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 Service firms have increasingly been competing for market share on the basis of delivery time. Many firms now choose to set customer expectation by announcing their maximal delivery time. Customers will be
 satisfied if their perceived delivery times are shorter than their expectations. This gap model of service quality
 is used in this paper to study how a firm might choose a delivery-time commitment to influence its customer
 expectation, and delivery quality in order to maximize its market share. A market share model is developed to
 capture (1) the impact of delivery-time commitment and delivery quality on the firm's market share and (2) the
 impact of the firm's market share and process variability on delivery quality when there is a congestion effect.
 We show that the choice of the delivery-time commitment requires a proper balance between the level of service
 capacity and customer sensitivities to delivery-time expectation and delivery quality. We prove the existence of
 Nash equilibria in a duopolistic competition, and show that this delivery-time commitment game is analogous
 to a Prisoners' Dilemma.
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 1. Motivation and Integrative
 Framework

 Increasingly, firms have been competing on the basis
 of response, delivery, or shipping time. Many firms
 now choose to announce a guarantee on their maxi-
 mal service delivery time in order to entice customers.
 For example, several cable TV companies (e.g., Time
 Warner Cable) guarantee that they will be on time for
 installation-otherwise, their installation is free. Sim-

 ilarly, many product firms (e.g., Tradewinds Coffee)
 waive their shipping charges if they do not deliver
 their products on time. Some banks (e.g., IndyMac
 Bank) even offer handsome rebates on mortgage clos-
 ing costs if they fail to respond to loan applications
 within a number of hours. The conventional wisdom

 is that such commitment can provide a powerful
 source of competitive advantage if the service guaran-
 tee represents a breakthrough in service and the firm
 is able to fulfill the guarantee at high reliability.

 How does a firm choose a delivery-time commit-
 ment that will have the most significant market-
 ing impact, and what factors determine this choice?
 In selecting a delivery-time commitment, the firm
 must consider not only how customers will react to
 the commitment, but also whether it has adequate
 service capacity (e.g., level of staffing) to fulfill the

 commitment with high reliability. A tight delivery-
 time commitment has both benefits and costs. It

 can attract impatient customers, but the performance
 of a congested system might deteriorate unless ser-
 vice capacity is expanded accordingly. Depending on
 the inherent random nature of the customer arrival

 and service delivery processes, an excessive capacity
 may be required to fulfill the tight service guaran-
 tee. Thus, the choice of a delivery-time commitment
 requires careful consideration of both marketing-
 related (i.e., customer) and operations-related (i.e.,
 capacity) factors.

 This paper presents an integrative framework that
 allows the analysis of the fundamental trade-off
 above. We consider a service firm that is interested

 in maximizing its demand rate (which is equivalent
 to its market share when the total demand rate for

 the industry is held fixed). While the firm's demand
 rate is potentially affected by other service attributes,
 we focus on the impact of the service delivery time
 and assume that customers would be attracted by a
 low expected maximal delivery time and a high deliv-
 ery quality. Here the delivery quality is restricted in
 the time dimension. We define the delivery quality
 as conformance of the customer's perceived deliv-
 ery time to the expected delivery time. More pre-
 cisely, the delivery quality is the probability that the
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 perceived delivery time is shorter than the expected
 maximal delivery time.
 While the customer's expected delivery time can

 be influenced by other factors such as price, word of
 mouth, communications controlled by the company,
 and prior service experiences (Zeithaml et al. 1993),
 we naturally assume that an announced commitment
 sets the customer's expected delivery time. Larson
 (1987) has observed that the perceived delivery time
 can be influenced by many psychological and social
 factors. It is, however, reasonable to assume that the
 perceived delivery time is positively related to the
 actual delivery time, which is determined by both
 the demand rate and the level of capacity. A high
 demand rate increases the degree of congestion, and
 thus lengthens the perceived delivery time. The inte-
 grative framework is illustrated by an influence dia-
 gram, as shown in Figure 1.
 This integrative framework builds on models and

 concepts from the marketing and operations litera-
 tures. The basic building block of the above inte-
 grative framework is the well-known gap model of
 service quality developed in the marketing literature
 (Anderson 1973, Oliver 1977, Parasuraman et al. 1985,
 Boulding et al. 1994). The gap model suggests that if
 a customer expects a certain level of service, and per-
 ceives the service received to be higher, she will be
 a satisfied customer. This stream of literature points
 to the importance of managing customer expectation
 and perception for improving service quality. In addi-
 tion, it is empirically shown that purchase intention
 (and hence demand rate) increases as service quality
 improves (Boulding et al. 1994). We contribute to this
 literature in three ways:

 * Our definition of delivery quality captures the
 impact of process variability on quality explicitly,

 Figure 1 The Integrative Framework
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 a critical dimension that is often ignored in the
 literature.

 * We model the impact of congestion explicitly by
 incorporating the influence of the demand rate on the
 perceived delivery time.

 * Service capacity is considered explicitly so that
 the ability of the firm to meet the expected delivery
 time can be investigated.

 Delivery time in a congested system is the central
 topic of the vast queueing-theory literature (for
 comprehensive reviews see, for example, Kleinrock
 1975 and Cooper 1990), which provides us with a
 good understanding of service system performance
 for various customer arrival and service processes.
 Typical system performance measures of interest
 include server (manpower or facility) utilization,
 queue length, and delivery time. Delivery time is
 further classified into the so-called delay (which is the
 waiting time in queue before entering service) and
 total waiting time (i.e., sum of the delay and service
 time). The level of capacity is usually modeled by
 the system configuration (e.g., number of servers and
 the service-time distribution). Our model framework
 employs the well-understood relationships between
 delivery time and demand rate, as well as level of
 capacity, developed in this body of literature. Our
 framework differs from the traditional queueing liter-
 ature in the following ways:

 * Customer's expectation on delivery time is
 explicitly considered in the analysis of the system.

