledge of rationality, and level of iterative 
knowledge of strategy-are manipulated and tested. Results suggest the three measures can 
predict choice behavior. Since strategically equivalent games can have different task complexity 
measures, our results imply that subjects are sensitive to game form presentation. We also fit 
data using three adaptive learning models: 1) Cournot, 2) Fictitious Play, and 3) Payoff Rein­
forcement, in increasing order of required cognitive effort. The Fictitious Play model, which 
tracks only cumulative frequencies of opponents' past behaviors fits the data best. 
(Task Complexity; Equilibrium Selection; Learning: An Experimental Study) 

1. Introduction 

A challenging and persistent issue in game theory is 
multiplicity of equilibria: in games with multiple pareto 
efficient equilibria, there are no systematic criteria for 
equilibrium selection. Games with multiple equilibria 
are common; examples include signaling, coordination, 
and infinitely repeated games. Game theorists have 
tried to predict choice behavior in such games by mod­
eling the degree of rationality and sophistication of 
players (see Myerson 1992, Fudenberg and Tirole 1992, 
Binmore 1992 for reviews). Starting with Selten (1965), 
the "refinement" literature addresses the multiplicity 
problem by imposing greater reasoning sophistication 
on players. This sophistication goes beyond the stan­
dard Nash rationality assumption that a player will 
choose his optimal response given others are choosing 
theirs. A sophisticated player will not make or believe· 
incredible threats or promises, and will not draw un­
believable inferences from information. she gathers 
(Kreps 1990a). The refinement approach has success­
fully prescribed a unique equilibrium in some signaling 
games (Cho and Kreps 1987, Banks and Sobel 1987), but 
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is less successful in both infinitely repeated and coor­
dination games. 

More recently, another stream of literature imposes a 
lesser degree of rationality on players. Some believe the 
multiplicity of equilibria problem may be better at­
tacked via this ''bounded rationality" approach (Lucas 
1986, Kreps 1990b). Players are bounded in several 
ways-they are myopic; they update beliefs using spe­
cific models (e.g., Cournot, fictitious play); they use dif~ 
ferent choice rules (e.g., SEU, imitation); or their behav­
ior resembles programs in computing machines (e.g., 
finite automata, Turing machines). This approach ap­
proximates human choice behavior better, and has 
shown promise. Rubinstein (1986) shows the equilibria 
set in infinitely repeated prisoner's dilemma games is 
smaller if play'ers act as finite automata. Marimon, 
McGrattan and Sargent (1990) show that even if players 
are modeled as simple computing machines, they will 
converge to a Nash equilibrium behavior in a complex 
macroeconomic setting. An extreme form of bounded 
rationality is captured in evolutionary stable strategies 
(ESS). Here, players are modeled as pre-programmed 
"types" where a player's type defines her strategy 
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(Maynard Smith 1982). For example, in a prisoner's di­
lemma game, a cooperative type will always play co­
operatively no matter what strategies others follow. 

The above two approaches vary the degree of ratio­
nality to solve the multiplicity of equilibria problem. A 
possible complementary approach is to model an equi­
librium's task complexity. The idea is ~traightforward: 

I 

If players are boundedly rational they may select equi-
librium based on task complexity. An equilibrium's task 
complexity measures the degree of cognitive effort 
along the equilibrium path required to reach that equi­
librium. Indeed, task complexity and bounded ratio­
nality are flip sides of a coin. If players are fully rational, 
task complexity is irrelevant because they can solve 
games of any complexity. Conversely, games with triv­
ial complexity can be solved by even severely bound­
edly rational players. Thus, to address the multiplicity 
of equilibria problem, one must recognize this inter­
dependency between bounded rationality and task 
complexity. 

The degree of cognitive effort required to reach an 
equilibrium may differ among equilibria. It depends on 
the number of information sets, the number of alterna­
tives at each information set, and the amount of neces­
sary knowledge about others' behavior. If players are 
subject to information processing constraints (i.e., 
boundedly rational), they may adopt cognitive effort 
conserving rules, (i.e., they may choose equilibrium 
paths with low task complexity). Three task complexity 
metrics are more formally defined in §2. We test the 
effects of task complexity on equilibrium selection using 
laboratory experiments.1 

Task complexity metrics are sensitive to presentation 
changes in strategically equivalent games in an inter­
esting way. They are not invariant to transformations 
on extensive-form games that preserve the reduced nor­
mal-form (Thompson 1952, Dalkey 1953).2 Equilibria 
concepts defined for reduced normal-form games (e.g., 

1 The focus on task complexity has another merit. It allows greater 
experimental control since it is easier to manipulate task complexity 
than the players' reasoning sophistication. 
2 A reduced normal-form game has multiple extensive form equiva­
lents. Invariant transformations allow one to map an extensive-form 
game to its reduced normal form or to its other extensive-form equiv­
alents (see Figure 8). 
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proper, persistence, stable sets) inherently assume players 
are insensitive to game form or simply restrict the domain 
of the theory's application to reduced normal form games. 
Conversely, equilibrium concepts for extensive-form 
games (e.g., sub-game perfect, sequential, Harsanyi-Selten 
1 point solution) do allow sensitivity to game form.3 

Therefore, theoretically it is unclear whether a strategically 
equivalent game presented in different game forms 
should have different solution sets. Our task complexity 
metrics will provide evidence for this game form depend­
ency debate. For if players are game form dependent they 
are also sensitive to task complexity metrics (because met­
rics are game form dependent). 

We also investigate the interdependency between 
task complexity and bounded rationality by examining 
whether subjects' learning behavior is contingent on 
task complexity. We test three classical adaptive learn­
ing models to see whether they fit subjects' choice be­
havior across rounds. The first resembles a Cournot 
learning model; the second, a modified Fictitious Play 
model; and the third, a Payoff Reinforcement model. 

This paper is organized as follows: §2 defines the in­
dices of task complexity. Experimental design is ex­
plained in §3. Hypotheses are tested and results re­
ported in §4. Implications and future research are dis­
cussed in §5. 

2. Task Complexity Metrics 
We consider extensive-form coordination games with 2 
or 3 pareto efficient equilibria. The equilibria are alter­
native divisions of a fixed "pie." Equilibria differ along 
three task complexity measures. The three measures are: 

Cardinality of choice space (ex) of equilibrium x is 
formally defined as: 

Cx = maxy(no. of outcomes at stage y 

along x's equilibrium path} 

where a stage is equivalent to an information set facing 
the player along the path leading to equilibrium x.4 

3 For example, in Figure 8, game Fl has 2 sub-game perfect equilibria 
(2, 2 and 3, 3). The strategically equivalent game F2 has only one sub­
game perfect equilibrium (3, 3). 
4 A reviewer aptly pointed out that an alternative measure is the av­
erage number of outcomes along an equilibrium path. Using this al-
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Our metric is equivalent to the complexity measures 
used by Johnson and Payne (1985) in nonstrategic 
choice situations. Based on a series of Monte-Carlo sim­
ulations, they show that elementary cognitive opera­
tions increase linearly with the number of choice out­
comes. This implies that elementary cognitive opera­
tions should increase with ex. Consequently, if subjects 
adopt effort conserving rules that favor fewer elemen­
tary operations, their choice behaviors will be more con­
sistent with choosing an equilibrium with a smaller ex, 

For example, in Figure 1, the (8, 4) equilibrium (bot­
tom) has a c index of 4 because there are 4 possible out­
comes in both Stages I and II. Whereas, the (7, 5) equi­
librium (top) has a c index of 9 because there are 4 pos­
sible outcomes in Stage I, and 9 in Stage II. 

The level of iterative knowledge of rationality (rx) 

of equilibrium x is equal to the number of mutual ratio­
nality levels needed to reach equilibrium x. A level of 
mutual rationality is defined as each player knowing the 
other is an expected-utility maximizer; he knows the 
other's action will maximize her own expected utility 
(Brandenburger 1992). rx represents the required level 
of conjectures or presumptions about whether others 
are rational or not in order to reach equilibrium x. In a 
normal-form game, this measure corresponds to the 
rounds of iterative dominance; in an extensive-form 
game this is equivalent to the number of backward in­
duction steps. 

