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Noncooperative game theory combines stra­
tegic thinking, best-response, and mutual con­
sistency of beliefs and choices (equilibrium). 
Hundreds of experiments show that in actual 
behavior these three forces are limited, even 
when subjects are highly motivated and analyt­
ically skilled (Camerer, 2003). The challenge is 
to create models that are as general, precise, and 
parsimonious as equilibrium, but which also use 
cognitive details to explain experimental evi­
dence more accurately and to predict new reg­
ularities. This paper describes three exemplar 
models of behavior in one-shot games (think­
ing), learning over time, and how repeated 
"partner" matching affects behavior (teaching) 
(see Camerer et al., 2002b). 

I. Thinking 

The "cognitive hierarchy" (CH) model starts 
with 0-step players who randomize equally 
across strategies; k-step players (k 2:: 1) believe 
all other players use only Oto k - 1 steps. We 
assume the k-type's beliefs gih) about the pro­
portions of lower-step h types are the normal­
ized true distribution, 

for h 2:: k 
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so they have ''partially rational" expectations 
(and gk(h) approaches f(h) as k grows large). 
These beliefs are used by k-step thinkers to 
compute expected payoffs and choose best 
responses. 

Working memory constraints (and doubts 
about rationality of others) suggest that more 
and more thinking steps are increasingly rare, 
expressed by f(k)lf(k - 1) proportional to 1/k. 
This assumption implies that f(k) = eT-llk!, 
the Poisson distribution, where 'I' is the mean 
and variance of the number of thinking steps. 
Axioms and data from more than 80 games 
suggest that 'I' is between 1 and 2. Assuming 'I' = 
1.5 makes the model more precise than Nash 
equilibrium (because it predicts a specific dis­
tribution of strategies when there are multiple 
equilibria). We guess that '1' = 1.5 will never 
predict one-shot experimental data worse than 
Nash equilibrium (under typical lab conditions), 
and will almost always predict more accurately. 

Earlier models of limited thinking include 
Ken Binmore (1988), Dale Stahl (1993), and 
Rosemarie Nagel (1995). Among one-parameter 
models, quantal response equilibrium (QRE) 
weakens best-response but retains mutual con­
sistency (e.g., Jacob Goeree and Charles Holt, 
2002); Monica Capra's (1999) theory weakens 
best-response and consistency simultaneously. 

The goal of all these models is to explain why 
and when equilibration is limited, and when 
instant equilibration occurs. Two classes of 
games illustrate how the CH model does this. 

In a '))-beauty contest" (PBC) game, players 
choose numbers in an interval, say [0, 100]. For 
p = 2/3, the player whose number is closest to 
two-thirds of the average wins a fixed prize. The 
PBC game is a tool for inferring steps of thinking 
from choices. One-step players expect an average 
of 50 (from random choice by 0-steppers) and 
choose 33. Two-step players choose a best­
response to a mixture of 33 and 50, around 26 if 
T = 1.5. Equilibrium requires mutual consis-
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TABLE I-DATA AND EsTJMATES OF 'TIN PBC GAMES 

(EQUILIBRIUM = 0) 

Data 
Steps of 

Subjects/game Mean SD thinking 

Computer scientists 18 17.4 3.8 
Game theorists 19 21.8 3.7 
Caltech students 23 11.1 3.0 
Newspaper 23 20.2 3.0 
Portfolio managers 24 16.1 2.8 
Economics Ph.D. class 27 18.7 2.3 
Caltech g = 3 22 25.7 1.8 
High school 33 18.6 1.6 
1/2 mean 27 19.9 1.5 
70-year-olds 37 17.5 1.1 
German students 37 20.0 1.1 
CEO's 38 18.8 1.0 
Gamep = 0.7 39 24.7 1.0 
Caltech g = 2 22 29.9 0.8 
PCC g = 3 48 29.0 0.1 
Gamep = 0.9 49 24.3 0.1 
PCC g = 2 54 29.2 0.0 

Mean: 1.56 
Median: 1.30 

Notes: "Newspaper'' refers to data from three newspaper 
contests; g = 2 and g = 3 denote two- and three-player 
games; "1/2 mean" is a game in which p = 1/2; "PCC" is 
Pasadena City College; "high school" refers to data from 
high-school students. See Camerer et al. (2000a) for details. 

tency, which implies a choice x* = (2/3)x*, or 
zero (corresponding to infinite Tin CH). As a 
practical matter, choosing zero is being too 
smart for one's own good. The game requires 
both logical skill and "social intelligence," or 
knowing how much thinking others will do (and 
expect). 