 * Delivery quality, which is also the level of cus-
 tomer satisfaction, is used to measure system perfor-
 mance. Average queue length and waiting time have
 impact on delivery quality, but they are not equiva-
 lent to it.1

 * The demand rate here is endogeneous rather
 than exogeneous.

 Based on the integrative framework, we develop a
 normative model to study the impact of a delivery-
 time commitment. A simple graphical representation
 is used throughout in our model analysis, which
 begins with the establishment of demand-rate equi-
 librium. When congestion effect is negligible (in sys-
 tems with ample capacity), we obtain a closed-form
 solution for the optimal delivery-time commitment.
 Under congestion, we derive optimality conditions for
 the delivery-time commitment and use them to design
 an algorithm for computing the optimal commitment.
 We also analyze a duopolistic delivery-time commit-
 ment game and establish conditions for the existence

 SThe traditional queueing literature has not always paid attention
 to the human aspect of the service encounter. One important excep-
 tion is Hall (1991), which considers balking and reneging behavior
 in queues. Other exceptions include Larson (1987), Rothkopf and
 Rech (1987), Green and Kolesar (1987), and Carmon et al. (1995).
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 of Nash equilibria. We illustrate with an example of
 how this game is analogous to a Prisoners' Dilemma.
 This paper is organized as follows. Section 2 devel-

 ops the mathematical model. Optimality conditions
 for delivery-time commitment are derived and a com-
 putational scheme for calculating the commitment is
 outlined in S3. Section 4 extends the analysis to a
 duopolistic competition. Section 5 concludes and sug-
 gests future research directions.

 2. The Basic Model

 2.1. Delivery Time and Delivery Quality
 We consider a firm that serves a population of homo-
 geneous customers who are impatient and sensitive to
 service delivery time.2 The firm's objective is to maxi-
 mize its demand rate, which is affected by customers'
 expectation for the delivery time as well as the prob-
 ability that this expectation is being fulfilled. Let the
 service delivery time be denoted by t, which is a ran-
 dom variable because customer arrival and the service

 processes are inherently random. Let T be the cus-
 tomers' expected maximal delivery time. We define
 Q = Prob(t < T), which is the probability that a ser-
 vice delivery meets the customers' expectation, as the
 delivery quality. Ceteris paribus, a customer is more
 likely to use the service if it has a tighter delivery-time
 commitment and a higher delivery quality.

 Here we assume that the customer population is
 homogeneous. The delivery quality, as defined above,
 is equivalent to the fraction of satisfied customers.3
 In the context of managing service firms for customer
 satisfaction, we believe that this definition of quality
 seems more relevant than the commonly used system
 performance measures such as average waiting time
 and queue length. We also note that the above defini-
 tion of quality can be easily extended to other service
 attributes.

 The delivery time depends on the demand rate and
 service capacity. Fix the firm's process capacity. Let A
 be the firm's demand rate and F(s, A) be the proba-
 bility distribution function of the delivery time. Thus,

 Q=F(T, A). (2.1)

 We model the congestion effect by assuming that
 F(s, A) is decreasing (nonincreasing) in A. The service
 system is referred to as an uncongested system if F is
 independent of A.

 For a given demand rate A, F(-, A) is the distribu-
 tion function (cdf) of delivery time, which is readily
 available either in exact closed-form expressions or in
 good approximations for F for actual delivery times
 for various classes of customer arrival and service

 delivery processes. Depending on the application, the
 delivery time can be referred to as either the waiting
 time in queue or the total system time (the waiting
 time + the service time). In bank teller and telephone-
 ordering/enquiry services, the waiting time in queue
 is more relevant. For these applications, the classic
 M/M/c queueing system is an appropriate model. Let
 At be the service rate of a server and a = A//p. The
 waiting-time distribution can be expressed as follows
 (Kleinrock 1975):

 F(s, A) = 1 - A(A)e-(cA-A)s, (2.2)

 where

 A(A) = ac/(c!(1 - (a/c))) ac/(c!(1 - (a/c))) + Ei-(ai/i!)

 is the probability that an incoming customer has to
 wait. In many repair, mailing, and fast food deliv-
 ery services, however, customers are interested in the
 total system time. In this case, for simplicity we model
 the whole service delivery process as an M/M/1
 queueing system in our analysis. The distribution of
 the total system time of the M/M/1 system is:

 F(s, A) = 1 - e-("-A)s. (2.3)

 It has been observed that the perceived delivery
 time may not be the same as the actual delivery
 time. Katz et al. (1991) showed empirically that cus-
 tomers visiting bank tellers tended to overestimate the
 amount of time they spent waiting in line and that
 the difference between perceived and actual waiting
 times is approximately normal, with a mean over-
 estimation of one minute and a standard deviation of
 2.5 minutes.