Figure 2 illustrates this. Starting from the far right 
(i.e., backwardly inducting), a rational I will take at this 
stage because 16 is greater than 10. Moving to the left, 
if II knows that I is rational, a rational II compares a 
payoff of 4 (pass) and 8 (take), thus he takes. This re­
quires a level of iterative knowledge of rationality of 1. 
Again moving to the left, if I knows 1) II is rational and 
2) II knows that I is rational, then a rational I will take 
because 4 is greater than 2. This requires a level of it­
erative knowledge of rationality of 2. 

temative measure in our design would not affect results, since the 
more complex games (as measured by our maximum rule) are also 
more complex using the suggested average rule. We use the maximum 
rule because we believe subjects decompose a game into stages before 
solving it and we are curious about their cognitive limits. We leave to 
future experiments a test of which rule predicts behavior better. 
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Although Johnson and Payne (1985) only looked at 
non-strategic games, we can map our metric into their 
information processing model. As the level of iterative 
knowledge of rationality increases, the number of ele­
mentary cognitive operations necessarily increase. That 
is, as players proceed to a higher level of recursive rea­
soning, they must read, move, and compare the results 
of all conjectures at lower levels (i.e., total elementary 
operations increase with rx>· 

The level of iterative knowledge of strategies (sx) of 
equilibrium x is equal to the number of levels of mutual 
knowledge of strategies needed to reach equilibrium x. 
There is an important, but subtle, difference between the 
mutual knowledge of rationality and mutual knowl­
edge of strategies. Instead of knowledge about the play­
er's rationality, this knowledge pertains to a player's 
action choice; this is especially critical in the presence 
of multiple equilibria. It is not sufficient for players to 
know others are rational, they must know the strategy 
others will play. 

Figure 3 illustrates this: For player I to take (7, 5), she 
must know that player II is also choosing equilibrium 
(7, 5). So the s index is 1. The s index for the other two 
equilibria (3, 9) and (8, 4) is 2. Here, both players must 
believe that the other will go to Stage II, and within 
Stage II each player will choose the appropriate strat­
egy. Knowledge of strategies supersedes knowledge of 
rationality. If a player knows what strategy others will 
choose, she does not have to care whether others are 
rational. 

The iterative knowledge of strategies of an equilib­
rium is similar to the number of stages along the path 
leading to the equilibrium. An equilibrium that has a 
higher mutual knowledge of strategies also has a higher 
number of stages (or information sets) along its equilib­
rium path. Similar to iterative knowledge of rationality, 
each level of knowledge of strategies requires players to 
perform additional elementary cognitive operations. 
Hence, equilibria with high sx have a higher number of 
elementary operations. 

We characterize each equilibrium by four indices: car­
dinality of choi<!:e space (c), level of iterative knowledge 
of rationality (r), level of iterative knowledge of strate­
gies (s), and the level of payoff disparity (p). We control 
for payoff disparity because previous experiments us­
ing fixed-pie games suggest subjects are sensitive to it 
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Figure 1 Cardinality of Choice Space 

I 

0,2 

I 

0,0 

I 

Stage I Stage II 

Figure 2 Level of Iterative Knowledge of Rationality 

I Pass II Pass I Pass 
0-----,0-------i:1----- (10,10) 

Take Take 

(4,1) (2,8) (16,4) I takes if! is rational 

II takes if (II is rational) and (knows that I is rational) 
==> The level of required iterative knowledge of rationality is 1. 

I takes if (I is rational) and (knows that II is rational and 
knows that II knows that I is rational) 

=> The level of required iterative knowledge of rationality is 2. 
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Figure 3 

0,0 

1,1 

0,1 

0,0 

7,5 

0,1 

1,0 

1,2 

0,1 

0,2 

8,4 

0,0 

0,0 

(The cardinality of choice 
space of (7 ,5) is 9 because there 
are 9 outcomes in Stage II 

(The cardinality of choice 
space of (8,4) is 4 because there 
are 4 outcomes in Stage II) 

Level of Iterative Knowledge of Strategies 

7,5 (The level of mutual knowledge 
of strategies is 1) 

3,9 (The level of mutual knowledge 
of strategies is 2) 

0,0 

0,2 

8,4 (The level of mutual knowledge 
of strategies is 2) 
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Figure 4 Experimental Design for Determining the Effect of Cardinality of Choice Space 

(Game GI) 

i 
(Gan,GI') 

I (16,0.2,2) 

0,0 

1,1 

0,0 
0,1 

0,0 
0,2 

_......."=--o.o 
1,0 

0,0 
1,S 
0,0 
0,1 

1,0 
1,2 
1,0 
0,1 

(Gamc:02) 

(see Roth, forthcoming).5 This finding suggests payoff 
disparity as a possible equilibrium selection criterion, 
and offers an alternative hypothesis for observed be­
havior. We define the payoff disparity of equilibrium 
x (px) as the difference between the payoffs of the 
two players. For example, the p of equilibrium (7, 5) is 
2. Hence, each equilibrium x is represented as a 4-
dimensional vector <ex, rx, Sx, Px>· Cx, rx, and Sx capture 
task complexity. 

In summary, our task complexity metrics provide a 
proxy for the degree of cognitive effort required to play 
a game. Starting with the simplest decision problem, 
games against nature, only cardinality of choice enters 
the problem's task complexity, since it is a single-person 
choice problem. In games solved by iterative dominance 
or backward induction (i.e., games of perfect and com­
plete information), cardinality of choice and iterative 
knowledge of rationality are sufficient (Figure 2), since 
there is only one node in each information set. Iterative 
knowledge of strategies is needed in more general 
classes of games, including; normal form pure strategy 

5 For example, in ultimatum games, subjects usually reject offers where 
they receive less than 20% of the fixed payoff. This behavior is irra­
tional if players ignore payoff disparity. 
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I (16,0,2,4) I (16,0,2,2) 

0,0 

1,1 

0,0 
0,1 

0,0 
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I <4.0..2 .• 6) 

1,0 

0,0 
8,4 
0,0 
0,1 
1,0 
1,2 
1,0 
0,1 

0,2 

0,0 

(Game03) 

0,0 

1,1 

0,0 
0,1 

0,0 
0,2 ,.,.... __ o.o 

I , .. 0.2.4> . 

1,0 

0,0 
1,S 
0,0 
0,1 
1,0 
1,2 
1.0 
0,1 

games, and extensive-form games where there is im­
perfect information (Figure 3) since there exists multi­
node information sets. Equilibria that have higher c, r, or 
s can only be reached if subject adopt rules which consist 
of more elementary cognitive operations. Consequently, 
if subjects adopt effort conserving rules, they will reach 
those equilibria with smaller complexity metrics. 

3. Experimental Design and 
Procedure 

3.1. Experimental Procedure 
Subjects were recruited from both Wharton undergrad­
uate and graduate classes. Students were randomly se­
lected to meet at the behavioral laboratory at a specified 
time. The behavioral laboratory consisted of cubicles 
that made it difficult for subjects to see others during 
the experiment.1Subjects were randomly assigned to a cu­
bicle, and instructions were handed out (see Appendix) 
and read publicly. The instructions basically said the fol­
lowing: All subjects were to be given the same decision 
problem, and each subject would make a series of 10 de­
cisions with a randomly selected "pair member." Subjects 
did not know the identity of their pair member. While the 
decision problem remained constant over the 10 rounds, 
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Figure 5 Experimental Design for Detennining the Effect of Iterative Knowledge of Rationality 

3,9 1 (4, o, 1, 6) 
I 

0,0 

I 

0,2 

7,5 
(Game G4) 

II . c.:1~1, 1,2)< · I ... .. (GameG4') 

2,0 0,2 

8,4 (4, o, 1; 4) · .... I 

0,2 

I 

0,0 

II 

(GameG5) ... (GameG5') 

2,0 0,2 

7,5 (4, ott,2) ..... ·· 1 

0,2 

I 

0,0 

~ 8 4 
(Game G6) I I ' ..... ...---1 .. ~ (Game G6') 