 We assume that a delivery-time commitment will
 narrow the gap between perceived and actual wait-
 ing times because customers will become more con-
 scious about the actual time and may monitor it
 more closely as a result of the firm's service commit-
 ment. It remains, however, an empirical question as to
 how delivery-time commitment will impact the gap
 between perceived and actual delivery times. In our
 numerical examples, we use the actual delivery-time
 distribution function. In particular, we will use (2.2)
 and (2.3) as the delivery-time distribution of service
 systems that can be represented by M/M/c systems
 and M/M/1 systems, respectively.

 2In some service contexts, customer may actually prefer delay
 (Greenleaf and Lehmann 1995), possibly enjoying the anticipation
 of the event.

 3A more refined model may capture the extent of delay experi-
 enced by customer. Our model basically assumes that customer sat-
 isfaction is a binary variable: Customer is happy iff the firm meets
 its promised delivery time.
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 2.2. Demand-Rate Equilibrium
 We model the firm's demand rate by the following
 general formulation.

 A = A. S(U), (2.4)

 where:

 A: total demand rate of the market,
 S: firm's market share,
 U: customer's utility for the firm's service.

 Note that A is assumed to be fixed, and SE (0, 1)
 may be any continuous, increasing function. The cus-
 tomer's utility for the firm's service depends on the
 expected delivery time and service quality:

 U(T, Q) = 00 - OTT + PIQQ, (2.5)

 where go, PT, and pQ are nonnegative constants. P3T
 and 3p, reflect customer sensitivity to the delivery-
 time expectation and to the service quality, respec-
 tively, and P summarizes her utility for all the firm's
 other attributes. The model says that the firm's mar-
 ket share is decreasing in the delivery-time expecta-
 tion and increasing in the service quality. We note,
 in general, that PQ could also depend on T. If more-
 impatient consumers care more about delivery qual-
 ity, then we have PQ = PQ(T) being decreasing in T.
 A distinction has recently been made between

 two types of expectations: (1) the "will" expecta-
 tion (i.e., a level that is expected to occur) and
 (2) the "should" expectation (i.e., a level that ought to
 happen) (Tse and Wilton 1988, Boulding et al. 1994).
 These researchers show empirically that the higher
 the customer's "will" expectation and the lower their
 "should" expectation of the service, the more satisfied
 she is likely to find the service. A slightly more gen-
 eral version of our model can capture this distinction.
 If we rewrite U(Tw, Ts, Q) as 3 - IPTTw + PQF(Ts, A),
 the customers utility is increasing in "will" expec-
 tation (as higher "will" expectation is indicated by
 a lower Tw) and decreasing in "should" expectation
 (i.e., higher Ts).4 In this paper, we implicitly assume
 that announcement of a delivery-time commitment
 will close the gap between the "will" (Tw) and the
 "should" (Ts) expectations so that Tw - Ts (c.f. Green
 et al. 1992).

 The market share function S can take various func-

 tional forms (see Lilien et al. 1992 for a review). We
 use the multilogit model in our numerical examples
 throughout the paper. This market share model is

 widely used in marketing and operations research
 (McFadden 1980, Lee and Cohen 1985, Cooper 1993).
 Here, the market share of firm i, Si, in an industry
 with m firms is given by:

 Si = l (2.6) m;= eu

 where Uj is the customer's utility for firm j's service.
 In S3, we concentrate on analyzing a passive com-
 petitive environment and assume that the customer's
 utility for other firms' services is not significantly
 affected by the firm's decision. In the multilogit
 model, this implies that the firm's market share is
 given by (dropping the subscript i):

 S e ' (2.7) eu +A'

 where A = ji eue. In S4, we explore how the cus- tomer's utilities for different firms interact with each

 other in an duopolistic market.
 For notational convenience, let

 O(T, A) = AS[U(T, F(T, A))].

 Equation (2.4) becomes:

 A = 0(T, A). (2.8)

 We note that, due to the congestion effect, the cus-
 tomer's utility is decreasing (nonincreasing) in A for a
 given T, and so is 4(T, A). Because the demand rate
 is endogeneous and appears in both sides of Equa-
 tion (2.8), the existence of equilibrium, which is the
 solution of (2.8), must be established first. For conve-
 nience, we intuitively refer to O(T, A) as "tomorrow's
 demand rate" given todays' demand rate A. A mar-
 ket equilibrium is reached when tomorrow's demand
 rate is the same as today's.

 PROPOSITION 1. For any given T, there exists a unique
 A(T) e [0, A] that satisfies (2.8).

 PROOF. Since O(T,0) > 0, O(T, A) < A, and 4 is
 continuous in A, 04(T, A) - A = 0 has a solution A(T)
 due to the mean-value theorem. The uniqueness fol-
 lows from the fact that O(T, A) - A is strictly decreas-
 ing in A (because 4(T, A) is decreasing in A). [
 In Figure 2, we let the horizontal axis represent

 today's demand rate and the vertical axis tomorrow's.
 Then, for a given T, the 0 function is represented
 by a continuous curve that has a negative slope
 (because of the congestion effect). The equilibrium
 demand rate is the intersection of the 4 curve and
 the 45-degree straight line. For a given T, the slope of
 the 4 curve provides a measure for the degree of con-
 gestion: A higher slope (in absolute value) indicates a
 more congested system. A horizontal line indicates an
 uncongested system (or a system with ample capac-
 ity) since tomorrow's demand rate is not affected by
 today's demand rate.

 4 Boulding et al. (1994) indicate that ideally one would want to
 simultaneously increase customer's "will" expectation and decrease
 their "should" expectation. They suggest that such activity seems
 impossible. In our model, delivery-time commitment is a marketing
 activity that will increase both the customer's "will" and "should"
 expectations.
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 Figure 2  0 (T, A)
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 3. Maximization of Demand Rate
 We consider the following optimization problem:

 max A
 T

 subject to A =4O(A, T). (3.1)

 Let T* be the optimal delivery-time commitment,
 and A* be the maximum demand rate the firm can

 obtain by making a proper choice of T; that is, T* =
 argmax, A(T) and A* = A(T*). Next, we show that T*
 can be identified efficiently.

 3.1. Uncongested Systems
 We say a system is uncongested if an incoming cus-
 tomer never needs to wait. Such a system may be
 modeled nicely as an M/G/oo queueing system with
 an infinite number of servers and an arbitrary service-
 time distribution. For an uncongested service system,
 the delivery time is of course referred to as the ser-
 vice time for each individual customer, which is inde-
 pendent of the demand rate. Letting G(T) be the
 distribution function of the service time, we have
 F(T, A) = G(T).

 Because in this case the right-hand side of (2.8) is
 independent of A, and the S-function is increasing,
 the optimal time commitment T* also maximizes U.
 Let g(.) be the density function of the delivery time.
 Note that DU(T, A)/8T = -PT + PQg(T), which is
 decreasing in the range of T where g(T) is decreas-
 ing. Here we make the further assumption that
 the relevant range of T is the range where g(T)
 is decreasing. Within this range, g(T*) = T/IPQ is
 a necessary and sufficient condition because then
 a2U/aT2 = fQg'(T) < 0. For most well-behaved prob-
 ability distributions, the density function g(t) declines
 for the range of t when G(t) is close to 1 (say, >0.8).
 This assumption is plausible because a delivery-time

 commitment makes sense only if the service quality
 is high enough. For example, our assumption means
 that the quality of the commitment must be at least
 50% if g is of normal density. Under these assump-
 tions, and for appropriate PT and pQ, we may write:

 T* = g - ( T (3.2) (P
 Thus, the choice of a delivery-time commitment

 requires a proper understanding of both customer
 attitudes and service delivery process. The form of
 the optimal time commitment suggests that only the
 tail distribution of the service delivery process mat-
 ters. This result should not be surprising because the
 "tail" region is where the firm does not fulfill its
 service commitment. Consequently, a fat-tail process
 must be accompanied by a looser commitment. Thus,
 a competitive marketing strategy that is based on a
 tight delivery-time commitment must be matched by
 a first-class service process that has a thin tail.

 The optimal time commitment should be tighter if
 the customers are highly impatient (high PT). This
 may explain why many service firms are pushing for
 a tight delivery-time commitment. However, as indi-
 cated in (3.2), this is just one of the three factors
 that determine the level of service commitment. The

 level of commitment is also affected by the customers'
 sensitivity to service quality. A looser commitment
 should be adopted if the customers are very conscious
 about service quality. Failing to meet customers'
 expectation in a service delivery can hurt the firm's
 future market share. Indeed, we suspect that many
 service firms "overcommit" and ignore the ramifica-
 tions of failing to keep a service guarantee.

 In an uncongested system, the optimal level of
 time commitment is not a function of the competitive
 attraction level A. This is so because the assumed
 ample capacity decouples the firm from its environ-
 ment. We shall show, in S3.2, that this is not true in
 a congested system. This suggests that if a particular
 firm in an industry has ample capacity (acquired per-
 haps through a new technology), it needs only to
 ensure that its service guarantee matches the speed
 of the service process, and may ignore the level of
 service of the competitors.

 EXAMPLE 1. Exponential service time g(t) = 1te-at,
 where /L is the mean service rate.

 T 1() = l In Q ). (3.3) A \ PT /

 Note that T* > 0 only if L > PT/IPQ. Note that T* is
 convex in A for positive T*. Also note that dT*/ldA < 0
 for IPQ1/PT < e or the delivery quality is below 1-
 e-C"T* > 1- e-1 = 63.2%. Under the high delivery qual-
 ity assumption, a faster service process should be
 accompanied by a tighter delivery-time commitment.
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 EXAMPLE 2. Normal service time

 t 1/2-

 where m and o- are the mean and variance of the ser-
 vice time.

 T*=m+ + In ' (3.4) "V/2'TOT

 The expression is valid only for oa < 0Q/(N2rPT).
 Note that T* increases linearly with m. In the
 high-service region (above 78%), T* is increasing
 and concave in o. Thus, a decrease in o will not
 lead to a proportionate decrease in time commit-
 ment. A numerical example will make this point clear.
 Let ,T = 0.01, PQ = 4.0, m = 5, and a = 0.1. Then
 T* = 8.995. If o- is reduced to 0.05 (i.e., by 50%), then
 T* becomes 7.825 (i.e., by 15%).

 3.2. Congested Systems
 For general congested systems, maximizing the
 demand rate is more involved. Let f(t, A) be the den-
 sity function of the delivery time. The necessary opti-
 mality condition is characterized by the following pair
 of equations:

 PT
 f(A*, T*)= -(3.5)

 A* = .(A*, T*). (3.6)

 Besides pQ, PT, and the tail distribution f, T* is also
 a function of the total demand rate A and the com-

 petitive attraction level A (since it depends on the 4
 function). In general, there is no closed-form solution
 for T*. We propose a procedure to compute T* below.

 LEMMA 1. For any given To, let Ao = A(To), let T' =
 arg max, J(T, AO), and let A' = A(T'). We have A' > A0.