2,0 0,2 
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Experimental Design for Determining the Effect of Iterative Knowledge of Strategies 

1 (4, 0.1. 6) . • I 

(GameG7) 

1<4,o, 1,4) . . I 

(Game G8) 

1(4;0;1,2) .·· ... , 

(Game G9) 

7,5 1 (4,0;2.2) · I 
0,2 

0,0 

8,4 ,. (4, 0, 2, 4) I 

3,9 1 (4,0,2,6) 

0,0 

0,2 

7,5 1 (4, o. 2. 2) · 

3,9 I<"· 0,2;6} · · 1 
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0,2 

8,4 1 (4,0,2;4) ... 
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I 
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0,0 0,2 8,4 

(Game GlO) 
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Table 1a Frequency of Outcomes in Games G1-G3 , G; 

Game Round 
Outcome 1 2 3 4 5 

G1 I 

ss 7 6 7 9 8 
SC 1 2 0 1 1 
cs 1 2 3 0 1 
cc 1 0 0 0 0 

G; 

ss 7 8 6 6 7 
SC 4 3 4 3 4 
cs 2 2 2 3 1 
cc 2 2 3 3 3 

~ 

ss 9 9 10 14 14 
SC 3 1 2 0 0 
cs 3 5 3 1 1 
cc 1 0 0 0 0 

Ga 

ss 3 4 6 7 10 
SC 3 2 4 2 1 
cs 6 8 2 4 3 
cc 3 1 3 2 1 

Pooled 

ss 26 27 29 36 39 
SC 11 8 10 6 6 
cs 12 17 10 8 6 
cc 7 3 6 5 4 

subjects would be assigned a new pair member in each 
round. And they would never be paired with another sub­
ject more than once during the 10 rounds. 

The role of each player (i.e., player 1 or 2) was ran­
domly assigned and could change between rounds. 
Players were informed of their role for the round by 
looking at their worksheets; it was designated by the 
label "YOU," and their payoffs were in bold type.6 Sub­
jects selected strategies simultaneously. Administrators 

6 Previous experiments show that subjects learn faster if they are as­
signed both roles (Binmore et al. 1985). We speculate this occurs be­
cause it makes it easier for them to "view" the game from the other's 
perspective. 
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6 7 8 9 10 11 Total 

10 10 10 10 9 10 96 
0 0 0 0 0 0 5 
0 0 0 0 1 0 8 
0 0 0 0 0 0 1 

7 8 7 6 7 7 76 
0 1 3 2 1 2 27 
3 1 0 2 2 1 19 
5 5 5 5 5 5 43 

14 14 15 15 15 15 144 
0 0 0 0 0 0 6 
1 1 0 0 0 0 15 
0 0 0 0 0 0 1 

7 9 11 8 12 12 89 
5 5 1 2 1 2 28 
2 1 3 5 2 1 37 
1 0 0 0 0 0 11 

38 41 43 39 43 44 405 
5 6 4 4 2 4 66 
6 3 3 7 5 2 79 
6 5 5 5 5 5 56 

recorded the subject's choice, and that of the pair mem­
ber, and informed the two subjects of their payoffs. Sub­
jects received this information at the end of each round, 
before making next round's decision. Strategy choices 
and payoffs of other subject-pairs were not revealed to 
them. In multi-stage problems, if a subject chose a Stage 
I strategy that might result in the game proceeding to 
Stage II (depending on their pair member choice), they 
were asked to simultaneously reveal their Stage II strat­
egy. We did this for two reasons: One, to speed up the 
experiment, (subjects get bored if there is a large time 
lapse between stages). Two, we could record the con­
tingent strategies of subjects: Even if a subject's pair 
member did not choose a strategy that led to Stage II, 
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Table 1b Frequency of Outcomes in Games GcGs, G.\-G/; 

Game Round 
Outcome 1 2 3 4 5 6 7 8 9 10 11 Total 

G4 

ss 6 1 5 5 6 5 8 9 10 12 11 78 
SC 2 8 0 2 1 3 3 2 2 2 1 26 
cs 5 5 6 5 7 3 2 2 3 2 4 44 
cc 9 7 10 10 11 8 10 10 9 8 8 100 
Others 3 4 4 3 0 6 2 2 1 1 1 27 

G.; 

ss 7 8 9 6 5 6 7 6 7 8 7 76 
SC 3 3 3 5 2 4 2 6 2 4 1 35 
cs 3 1 1 2 5 2 1 1 3 1 3 23 
cc 2 3 2 2 3 3 5 2 3 2 4 31 
Others 0 0 0 0 0 0 0 0 0 0 0 0 

Gs 

ss 14 13 13 15 17 17 18 18 19 18 18 180 
SC 4 3 3 3 1 0 0 1 0 1 1 17 
cs 0 3 3 2 1 0 1 1 1 0 0 12 
cc 2 0 0 0 0 0 0 0 0 0 0 2 
Others 0 1 1 0 1 3 1 0 0 1 1 9 

G;., 

ss 1 3 3 6 5 9 8 13 10 9 10 77 
SC 5 5 1 1 1 1 4 0 0 1 0 19 
cs 4 6 10 7 8 4 3 2 4 5 5 58 
cc 5 1 1 1 1 1 0 0 1 0 0 11 
Others 0 0 0 0 0 0 0 0 0 0 0 0 

Gs 

ss 10 11 10 11 14 13 13 16 15 16 15 144 
SC 5 5 2 2 2 2 4 2 4 2 1 31 
cs 0 1 2 5 2 2 0 1 1 2 2 18 
cc 0 0 1 0 0 1 0 0 0 0 1 3 
Others 5 3 5 2 2 2 3 1 0 0 1 24 

G/; 

ss 8 8 10 7 9 9 11 9 12 12 11 106 
SC 3 1 3 2 1 4 3 5 0 1 2 25 
cs 3 5 0 3 5 1 0 1 2 1 2 23 
cc 1 1 2 3 0 1 1 Qi 1 1 0 11 
Others 0 0 0 0 0 0 0 0 0 0 0 0 

Pooled 

ss 46 44 50 50 56 59 65 71 I 73 75 72 661 
SC 22 25 12 15 8 14 16 16 8 11 6 153 
cs 15 21 22 24 28 12 7 8 14 11 16 178 
cc 19 12 16 16 15 14 16 12 14 11 13 158 
Others 8 8 10 5 3 11 6 3 1 2 3 60 
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Table 1c Frequency of Outcomes in Games G7-G9 

Game Round 
Outcome 1 2 3 4 5 6 7 8 9 10 11 Total 

G1 
I 

ss 8 7 9 11 9 10 9 13 11 12 9 108 
set 5 4 6 i 6 6 5 7 5 7 6 9 66 
Seb 3 5 3 1 5 2 1 2 4 1 2 29 
etS 3 1 2 2 0 2 1 0 1 3 1 16 
ebS 0 1 2 0 0 0 1 1 0 1 1 7 
eteb 3 2 0 0 4 5 4 2 1 3 1 25 
ebet 3 1 0 4 2 2 3 2 1 0 2 20 
etet 4 5 8 5 4 3 4 5 4 4 4 50 
ebeb 1 4 0 1 0 1 0 0 1 0 1 9 

Ga 

ss 3 5 6 7 10 10 13 14 13 15 13 109 
set 0 2 1 0 1 0 0 0 0 0 0 4 
Seb 5 5 6 3 3 2 3 1 0 1 1 30 
etS 3 2 1 1 3 3 0 0 3 1 2 19 
ebS 4 4 3 3 1 4 0 2 1 2 2 26 
eteb 1 0 0 2 0 0 1 1 3 1 1 10 
ebet 1 0 0 0 0 0 1 1 0 0 0 3 
etet 0 0 1 2 1 1 0 0 0 0 0 5 
ebeb 3 2 2 2 1 0 2 1 0 0 1 14 