 PROOF. By definition, 4(T1, AO) >_ 4(To, AO) = A
 Since 4(T1, A1) = A1 and 4(T1, -) is a decreasing func-
 tion, we have A'1 > A0.

 Algorithm
 Step 1. For an initial To, find AO = A(TO).
 Step 2. Find T1 = arg max, q(T, AO).
 Step 3. If T' = TO, then T* := T1 and stop, else Ao =

 A(T1) and repeat Step 2.

 PROPOSITION 2. The algorithm finds T*.

 PROOF. We prove by contradiction. Let T* be the
 solution generated by the algorithm, and A* = A(T*).
 Suppose, on the contrary, that there was a better
 time commitment, say T', under which the firm could
 have a larger demand rate A'. Then, since 45(T', A)

 is decreasing in A, 4(T', A*) _ 0(T', A') = A' > A* = 4(T*, A*), which is a contradiction. O

 Similar to the assumption made in the uncongested
 system, we assume that T* is always at the declining
 tail of the density function of the actual delivery time,

 i.e., T* E {t: g(t, A*) is decreasing). We further assume
 that for any pair of Ai, i = 1, 2 with A2 > A1, if g(t, A2)
 is decreasing in t E [a, b], so is g(t, A1). Under these
 assumptions, the algorithm is rather efficient because
 it follows logic similar to that in S2.1, that in Step 2, T'
 is the inverse function of f(., A). For a given density
 function such as the exponential or the normal, T1 can
 be solved by a closed-form expression.

 Using the above algorithm, we conduct an exten-
 sive numerical simulation. We observe that a larger A
 will result in a smaller A*, other things being equal.
 If the process has an exponential tail and a high-
 enough service level is assumed, T* will be tighter
 for a higher competitive attraction level A. The total
 demand rate (A) has an opposite effect. It will lead
 to a higher A* and a looser time commitment. The
 parameters PT and PQ affect T* in ways similar to
 those in uncongested systems.

 3.3. Service Delivery Capacity
 In this subsection, we study how the firm's optimal
 market share depends upon the firm's capacity.
 Assume that the firm's capacity level can be charac-
 terized by a variable C. In this subsection, we denote
 the delivery-time probability distribution function by
 F(T, A, C). Naturally, F is assumed to be increasing in
 C. We also augment all of the other notation by adding
 the argument C. For example, A(T, C) would be the
 demand rate satisfying (3.1) for given T and C, A*(C)
 the maximum demand rate achievable for given C.

 PROPOSITION 3. A*(C) is increasing in C.

 PROOF. For any C' and C with C' > C, we show
 A*(C') > A*(C).

 A*(C') = max A(T, C') > A(T*, C') T

 = S[U(T*, A(C', T*))]

 > S[U(T*, A(C, T*))] = A*(C). O

 Proposition 3 suggests that the optimal market share
 is increasing in capacity. A stronger result that we
 have been unable to prove but will be very useful is
 that the optimal market share is concave in C. In this
 case, the capacity-planning problem (maxc A*(C)) will
 reduce to solving the first-order condition. An exten-
 sive numerical analysis shows that under reasonable
 parameter values, the optimal market share is a con-
 cave function of C.

 4. Competitive Interactions
 In this section, we consider a duopolistic setting
 in which two firms compete for a fixed market.
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 Throughout this section, we assume the logit model
 for market share function. For each firm, the model
 framework studied in SS1 and 2 remains valid with
 one exception: The effect of one firm's decision on the
 other can no longer be ignored. This is because one
 firm's gain must be the other's loss when the total
 demand rate of the market is fixed.

 We add subscript i (i = 1, 2) to all the notation to
 represent firm is. Let T and X be the vectors of {T1, T2}
 and {IA, A2}, respectively. Then, for any given T, the
 market equilibrium is reached under the following
 conditions:

 A0 = 4i(T, X), i =1, 2, (4.1)

 A = A0 + A2, (4.2)
 where

 eUi

 i(T, )= A- i= 1, 2, (4.3) eul + eU2'
 and

 LU(Ti, Ai) = - PTi + PQFi(Ti, A), i= 1, 2.
 (4.4)

 Note that we allow the sensitivity parameter t0 to be
 different between the two firms to reflect the differ-

 ences in their other service attributes, but assume that

 PT and ,Q are the same.
 For fixed T, since A = A1 + A2, 4i can be viewed as a

 function of Ai only. Due to symmetry, we may further
 focus on analyzing one firm, say, Firm 1. The market
 equilibrium equation for Firm 1 (the first equation of
 (4.1)) can be written as

 A1 = Az), (4.5)
 where 4(T, A,) - )1l(T, {A1,P2}) = )1l(T, {A1, A - A1).
 It follows from (4.4) and the congestion effect that ) is
 continuous and decreasing in A1. Therefore, as before,
 we know that there exists a unique market equilib-
 rium A0 (T) that satisfies (4.1) and (4.2).

 We note that 4 decreases faster than ) in S2. To
 see this, we compare (4.3) with (2.7). The difference
 is that while previously A was assumed to be a con-
 stant independent of A, eu2 in (4.3) is an increas-
 ing function of A0. In other words, in the duopolistic
 competition, when Firm 1's demand rate increases,
 Firm 2's must decrease by the same amount. Due
 to the congestion effect, Firm 1's delivery quality
 deteriorates and Firm 2's improves. In turn, cus-
 tomers' utility of Firm 1's service decreases and that
 of Firm 2's increases. Both of these changes contribute
 to the decrease of Firm 1's tomorrow's demand rate;
 see (4.3). Thus, the benefits of a tight delivery-time
 commitment is less than that without competitive
 interaction. This is an important point. Even if Firm 2
 does not respond to Firm 1's move to a tighter time

 commitment, Firm 2's delivery quality will improve
 as a result of less congestion. This challenges the
 wisdom that a drop in delivery time will lead to a
 quantum leap in market share.