Gs 

ss 11 11 11 7 9 10 9 16 14 16 21 135 
set 3 1 2 4 3 0 4 2 1 0 0 20 
Seb 2 3 3 3 3 3 1 2 1 2 1 24 
etS 9 10 9 10 4 9 10 5 9 7 3 85 
ebS 1 1 1 1 4 2 3 2 1 2 0 18 
eteb 0 4 1 1 3 3 2 0 1 1 1 17 
ebet 0 0 0 0 1 2 0 0 0 0 0 3 
etet 2 0 1 3 3 1 1 2 3 2 4 22 
ebeb 2 0 2 1 0 0 0 1 0 0 0 6 

Pooled 

ss 22 23 26 25 28 30 31 43 38 43 43 352 
set 8 7 9 10 10 5 11 7 8 6 9 90 
Seb 10 13 12 7 11 7 5 5 5 4 4 83 
etS 15 13 12 13 7 14 11 5 13 11 6 120 
ebS 5 6 6 4 5 6 4 5 2 5 3 51 
eteb 4 6 1 3 7 8 7 3 5 5 3 52 
ebet 4 1 0 4 3 4 4 3 1 0 2 26 
etet 6 5 10 10 8 5 5 7 7 6 8 77 
ebeb 6 6 4 4 1 1 2 2 1 0 2 29 
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Table 2 Chi-square Values and t-statistics for Hypotheses Testing 

Hypothesis 1 
Game Chi-Square 

G1 

G; 

G2 

63 

G4 

G~ 

Gs 

1-6 92.3*** 
7-11 142.2*** 
1-11 228.4*** 

1-6 21.0*** 
7-11 29.9*** 
1-11 47.9*** 

1-6 95.6*** 
7-11 142.2*** 
1-11 230.5*** 

1-6 16.8*** 
7-11 83.3*** 
1-11 82.2*** 

1-6 24.0*** 
7-11 42.4*** 
1-11 50.9*** 

1-6 21.2*** 
7-11 20.3*** 
1-11 42.3*** 

1-6 162.5*** 
7-11 238.0*** 
1-11 475.4*** 

* p < 0.05. 
** p < 0.01. 
*** p < 0.005. 

Hypothesis 3 
Hypothesis 2 Hypothesis 3 95% Confidence 

t-statistics t-statistics Intervals 

-8.4 8.4*** (0.79, 0.97) 
-9.8 9.6*** (0.89, 1.00) 

-12.8 12.7*** (0.87, 0.99) 

3.4 *** 3.4 *** (0.55, 0.70) 
1.6 1.6 (0.49, 0.65) 
3.6*** 3.6*** (0.55, 0.65) 

-8.6 8.6*** (0.81, 0.95) 
-9.8 9.8*** (0.91, 1.00) 

-12.9 12.9*** (0.88, 0.98) 

-3.9 3.9*** (0.57, 0.72) 
-8.5 8.5** * (0.77, 0.93) 
-8.6 8.6*** (0.68, 0.79) 

3.4 ** * -3.3 (0.34, 0.46) 
-0.7 6.5*** (0.46, 0.59) 

2.0* -2.0 (0.42, 0.50) 

3.9* * * 3.9* ** (0.57, 0.72) 
3.1 * * * 3.1 * * * (0.55, 0.71) 
5.0*** 5.0* * * (0.58, 0.69) 

11.5*** 11.5*** (0.82, 0.95) 
13.1*** 13.1*** (0.90, 1.00) 
17.3*** 17.3*** (0.87, 0.97) 

we knew the subject's strategy in Stage II. Payoff points 
were worth $.10. After 10 rounds subjects would sum 
their points and multiply this amount by .1. These were 
their dollar earnings for that decision problem. 
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Hypothesis 3 
Hypothesis 1 Hypothesis 2 Hypothesis 3 95% Confidence 

Game Chi-Square t-statistics t-statistics Intervals 
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1-6 23.2*** -2.5 2.5** (0.52, 0.67) 
7-11 79.0*** -8.0 7.5*** (0. 75, 0.91) 
1-11 72.0*** -4.8 5.7*** (0.65, 0.75) 

Gs 

1-6 92.4*** 9.4 *** 9.4*** (0.76, 0.91) 
7-11 143.2*** 10.7*** 10.7*** (0.82, 0.96) 
1-11 228.5*** 14.2*** 14.2*** (0.81, 0.91) 

G/; 

1-6 50.0*** -6.4 6.1 ** * (0.73, 0.89) 
7-11 95.2*** -8.5 8.5*** (0.77, 0.93) 
1-11 130.3*** -10.4 10.5*** (0.77, 0.88) 

G, 

1-6 102.0*** 0.7 5.8*** (0.43, 0.53) 
7-11 141.8*** 0.1 7.6*** (0.49, 0.59) 
1-11 236.8*** 0.6 9.4 * ** (0.47, 0.54) 

Ga 

1-6 85.3*** -4.7 8.5* * * (0.53, 0.65) 
7-11 323.6*** -5.5 13.3*** (0.71, 0.84) 
1-11 311.8*** -7.1 15.2*** (0.63, 0.72) 

Gg 

1-6 165.9*** 10.0*** 10.0*** (0.53, 0.63) 
7-11 287.0*** 13.2*** 13.2*** (0.64, 0.75) 
1-11 422.6* * * 16.3*** 16.3*** (0.60, 0.67) 

3.2. Experimental Design 
Seventeen experimental sessions (N = 187) investigated 
the impact of task complexity and payoff disparity on 
subject behavior. Subjects usually participated in 3 
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Figure 7 
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different games in each session. We use a Latin square 
design to control for possible order effects.7 

Figures 4-6 show the games played by subjects. 
Games Gn and c:, (n = 1, 4, 5, 6) are identical except the 
positions of the equilibria are switched. For example, 
game G~ is the same as G4 except payoffs (7, 5) and (3, 
9) are interchanged. Each equilibrium xis represented 
as a 4-dimensional vector (ex, rx, Sx, Px). We did not want 
to confound results with simultaneous changes in task 
complexity metrics, so in each game only 1 task com­
plexity metric, and payoff disparity were manipulated. 
Cx is manipulated in games G1-G3 and G1; rx in games 
GcG6 and G~-G~; and sx in games G7-G9 . For each equi­
librium x, the shaded box gives the levels of task com­
plexity and payoff disparity. For example, in Figure 4, 
game G1, the upper equilibrium has a c index of 16, a r 
index of 0, as index of 2, and a p index of 2. 

4. Results 
The frequency of outcomes across rounds is shown in 
Tables la-le. Data are shown for individual games and 
are pooled across games which manipulate the same 
task complexity metric. For example, in Table le, games 
G7-G9 only manipulate Sx. The equilibrium with the 
smaller complexity metric is always designated as S 
(Simple), and the equilibria with the higher metric as C 
(Complex). So if both players 1 and 2 choose an action 
leading to the simple equilibrium, the outcome is la-

7 Unfortunately, in a few experimental sessions, subjects were not able 
to stay for the complete sequence of games. Chi-square tests suggest 
order effects in G4, G7, and G9. Order did not appear to affect learning. 
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beled as SS. Similarly, if player 1 chooses an action lead­
ing to the complex equilibrium, but player 2 chooses an 
action leading to the simple one, the outcome is labeled 
as CS. For example, in round 1 of game G5 (Table lb), 
14 subject pairs coordinated on the simple equilibrium; 
in 4 pairs, player 1 attempted to reach the simple equi­
librium, while player 2 attempted to reach the complex 
one; and 2 pairs coordinated on the complex equilib­
rium. In games G7-G9, there are two complex equilib­
rium. The top complex equilibrium is labeled as C1, the 
bottom as Cb.8 

We test several hypotheses. Since all equilibria in our 
experimental games are subgame perfect, our first hy­
pothesis examines whether the frequency distribution 
across outcomes is approximately uniform. 

HYPOTHESIS 1. The frequency distribution across out­
comes is uniform. 

Casual observation of the "Total" column of Tables 
la-c, suggests that in all games, subjects have a system­
atic preference for one equilibrium: Subject-pairs 
strongly prefer the simple equilibrium outcome. In the 
pooled data, the simple equilibrium outcome (SS) is 
chosen at least 3 times more frequently than any other 
outcome. Also, in the pooled data across games with 
only 2 equilibria, the frequency of SS is greater than the 
sum of frequencies across all other outcomes. 

Following normal procedure, we conduct chi-square 
tests on three different "cuts" of the data: the summed 
frequency of choices over the first 6 rounds, .over the 
last 5 rounds, and over the entire 11 rounds. We did this 
to detect any changes in choice patterns over time. 
These goodness-of-fit tests examined whether the ob­
served frequency of choices are consistent with the theo­
retical prediction.9 We report the chi-square values in 

8 In two experimental sessions involving G4 and G6, a few subjects 
chose nonequilibrium outcomes. We have no explanation for their 
choices. Apparently, this behavior caused other subjects to "retaliate" 
and adopt similar behavior. As shown in Table lb, this behavior was 
primarily confined to early rounds and only accounted for 5% of the 
total choices. 
9 In games G1-G6, c;, G~-G6, if subjects were to randomize between 
equilibria, each equilibrium would be selected 0.25*N times, where 
N is the total number of subject pairs in the round. (In games G4-G6 

and G~-G6, we assume that subjects will not choose a dominated 
strategy.) In games G7-G9, each equilibrium should be chosen 0.11 * N 

times. 
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Table 3 An Illustrative Example (a = -0.2, f3 = 0.5) 

0 2 3 4 5 

Subject (i) C s C s s 
Pair Member C s s s C 
oi(S) see Eq. (4.1) 0 0 1 0 
oi(C) see Eq. (4.1) 0 1 0 0 0 1 
n{(S) see Eq. (4.2) 0 0 2 3 3 
nj(C) see Eq. (4.2) 0 1 1 2 
m!(S) see Eq. (4.3) 0 0 2 
m{(C) see Eq. (4.3) 0 0 0 0 
Pi(S) (Cournot) 0.55 0.31 0.77 0.77 0.77 
Pi( S) (Fict. Play) 0.55 0.43 0.55 0.67 0.77 
Pi(S) (Pay. Rein!.) 0.55 0.43 0.55 0.67 0.77 

Table 2. As shown in Table 2, in all games, and all three 
cuts of the data, subjects did not randomize across 
equilibria (p < 0.001); they appeared to use choice rules 
that led to the least task complex equilibrium. 

However, subjects' choices across rounds are proba­
bly not independent. This dependency may overstate 
the chi-square values (and the t-statistics in Hypotheses 
2 and 3). To address this issue, one must examine learn­
ing behavior across rounds, which most previous stud­
ies ignored. We use a simple maximum likelihood test 
to analyze learning behavior below. Still, we report 
these traditional chi-square and t-tests as benchmarks. 

We examine several hypotheses below that may help 
explain subjects' behavior. As indicated above, some ev­
idence suggests that players care about payoff disparity. 
The next hypothesis examines whether subjects con­
sider payoff disparity in choosing actions: 

HYPOTHESIS 2. The proportion of subjects choosing the 
equilibrium with the lowest payoff disparity is significantly 
larger than 1 / number of equilibria. 

A conservative test of whether subjects consider pay­
off disparity is to test whether the equilibrium with the 
lowest payoff disparity was chosen more often than the 
other equilibria. In games G1-G6, GL G4-Gt there are 2 
equilibria so we test whether the lowest payoff disparity 
equilibrium was chosen more than 50% of the time. Sim­
ilarly, we test whether the low payoff disparity equilib-
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Round (j) 

6 7 8 9 10 11 

C s s s s 
s s C s s 

0 1 0 
0 0 1 0 0 0 
4 5 5 6 7 7 
2 2 3 3 3 3 

2 1 2 3 3 
-1 -1 -1 -1 -1 -1 

0.31 0.77 0.77 0.31 0.77 0.77 
0.67 0.77 0.85 0.77 0.85 0.90 
0.67 0.77 0.85 0.77 0.85 0.90 

rium was selected more than 33% of the time in games 
G7-G9 • Table 2 shows the t-statistics. In games GL G4 , 

G4, Gs, G6, and G9, subjects chose the low payoff dis­
parity equilibrium significantly more often. In the re­
maining games (except G7) they chose the low payoff 
disparity equilibrium significantly less often. Note that 
in all the games except G4, in which subjects chose the 
low payoff disparity equilibrium significantly more of­
ten, this equilibrium was also the least task complex. In 
the last 5 rounds of game G4, subjects did not choose 
the low payoff disparity equilibrium significantly more 
often. We can untangle these confounding effects by 
comparing the choice patterns in game pairs G1-GL 
G4-G41 Gs-Gt and G6-G~. In 3 of the 4 cases, subjects 
overwhelmingly chose the least task complex equilib­
rium whether it was high or low payoff disparity. In the 
game pair GcG41 subjects switched toward the least 
task complex equilibrium, but not overwhelmingly. 
Overall, these results reject Hypothesis 2. 

The above discussion suggests that subjects may 
adopt effort conserving rules that lead them to the equi­
librium with t!he lowest task complexity. We formally 
test this in Hypothesis 3. 

HYPOTHESIS1 3. Subjects will adopt effort conserving 
rules that lead to the less task complex equilibrium. 

Using a t-test, we test whether the low task complex­
ity equilibrium was chosen more than 1 / number of 
equilibria times (50% in games G1-G6, GL G4-G~ and 
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Table 4 Log Likelihoods and Parameter Estimates for No Leaming and the Three Leaming Models 

Uniform Prior Biased Prior Uniform Prior Biased Prior 
& No Learning & No Learning with Cournot with Cournot 

Game Ln(L) a* Ln(L) 1x2 /3* Ln(L) x2 a* /3* Ln(L) x~ xi 

G1 -152.5 -2.6 -54.8 195.4* 2.40 -79.36 146.4* -2.0 1.18 -49.84 59.0* 9.9* 

G; -228.7 -0.4 -222.1 13.2* 1.15 -190.61 76.18* -0.3 1.10 -187.75 5.7* 68.7* 

G2 -228.7 -2.6 -80.8 295.8* 2.20 -129.36 198.68* -2.1 0.98 -76.13 106.5* 9.3* 

G3 -228.7 -1.0 -190.4 76.6* 0.83 -207.36 42.68* -0.9 0.53 -184.35 46.0* 12.1 * 

G4 -381.2 0.3 -376.0 20.4* 1.15 -317.30 127.8* 0.2 1.12 -315.05 4.5 121.9* 

G.; -228.7 -0.6 -215.2 27.0* 0.80 -208.19 41.02* -0.5 0.73 -200.94 14.5* 28.5* 

Gs -305.0 -2.2 -140.8 328.4* 1.60 -217.66 174.68* -2.0 0.37 -139.59 156.1 * 2.4 

G; -228.7 -0.8 -201.7 54.0* 0.73 -212.03 33.34* -0.7 0.53 -194.86 34.3* 13.7* 

Gs -305.0 -1.4 -218.8 172.4* 1.08 -258.99 92.02* -1.2 0.52 -212.57 92.8* 12.5* 

G/; -228.7 -0.8 -171.8 113.8* 1.17 -189.45 78.5* -1.0 0.75 -161.33 56.2* 20.9* 

G1 -725.1 -0.7 -683.4 83.4* 0.93 -669.15 111.9* -0.6 0.80 -644.22 49.9* 78.2* 

Ga -483.4 -1.5 -369.4 228.0* 1.33 -408.31 150.18* -1.2 0.85 -348.08 120.1 * 42.6* 

Gg -725.1 -1.2 -604.0 242.2* 0.98 -662.55 125.1 * -1.1 0.57 -586.76 151.6* 34.48* 

33% in games G7-G9). Table 2 shows the t-statistics; ex­
cept for G4, the values are significant at the .01 level. 
Even in G4 the t-statistic is significant for the last 5 
rounds. Also, in all games, except GL the t-statistics in­
crease in rounds 7-11, relative to rounds 1-6. This sug­
gests that in rounds 7-11 subjects chose the less task 
complexity equilibrium more often relative to behavior 
in rounds 1-6. 

We then construct 95% confidence intervals for the 
probability of choosing the lowest task complexity equi­
librium. In all games except G4, the lower bounds of the 
confidence intervals are greater than 1 /Number of 
equilibrium. In 9 out of 13 games, the lower bound is at 
least 0.64. This suggests subjects are adopting effort con­
serving rules that lead to the least task complexity equi­
librium. 