 Next, we address the question of whether a Nash
 equilibrium exists in this duopolistic competition.
 A set of time commitments is in equilibrium if,
 given time commitments of other firms, a firm can-
 not increase its own market share by choosing a time
 commitment other than the equilibrium time commit-
 ment. To show its existence, it suffices to show that

 A,(T) = A1({IT, T21) is unimodal in T1 for any given T2

 (i.e., AI(T) is quasi-concave in T1 given T2). Fix T2. Focus on Firm 1 so that we may drop the subscript 1
 whenever this would not cause confusion. Let A(T) -
 AI({T, T2}). It is geometrically clear (see Figure 3) that
 in order to show the unimodality of A(T), it suffices
 to show that for any Tc > Tb > Ta,

 (i) 4({Tb, T2}, 0) < T({Ta, T21, 0);
 (ii) ({ITb, T2}, A) and Q({Ta, T2, A) cross at most

 once; and

 (iii) 4({Tc, T2}, A) and q6({Tb, T2}, A) do not cross
 before 4Q({Tb, T2}, A) and ({ Ta, T21, A) do.

 Since for fixed A, U2 is the same for Os with dif-
 ferent T1 values, and because 4 is strictly increasing
 in U1, it suffices to show the above properties (i)-(iii)
 for U1 instead of 4.

 PROPOSITION 4. Nash equilibrium exists if the service
 processes of the two firms in the duopolistic competition
 are M/M/1 systems and the delivery time of interest is
 the total system time.

 PROOF.

 1. When A - 0, the delivery quality is F(T, 0) = 1 -
 e-AT (see Equation (2.3)), and U(T, 0) = 00 - OTT +
 PQ(1 - e-AT), which is the utility function of the cor-
 responding uncongested system. Note that U(T, 0)

 Figure 3 Proof of Existence of Nash Equilibrium

 A

 Ta

 Tb

 TC

 Aab bc A
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 is not monotone in T. In fact, from the discussion
 in S3.1, we know that U(T, 0) is concave and reaches

 its maximum at To = (1/L) ln(3QIX/PT). We also know
 that when the delivery quality is sufficiently high, the
 optimal time commitment is decreasing in the service

 rate. For any positive A, U(T, A) = P0 - irT + PQ(1 -
 e-(I-A)T), which can be viewed as the utility function
 of the uncongested system with an effective service
 rate /t = - - A (</-t). Therefore, the firm's choice of

 time commitment must be larger than To. So, we may
 restrict our discussion within the range of { T: T > To,
 without loss of rigor. Clearly, U(T, 0) is decreasing
 in T.

 2. We show that for any Tb > T, U(Tb, A) -
 U(Ta, A) is monotonically increasing in the relevant
 range of A, which in turn implies that U(Ta, A) and
 U(Tb, A) cross at most once. Since

 d[U(Tb, A)- U(Taa, A)]__ Taae_(LA)Ta _ Tbe-(-A)Tb,
 dA

 it reduces to show that Te-(P-A)T is decreasing
 in T. Differentiating it with respect to T, we have
 d(Te-(A-A)T)1/T = e-(A-A)T - T(t - A)e-(A-A)T. It is neg-
 ative when T(/ - A) > 1, or the delivery quality is
 higher than 63.2%. Therefore, we have shown that
 U(Ta, A) and U(Tb, A) cross at most once in the range
 of A where the delivery quality is higher than 63.2%.

 3. For any Tc > Tb > Ta (>T,). Let Aab be an in-
 tersection of U(Ta, A) and U(Tb, A), and Abc be an
 intersection of U(Tb, A) and U(Tc, A). By definition,
 we have U(Ta, Aab) = U(Tb, ab) and U(Tb, Abc) -
 U(TC, Abc). From these two equalities, we obtain

 F(Tb, fab) - F(Ta, Aab) PT F(Tc, bc) - F(Tb, Abc)

 Tb- Ta Tc - Tb
 We need to show that U(Tc, Aab) < U(Tb, Aab) and
 U(Ta, Abc)< U(Tb, Abc). The first inequality is true
 because

 U(Tc, A ab) - U(Tb, Aab)

 = T)[F(Tc, b) F(Tb' .ab) O T = Q(Tc - Tb[P fbQ 1
 Tcb)[ F(Tc A.b) _ F(Tb, ab)

 =Q , R(Tc Tb A) L Tc - Tb

 F(Tb ab) - F(Ta, Aab)
 Tb_ Ta

 and F(T, A) is (exponentially) concave in T. Similarly,
 U(Ta, Abc) < U(Tb, Abc) because

 U(Tb, Abc)- U(Ta, Abc)

 -a QbTb T)[ F(Tb, .bc) - F(Ta, Ahbc) S( L Tb- TTa
 F(Tc, Abc) - F(Tb, Abc)

 Tc - Tb

 Thus, A(T) is unimodal, and the proposition is
 proven. Z

 For firms with M/M/c service systems and the
 queueing time being of interest, it is easy to show that
 (i) and (iii) holds: (i) is true because when A - 0, the
 service quality F(T, 0) = 1 (a customer hardly needs
 to wait). Therefore, U(T, 0) = o - fOTT, and it is obvi-
 ous that U(T, 0) is decreasing in T; (iii) holds because
 the waiting-time distribution is also exponential, and
 hence concave in T. For the general M/M/c case, we
 have not been able to prove analytically that (ii) holds.
 We conjecture this on the basis of numerical exam-
 ples. We prove this for the special case of M/M/1
 with queueing time.