Figure 7 shows that the proportion of subjects 
choosing the least task complex equilibrium increases 
over time. We conduct chi-square tests to determine 
whether the choice pattern of outcomes of subject­
pairs in the last 5 rounds was significantly different 
from that in the first 6 rounds (as evidenced by con­
fidence intervals shown in Table 2). The chi-square 
values are 23.5 (p < 0.01) for games G1 -G3 and GL 
43.6 (p < 0.01) for games G4-G6 and G~-G~; and 23.0 
(p < 0.01) for games G7-G9 • This result indicates that 
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subjects did choose the least task complex equilib­
rium more often in later rounds. Overall, results do 
support Hypothesis 3. Subjects do appear to use task 
complexity as a selection criterion in our coordination 
games. 

4.1. Game-form Independence 
We also test whether choice behavior is game form de­
pendent. As indicated above, a reduced normal-form 
game can have multiple extensive-form equivalents. 
Games G7 and G9 have an identical reduced normal­
form game (Gm). At the end of some experimental ses­
sions, we presented subjects with game Gm. Observed 
results show the majority of subjects chose the equilib­
rium (3, 9). We performed a chi-square test for the 
pooled results of rounds 1-6, 7-11, and 1-11. The test 
shows subject behavior is significantly different at the 
.001 level in game pairs G7-G9 (rounds 1-6-47.79; 7-
11-105.7; 1-11-145.142) and G9-Gm (1-6-29.41; 7-
11-112.2; 1-11-126.3). In the strategically equiva­
lent games G7 and Gm, behavior is similar (1-6-2.8; 
7-11-5.1; 1-11-3.6). However, as discussed below, 
subjects may apply different equilibrium selection cri­
teria in the two games. This result and previous ex­
periments (Schotter, Weigelt and Wilson 1994) suggest 
that normal-form based equilibrium concepts (e.g., 
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Table 4 Continued 

Uniform Prior Biased Prior 
with Fictitious Play with Fictitious Play 

/3* Ln(L) x2 a* {3* Ln(L) x! x~ 

0.88 -50.4 204.2* -1.2 0.52 -44.5 11.8* 20.6* 
0.40 -159.3 139.2* 0.0 0.40 -159.3 0.0 125.6* 
0.90 -74.8 307.9* -1.2 0.54 -65.7 36.4* 30.2* 
0.42 -181.0 95.4* -0.6 0.31 -173.0 16.0* 34.8* 
0.53 -249.3 263.8* 0.0 0.53 -249.3 0.0 253.4* 
0.38 -180.2 97.0* -0.2 0.35 -179.5 1.4 71.4* 
0.61 -145.6 318.8* -1.3 0.29 -129.7 31.8* 22.2* 
0.25 -210;5 36.4* -0.7 0.13 -197.8 25.4* 7.8* 
0.46 -210.7 188.6* -0.7 0.29 -201.9 17.6* 33.8* 
0.54 -143.0 171.4* -0.5 0.44 -138.6 8.8* 66.4* 
0.42 -587.7 274.8* -0.3 0.40 -580.7 14.0* 205.4* 
0.52 -352.1 262.6* -0.8 0.37 -328.3 47.6* 82.2* 
0.50 -559.4 331.4* -0.5 0.39 -546.2 26.4* 115.6* 

proper, persistent) probably do not apply to extensive 
form games. 

4.2. Simple Leaming Rules and Choice Behavior 
As shown in Figure 7, subject behavior is path depen­
dent: the frequency of choosing the least task complex 
equilibrium in later rounds appears dependent on its 
choice frequency in earlier rounds. This illustrates the 
fore-mentioned dependency issue, and suggests sub­
jects adjust their behavior across rounds. To gain an un­
derstanding of these behavioral dynamics, we fit. three 
simple learning models to subjects' behavior. These 
learning models suggest ways subjects may update the 
probability of choosing the least task complex equilib­
rium based on history of play. It also relaxes the inde­
pendence assumption of behavior across rounds. Two 
learning models are suggested by economists, one by 
psychologists, and all are embedded in a multi-logit 
model (Cox 1958). 

Before we describe the model, we define some nota­
tion. Our experimental games have either 2 ( G1 to G6) 

or 3 ( G7 to G9) equilibria. For expository purposes, we 
consider games with 2 equilibria. They are labeled as S 
(simple or the least task complexity equilibrium) or C. 
At roundj (j = 1, ... , 11), subject i (i = 1, ... , 11) will 
choose equilibrium x with a probability p{(x). Obvi­
ously, Lx-s,c p{(x) = 1. 
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Uniform Prior Biased Prior 
with Payoff Reinforcement with Payoff Reinforcement 

{3* Ln(L) x2 a* /3* Ln(L) x! x~ 

0.88 -50.0 204.2* -1.2 0.52 -44.5 11.0* 20.6* 
0.40 -159.3 138.8* 0.0 0.40 -159.3 0.0 125.6* 

0.90 -74.77 307.9* -1.2 0.54 -65.7 18.1 * 30.2* 

0.42 -181.0 95.4* -0.6 0.31 -173.0 16.0* 17.4* 

0.53 -249.3 263.8* 0.0 0.53 -249.3 0.0 253.4* 
0.38 -180.2 97.0* -0.2 0.35 -179.5 1.4 71.4* 

0.61 -145.6 318.8* -1.3 0.29 -129.7 31.8* 22.2* 

0.25 -210.5 36.4* -0.7 0.13 -197.8 25.4* 7.8* 

0.46 -210.7 188.6* -0.7 0.29 -201.9 17.6* 33.8* 
0.54 -143.0 171.4* -5.0 0.44 -138.6 8.8* 66.4* 

0.29 -672.3 105.6* -0.5 0.23 -655.6 33.4* 55.6* 

0.35 -427.4 112.0* -1.3 0.18 -357.9 139.0* 23.0* 
0.31 -672.2 105.8* -1.1 0.13 -596.4 151.6* 15.2* 

4.3. Coumot 
The Cournot model suggests behavior in the current 
round is solely dependent on behavior in the immediate 
previous round (Cournot 1838). Specifically, subjects 
assume their current and immediate previous round 
pair members will behave identically. Accordingly, sub­
jects choose a best response based on this conjecture. 

Let c5{ (x) = 1 if subject i's opponent chooses x (x = S, 
C) in round j and O otherwise. If the subject follows 
Cournot dynamics, she will choose equilibrium S in 
round j + 1 with a probability given by.10 

e/3b/(S) 
pt1 (S) =-~.---~.-

e/3b{cs> + ea+/3b{(C) 
(4.1) 

j+1 j+1 • where p; (C) = 1 - p; (S). a represents a subJect's 
relative inclination for a more task complex equilibrium. 

10 Games G7-G9 hc\Ve three equilibria. Here, 

ef)bi(S) 
j+] I 

p; (S) = i I i ' 
ef1b;(S) + ea+/Jb;(C1) + ea+f3h;(C2) 

I 

andpt1(C2) = 1 - p:+'(S) - pt1(C1). We assume both complex equilib­
ria have the same a. 
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Figure 8 
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If a subject is averse to task complexity, a < 0 and if 
she prefers task complexity, a > 0. /3 > 0 captures the 
degree of path dependency; a higher /3 implies greater 
path-dependency. If subject i's pair member chooses s 
in round j, then i will choose s in round j + 1 with a 
probability e!3 I (ef3 + ea). As /3---+ oo, then pt1 (S) ---+ 1. 

4.4. Fictitious Play 
The Fictitious Play model is suggested by Brown (1951). 
This model assumes a subject's behavior in the current 
round is only dependent on the cumulative frequencies 
of choices across their previous pair members. The 
higher a choice's cumulative frequency, the higher the 
probability subject i will play that choice to coordinate 
with her pair member. Indeed, if a subject follows Fic­
titious Play, she weighs every round of the history 
equally. 