 PROPOSITION 5. Nash equilibrium exists if the service
 processes of the firms in the duopolistic competition are
 M/M/1 systems and the delivery time of interest is the
 waiting time in queue.

 PROOF. The service quality of the M/M/1 system
 (in waiting time) is F(T, A) = 1 - (A/l)e-(A-)T. As
 before, we need to show that 8F/8A is an increasing
 function of T, since

 F -(-A)T - Te-(-A)T
 AdA A

 where the first term is clearly increasing in T, and
 the second has been shown (in the proof of the pre-
 vious proposition) to be increasing in the range of
 (/u - A)T > 1. For A in the range of (1/ - A)T < 1 and
 F(T, A) is high, we need to show that

 d2F
 = - 2A + AT(A/ - A) > 0,

 gADT

 which holds true for g >_ 2A. Note, however, that for (g - A)T > 1, the service quality Q < 1- (A/bL)e-1. The
 service level would be lower than 1 - (1/2)e-1 - 0.82,
 which is not relevant in today's service environment.

 EXAMPLE 3: M/M/1 SYSTEMS (TOTAL SYSTEM TIME).

 Let 30 = 0, PT = 0.01, PQ = 4.0, and A = 1. We deter-
 mine the optimal market shares for four games with
 service rate for both firms varying at two levels (2.0
 and 4.0). The optimal market shares are summarized
 in Figure 4.5 In Figure 4, the first number in each cell
 is the payoff (in units of market share) to Firm 1 and
 the second number to Firm 2. For instance, when
 both firms have the same capacity of 2.0, each firm
 receives a payoff of 0.5. The value of E captures
 the additional cost of high service capacity. If E is

 5 Equilibrium delivery-time commitments are as follows. When
 both firms have the same service rate, the symmetric equilibrium

 delivery-time commitment is 4.3 (,1 = -2 = 2) and 2.1 (A = A,2 = 4). When the service rates for the firm are different, the equilibrium
 time commitment for the faster firm is 2.1 and for the slower firm
 is 4.1.
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 Figure 4 The Duopolistic Game

 Firm 2's Service Rate (L2)
 2.0 4.0

 2.0

 Firm l's
 Service

 Rate (OL1)

 4.0

 0.5, 0.5

 0.51 - e, 0.49

 0.49, 0.51 - e

 0.5 - 8, 0.5 - e

 smaller than 0.01, then the game is similar to a
 Prisoners' Dilemma. Both firms will choose a service

 rate of 4.0 and receive a pareto-inferior payoff of
 0.5 - E. If E > 0.01, then the equilibrium is (2.0, 2.0),
 with both firms receiving 0.5. Finally, it is worth
 noting that while both firms will experience a lower
 payoff for investing in additional service capacity,
 the resulting levels of delivery quality experienced
 by the customers will be higher.

 5. Conclusion and Future Research
 In this paper, we have presented a simple model
 for studying how a firm should set its delivery-time
 guarantee in managing service delivery. The model
 integrates the gap model of service quality from
 marketing with the classical queueing models from
 operations. We obtain a closed-form solution for the
 optimal delivery-time commitment when the firm has
 an ample capacity. Under congestion, we character-
 ize the optimal delivery-time commitment with a set
 of conditions and use it to design a computational
 scheme. We prove the existence of Nash equilibria in
 a duopolistic game and show that the delivery-time
 game is similar to a Prisoners' Dilemma when the cost
 of adding capacity is small.

 The model allows us to study several marketing-
 operations interface issues. First, if there exist
 multiple classes of customers that have significantly
 different P0 and PQ values, then the delivery-time
 commitment for each class may be different, and it
 would be interesting to examine how the delivery-
 time commitment decision is tied to the pricing in
 each service class. So and Song (1998) and So (2000)
 considers the pricing issue in a single market seg-
 ment case. Second, if a firm has service outlets in
 multiple locations with different total demand inten-
 sity and level of competition, it will be interesting

 to analyze the choice of a delivery-time commitment
 and the capacity design problem for each service out-
 let. Finally, if the reputation of a firm's service quality
 takes time to spread through the population, it is
 worthwhile to see how this might impact the choice
 of a delivery-time commitment (c.f. Gans 2002).

 Acknowledgments
 The authors thank seminar participants at MIT, Wharton,
 Stanford, and Berkeley for their helpful comments. Taizan
 Chan made excellent comments and suggestions and Grace
 Ho provided excellent research assistance.

 References

 Anderson, R. E. 1973. Consumer dissatisfaction: The effect of
 disconfirmed expectancy on perceived product performance.
 J. Marketing Res. 10(February) 38-44.

 Boulding, W., R. Staelin, A. Kalra, A. Zeithaml. 1994. A dynamic
 process model of service quality: From expectations to behav-
 ioral intentions. J. Marketing Res. 30(February) 7-27.

 Carmon, Z., G. Shanthikumar, T. F. Carmon. 1995. A psycholog-
 ical perspective on service segmentation: The significance of
 accounting for consumers' perceptions of waiting and service.
 Management Sci. 41 1806-1815.