Let subject i's pair members choose equilibrium x 
with n{(x) times by the end of round j. Subject i will 
choose equilibrium S with a probability given by: 

fJnics> 
j+1(S) = e ' p, . . 

L ef3n{(S) + ea+fJn{(C) 
(4.2) 

where pt 1 (C) = 1 - rt1(S). For instance, at the end 
of round 4, if subject i's pair members have chosen S 
three times and C once, then i will choose S in round 5 
with a probability e3fJ / (e3fJ + ea+fJ). As /3 ---+ oo, then 
p{+1(S)---+ l. 

4.5. Payoff Reinforcement 
The previous two models suggest subjects adjust their 
choices based on choices of pair members. The Payoff 
Reinforcement model, as suggested by Bush and Mos­
teller (1955), assumes subjects adjust their choices de­
pendent on the reinforcement they receive (i.e., mone­
tary payoffs). 

Let subject i choose equilibrium x in round j. She can 
receive either a positive (i.e., her pair member chooses 
x) or a negative (i.e., her pair member chooses not x) 

reinforcement. Let the net reinforcement for choosing 
equilibrium x up to and including round j be m{ (x). Sub­
ject i in round j + 1 will choose equilibrium S with the 
following probability: 

efJm{(S) 
p{+1(S) = ---. ----. -

L ef3m{(S) + ea+fJm{(C) 
(4.3) 
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Hence, as the net reinforcement of an equilibrium in­
creases, the probability of its choice increases. For in­
stance, at the end of round 4, if subject i has chosen S 
three times and it is always positively reinforcement, C 
once and it is negatively reinforced, then i will choose 
Sin round 5 with a probability e3fJ / (e3fJ + ea-fJ). As /3---+ 

·+1 
oo, then p{ (S)---+ 1. 

4.6. Maximum-likelihood Estimation 
Let the likelihood function be L(a, /3), which is the prod­
uct of the probabilities of all subjects across all rounds. 
Let 1r{(x) = 1 if subject i chooses x in period j and 
1r{(x) = 0 otherwise. Then L(a, /3) is: 

L(a, /3) = ~ [B (1r{(S)p{(S) + 1r{(C)p{(C)) J . (4.4) 

Different learning models generate a different p{(x) de­
pendent on past plays. Table 3 gives a numerical ex­
ample.11 Nate that in all three models, subjects' behavior 
are path dependent because p{(x) depends on the his­
tory of plays. We determine a and /3 to maximize the 
likelihood function. The model with full specification 
including both a and /3 nests three simpler models (L(O, 
0), L(a, 0), L(O, /3)). We test below whether each of these 
nested models is statistically rejected or not. 

Table 4 presents the maximum log-likelihoods under 
the different learning models. Panels 1-2 show the 
log-likelihoods across games when there is no path­
dependency or learning. In Panel 1, subjects are as­
sumed to have no "biased prior" between equilibria 
(i.e., Log(L(O, 0)) and in Panel 2 they do have a "biased 
prior" (i.e., Log(L(a, 0))). Intuitively, subjects will have 
a biased prior if they have a stronger tendency towards 
a particular equilibrium. Panels 3 and 4 show the log­
likelihoods under Cournot model without and with ''bi­
ased prior" respectively (Log(L(O, /3)), Log(L(a, /3))). 

Panels 5-6 and 7-8 are identical to Panels 3-4 except 
they assume different learning dynamics (5-6 for Fic-

1 

titious Play, arid 7-8 for Payoff Reinforcement). High-
lights of this table include: 

11 It is worth noting that while the Payoff Reinforcement model is cog­
nitively more complex than the Fictitious Play model, their predictions 
are identical in two-equilibrium games regardless of history of plays. 
In three-equilibrium games, their predictions are different. 
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• Comparing the maximum log-likelihoods which re­
sult from either including a "biased prior" or not, we 
clearly see the maximum log-likelihood is significantly 
greater when there is a "biased prior." This is true 
across all learning models. Also, the al estimates are 
nonpositive in 50 out of 52 cases (i.e., subjects are task 
complexity averse). Thus, after adjusti!].g for depend-

' ency of choices across rounds, our result still rejects Hy-
potheses 1 and 2 and supports Hypothesis 3. 

• Comparing the maximum log-likelihoods in Panels 
4, 6, and 8 with those in Panel 2, we clearly see sub­
jects' choices are path dependent. In every single case, 
[.B > 0 and significant.] 

• In games with two equilibria ( G1 to G6), the Ficti­
tious Play and Payoff Reinforcement models predict sig­
nificantly better than Coumot. In games with three 
equilibria (G7 to G9 ), the Fictitious Play model predicts 
better than Coumot which in tum predicts better than 
Payoff Reinforcement. 

5. Discussion 
Our task complexity measures assume that when faced 
with multi-stage games, decision-makers decompose 
games into stages. This interpretation of the decision­
making process inherently assumes players are bound­
edly rational (i.e., procedurally rational, see Simon 
1982) and may use effort conserving rules in their in­
formation processing. The standard game theory as­
sumption of collapsing game stages into a single strat­
egy choice (i.e., the transformation of extensive-form to 
normal-form) assumes all players are infinitely sophis­
ticated along our three dimensions of task complexity. 
This implies players are indifferent to task complexity. 

We conducted experiments to test whether an equi­
librium's task complexity influences its selection. Re­
sults suggest it does; subjects are averse to task com­
plexity. This aversion to task complexity is analogous 
to commonly-found risk averse behavior. Previous 
work has clearly shown that individuals consider risk 
in making choices between gambles. Economists cap­
ture this choice selection criteria via the utility function. 
By analogy, we speculate a plausible way to model 
bounded rationality is to capture an equilibrium's task 
complexity via a value function. We make an initial at­
tempt to measure task complexity using three simple 
metrics. 
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The manipulation of the task complexity measures in 
our experiments was straightforward; for the c measure 
we added 2 more alternatives, and for the r and s mea­
sures we added 1 more level of iterative mutual knowl­
edge of rationality and strategies. Even with this simple 
manipulation, subjects chose the least task complex 
equilibrium significantly more often. This result sug­
gests our subjects may have either high costs of infor­
mation processing or limited short-term memory for 
holding all the relevant information for executing a so­
phisticated rule of behavior (Miller 1956). Conse­
quently, they are inclined to adopt simple, effort­
conserving heuristics. 

We also test whether subjects consider payoff dispar­
ity in equilibrium choice. Although results did not sup­
port Hypothesis 2, in two games ( G4 and G7 ), subjects 
appear to choose the least payoff disparity equilibrium 
more often in early rounds.12 But clearly, as a selection 
criterion it is significantly less important than task com­
plexity. We conjecture subjects sometimes consider pay­
off disparity, and they make tradeoffs between task 
complexity and payoff disparity. 

We focus on first-round behaviors only to understand 
how subjects make this tradeoff before learning takes 
place. That is, we set /3 = 0 and decompose a into 

ac(Cc - Cs) + a,(rc - Cs) + as(Sc - Ss) + a/pc - Ps) 

in Eq. (4.1)-(4.3). Subject i is predicted to choose the 
simple equilibrium in round 1 with a probability given 
by: 

1 (S)= l (51) p, 1 + e"rCcc-cs)+a,(rc-rs)+a/sc-ss)+a,,<pc-ps) · · 

If the subject is task complexity averse (loving) then au 
a,, as < 0(> 0). If she dislikes (likes) payoff disparity, 
then a1, < O(a1, > 0). If au a,, as = 0, then the subject is 
indifferent to task complexity in choosing equilibria. If 
aP = 0, the subject does not care about the payoffs of 
others.13 If the subject dislikes task complexity more 
than payoff disparity, ac, a,, and as will have higher 
absolute values than aP. 

12 Note in both games, the simple equilibrium is (3, 9), which is also 
the equilibrium with the highest disparity in payoffs. 
13 We re-scaled the task complexity metrics to ensure that all variables 
have identical ranges. 