 Cooper, L. G. 1993. Market-share models. J. Eliashberg, G. L. Lilien,
 eds. Marketing, Handbooks in Operations Research and
 Management Science, Vol. 3. North-Holland, Amsterdam, The
 Netherlands.

 Cooper, R. B. 1990. Queueing theory. D. P. Heyman, M. J. Sobel,
 eds. Stochastic Models, Handbooks in Operations Research and
 Management Science, Vol. 2. North-Holland, Amsterdam, The
 Netherlands.

 Gans, N. 2002. Customer loyalty and supplier quality competition.
 Management Sci. 48 202-221.

 Green, L., P. Kolesar. 1987. On the validity and utility of queueing
 models of human service systems. Ann. Oper. Res. 9 469-479.

 Green, L., D. Lehmann, B. Schmitt. 1992. Time perceptions in ser-
 vice systems: An overview of the TPM framework. Adv. Ser-
 vices Marketing Management 5 85-107.

 Greenleaf, E., D. R. Lehmann. 1995. A typology of reasons for sub-
 stantial delay in consumer decision making. J. Consumer Res.
 22(September) 186-199.

 Hall, R. W. 1991. Queueing Methods for Services and Manufacturing.
 Prentice Hall, Englewood Cliffs, NJ.

 Katz, K. L., B. M. Larson, R. C. Larson. 1991. Prescription for the
 waiting-in-line blues: Entertain, enlighten, and engage. Sloan
 Management Rev. 32(2) 44-53.

 Kleinrock, L. 1975. Queueing Systems, Vol. 1: Theory. John Wiley and
 Sons, New York.

 Larson, R. C. 1987. Perspectives on queues: Social justice and the
 psychology of queuing. Oper. Res. 35(6) 895-905.

 Lee, H., M. Cohen. 1985. Equilibrium analysis of disgregate facility
 choice systems subject to congestion-elastic demand. Oper. Res.
 33(2) 293-311.

 Lilien, G. L., P. Kotler, K. S. Moorthy. 1992. Marketing Models.
 Prentice Hall, Englewood Cliffs, NJ.

 McFadden, D. 1980. Econometric models for probabilistic choice
 among products. J. Bus. 53(3) 513-530.

 Oliver, R. L. 1977. Effect of expectation and disconfirmation of
 post-exposure product evaluation: An alternative interpreta-
 tion. J. Appl. Psych. 62(April) 480-486.

This content downloaded from 137.132.123.69 on Wed, 07 Dec 2016 03:15:11 UTC
All use subject to http://about.jstor.org/terms



 Ho and Zheng: Setting Customer Expectation in Service Delivery
 488 Management Science 50(4), pp. 479-488, C 2004 INFORMS

 Parasuraman, A., V. A. Zeithaml, L. Berry. 1985. A conceptual
 model of service quality and implications for future research.
 J. Marketing 64(Spring) 12-40.

 Rothkopf, M., P. Rech. 1987. Perspectives on queues: Combining
 queues is not always beneficial. Oper. Res. 35 906-909.

 So, R. 2000. Price and time competition for service delivery. Manu-
 facturing Services Oper. Management 2(4) 392-409.

 So, R., J. S. Song. 1998. Price, delivery time guarantees and capacity
 selection. Eur. J. Oper. Res. 111(1) 28-49.

 Tse, D. K., P. C. Wilton. 1988. Models of consumer satisfaction for-
 mation: An extension. J. Marketing Res. 25 203-212.

 Zeithaml, V., B. Berry, A. Parasuraman. 1993. The nature and deter-
 minants of customer expectations of service. J. Acad. Marketing
 Sci. 21(1) 1-12.

This content downloaded from 137.132.123.69 on Wed, 07 Dec 2016 03:15:11 UTC
All use subject to http://about.jstor.org/terms


	Contents
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488

	Issue Table of Contents
	Management Science, Vol. 50, No. 4, Special Issue on Marketing and Operations Management Interfaces and Coordination (Apr., 2004), pp. i-iv, 425-559
	Front Matter
	Anniversary Article
	The Marketing Department in "Management Science": Its History, Contributions, and the Future [pp. 425-428]
	Introduction to the Special Issue on Marketing and Operations Management Interfaces and Coordination [pp. 429-430]

	Manufacturer Benefits from Information Integration with Retail Customers [pp. 431-444]
	Retailer- vs. Vendor-Managed Inventory and Brand Competition [pp. 445-457]
	Supply Chain Decision Making: Will Shorter Cycle Times and Shared Point-of-Sale Information Necessarily Help? [pp. 458-464]
	The Benefits of Advance Booking Discount Programs: Model and Analysis [pp. 465-478]
	Setting Customer Expectation in Service Delivery: An Integrated Marketing-Operations Perspective [pp. 479-488]
	When Not All Conflict Is Bad: Manufacturing-Marketing Conflict and Strategic Incentive Design [pp. 489-502]
	Managing Capacity through Reward Programs [pp. 503-520]
	Doing the Right Thing or Doing the Thing Right: Allocating Resources between Marketing Research and Manufacturing [pp. 521-526]
	Managing NPD: Cost and Schedule Performance in Design and Manufacturing [pp. 527-536]
	New-Product Strategy and Industry Clockspeed [pp. 537-549]
	Designing Supply Contracts: Contract Type and Information Asymmetry [pp. 550-559]
	Back Matter