MANAGEMENT Sc!ENCE/Vol. 42, No. 5, May 1996 



HO AND WEIGELT 
Task Complexity, Equilibrium Selection, and Learning 

We derive maximum likelihood estimates for a.Cl a." 

a.., and a.P using the proportion of equilibrium selection 
in the first round. In games G1 -G3, G{ our design allows 
us to estimate a pooled a.c and a.P; in games G4-G6 and 
G~-Gt a pooled a., and a.p; and in games G7-G9 , a 
pooled a.. and a.P. The maximum likelihood estimates 
are a.c = -0.18, a.P = 0.00 (G1-G3); a., = -0.18, a.P 

= -0.14 (GcG6); and a.. = -0.17, a.P = -0.14 (G7-G9 ). 

Maximum likelihood ratio tests reveal that non-zero as 
are significant at least at the .01 level. These result sug­
gest subjects do consider payoff disparity but it is not 
as important as task complexity. 

Results also indicate that subjects' behavior is game­
form dependent. This result casts doubt on the descrip­
tive validity of equilibrium concepts that are insensitive 
to game form. Experimenters and theorists should use 
caution in generalizing results across game forms. 

Our results strongly suggest choices of subjects are 
path-dependent. This points out the danger of pooling 
data across rounds, although our results remain signif­
icant after accounting for learning. While we test only 
three learning rules, the simple methodology we use 
seems appropriate for other learning dynamics and ex­
perimental settings. 

Also, the methodology reveals an interesting phe­
nomenon about learning in simple coordination games. 
In games with two equilibria ( G1 to G6), the more com­
plex Payoff Reinforcement model fits the data better 
than the simple Cournot model whereas in games with 
three equilibria, the reverse is true (see Table 3). How­
ever, the moderately complex Fictitious Play model fits 
the best in all games. This finding suggests subjects did 
not use sophisticated learning rules in our experimental 
games. It will be worthwhile to investigate whether the 
same result would generalize to more complex games. 

5.1. Harsayni-Selten 1-Point Solution Theory 
Harsanyi and Selten (1988) develop a general theory for 
equilibrium selection based on the concepts of payoff 
and risk dominance and a mental reasoning ( tracing) 
procedure. This theory is the only one that predicts a 
unique equilibrium in any finite game. Games G1-G9 

have no payoff dominant equilibrium, but each game 
has an unique risk dominant one. For example in game 
G8, equilibrium (3, 9) risk dominates (7, 5) in Stage II 
and it dominates (8, 4) in Stage I. The order of risk dom-
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inance between two equilibria can be defined using the 
evolutionary game theoretic concept of "resistance." A 
population of players can either play equilibrium E1 or 
E2 • Imagine most players are selecting El, except for a 
fraction of "mutant" players selecting E2 • The resistance 
of E1 against E2 is the maximum allowable fraction of 
mutants that can play E2 without inducing present E1 

players to switch to E2 • So, E1 risk dominates E2, if and 
only if the resistance of E1 against E2 is greater than the 
resistance of E2 against E1 (see Myerson 1992, p. 118 for 
a more formal definition). Risk dominance predicts sub­
jects will select the equilibrium with the highest resis­
tance (3, 9-G1-G2, GcGs, G7-G9; 8, 4-G3 and G6). 

Surprisingly, in our experiments, this prediction is 
consistent with player 2 choosing her minimax strategy. 
In games G4, G7-G9, there is an unique minimax strat­
egy for player 2. For instance, in game ~ (see Figure 
6), player 2 can guarantee herself a payoff of 2 by choos­
ing the upper branch (in Stage I). If Player 1 anticipates 
this, he will also choose the upper branch which will 
result in a payoff of (3, 9). In the remaining games, if 
subjects backwardly induct then player 2 has an unique 
minimax Stage I strategy. For example, in game G5 (see 
Figure 5), player 2 can guarantee herself a payoff of 2 
by choosing the bottom branch. If player 1 realizes this, 
he should choose the bottom branch to maximize his 
payoff.14 

Table 1 shows that behavior in the last 5 rounds of 
games G4 and G7 is consistent with this interpretation. 
But, results from the remaining games are inconsistent 
with the risk dominance or minimaxing behavior. 
Hence, the results cast doubts on the descriptive validity 
of Harsanyi-Selten's 1 point solution theory. 

5.2. Future Research 
Our results strongly suggest the three task complexity 
metrics can predict choice behavior. An important ex­
tension of this work is to decompose our complexity 
constructs into more basic cognitive operations (see 
Johnson and Fayne 1985). This will allow us to inves­
tigate how an increase inc, r, ors affect the number of 
basic operations. 

As previously indicated, our task complexity metrics 
are sensitive to game form invariant transformations. 

14 Recall that subjects switched roles during the experiment. 
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Figure 8 shows 5 such game form transformations: an 
extension of our research will be to examine how these 
transformations affect subjects' equilibrium selection. 
Theoretically, all these transformations result in strate­
gically equivalent or perfectly similar gkmes. Our ex­
periments suggest these transformations may result in 
games perceived to be dissimilar by supjects. Besides 
game form, games can be similar in otlier aspects; so­
lution principles (e.g., iterative dominance, backward 
induction), nature of conflict (e.g., prisoner's dilemma, 
coordination games), order of payoffs. Like game-form 
dependency, we believe similarity is empirically impor­
tant because it affects how individuals transfer learning 
across games. We plan to conduct a series of experi­
ments to determine the major constituents of similarity 
as perceived by subjects.15 

15 This research was supported by the Sol C. Snider Entrepreneurial 
Center and the Reginald H. Jones Center for Management Policy, Strat­
egy, and Organization. We thank Colin Camerer, Andy Schotter, 
Sushi! Bikhchandani, the department editor, a reviewer, and seminar 
participants at University of Pennsylvania and Northwestern Univer­
sity for their helpful comments. 

Appendix 

Instructions 
This is an experiment in decision-making. Several research founda­
tions have provided funds for these experiments. If you follow the 
instructions, and make good decisions, you may earn a sizable amount 
of money. The amount of money you earn depends on your choices 
and the choices of other subjects in the experiment. 

Your Decision Problem 
During each round, you will be paired with a randomly selected sub­
ject. This subject will be your pair member for that round. In each 
round you and your pair member will be presented with the identical 
decision problem. Your role for that round is designated by the title 
of You. Your pair member's role is designated as "Pair member." 
Roles are randomly assigned, so your role may change from round­
to-round. 

In each decision round, you and your pair member will simulta­
neously choose between your action alternatives. Since you and your 
pair member have worked in privacy, after making your choice, an 
administrator will come around and record your choice. We will then 
match your choice with that of your pair member, and compute the 
point payoffs to all subjects. The administrator will then privately tell 
you what your point total is. You will record this on the appropriate 
line of you worksheet. We will then begin the next round. 

The experiment will last for 10 rounds. In each round you will be 
paired with a different pair member. That is, in this problem, an-
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other subject will never be your pair member more than once. There 
are 11 subjects in the room. So each subject will 'sit out' one round. 
You will be informed of the round you will sit out by a blank sheet of 
paper in your folder. During this round you will not participate in the 
experiment. 

The payoffs resulting from the choices of you and your pair member 
are described in the figures below. That is, the figure tells you how 
many points each of the possible decision choice pairs are worth to 
you. Note again that your payoffs are always in bold. 

7,5 

0,2 

PM 

0,0 

Some Examples 

PM 

3,9 

0,0 

0,2 

8,4 

Suppose you choose RI and your pair member chooses Tl. Then you 
would receive 2 points and your pair member would receive O points. 

Suppose you choose RI and your pair member chooses Bl. Because 
you chose RI, you would then have to make a choice in Stage 2. Sup­
pose you choose r2 in Stage 2, and your pair member chooses b2. Then 
you would receive 4 points, and your pair member would receive 8 
points. 

After we have finished with round 1, we will proceed to round 2. 
The procedure is exactly the same except you will be randomly paired 
with another subject as your pair member, and you will be randomly 
assigned a role. Your role may change. You will not play this game 
against the same person more than one time. 

Payoffs 
Your dollar earnings for the experiment are determined as follows. 
First, we will sum up your point total over the 10 rounds. Then we 
will multiply this sum by $.10. We will then pay you this sum as you 
leave the experiment. Note that the more points you earn, the more 
money you will receive. 
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