Table 1 shows the mean and standard devia­
tions of the number choices in beauty-contest 
games with different subject pools (generally 
playing for $20) and group sizes g. The mean 
number is usually 20-40, although analytical­
skilled groups choose lower numbers. Estimates 
of T which produce the closest fit to the mean 
are mostly 1-3 with mean and median around 
1.5. Except for some interesting outliers, esti­
mates of T are remarkably close across a 
surprising range of subjects (e.g., CEO's, 70-
year-olds, and high-school students). Fixing 
T = 1.5 predicts a mean of 27, which is too high 
or low in some groups but is always much more 
accurate than the Nash prediction of zero. 

While limited-thinking models do a good job 
of explaining limited equilibration in PBC 

games, the main challenge is to see whether the 
same model can explain quite different games. 
An instructive example is asymmetric matching­
pennies games. Two players (1 and 2) choose H 
or T; if they mismatch the payoffs are (0, 1) 
(player 2 wins), and if they match the payoffs 
are (1, 0) from (T, T) and (x, 0) from (H, H) 
( assume x > 1). These games have a bizarre 
property (common to all mixed-equilibrium 
games): A player's strategy probabilities de­
pend only on the other player's payoffs. As a 
result, player 1 is predicted to play H and T 
equally often, ignoring her possible payoffs of x 
and 1, and player 2 chooses T xix + 1 of the 
time. 

The CH model overturns the weird player- I 
prediction and matches the sensible player-2 
prediction. One- and two-step player 1' s choose 
H; if Tis 1.5, this means most row players will 
pick H (cf. the Nash prediction of 50 percent). 
Since two-step player 2' s anticipate that one­
step player 1 's choose H, they will choose T. 
When x = 9, for example, the CH model 
predicts 0.89 and 0.28 play of H by players 1 
and 2 (using T estimated from a sample of 
22 games), and Nash predicts 0.50 and 0.10. 
The experimental frequencies are 0.75 and 
0.33. Thus, the CH model corrects the strange 
player- I prediction and roughly matches the 
Nash prediction for player 2's (which is empir­
ically accurate). This pattern generally holds 
across 22 mixed games. 

Limited strategic reasoning results from con­
straints on the human brain; the CH model takes 
that constraint seriously and embodies it pre­
cisely, to out-predict equilibrium. The model 
also gives good advice (it has "economic 
value"): Subjects would have earned more if 
they used the model to forecast. 

II. Learning 

Recently, game theorists began to actively 
research the idea that equilibration arises from 
learning, evolution, or imitation. Two promi­
nent simple learning models are reinforcement 
and belief learning (e.g., fictitious play). In re­
inforcement, strategies have numerical attrac­
tion levels which are reinforced (increased) 
when a strategy is chosen and the result is good. 
Reinforcement is a good model of animal learn­
ing but does not gracefully accommodate the 
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fact that people often choose strategies that have 
not been directly reinforced. In fictitious play, 
players form beliefs based on a weighted aver­
age of what others have done in the past, and 
best-respond given their beliefs. Remarkably, 
weighted fictitious play is equivalent to a gen­
eralized reinforcement model in which uncho­
sen strategies are reinforced by the forgone 
payoffs they would have yielded. This algebraic 
fact means reinforcement and belief learning 
are boundary cases of a more general model, 
such as experience-weighted attraction (EWA) 
(Camerer and Ho, 1999). In EWA, forgone pay­
offs are weighted by a parameter «5; <> = 0 is 
simple reinforcement, and «5 = 1 is fictitious 
play. 

In experimental games with limited power to 
distinguish models (see Timothy Salmon, 2001) 
these models are all equally accurate and im­
prove modestly over equilibrium. However, 
EWA is more robust than reinforcement and 
belief learning because it is easy to find games 
where the latter two models predict poorly and 
the «5 parameter repairs their weaknesses. For 
example, when only one player earns a positive 
payoff, as in a single-unit auction or p-beauty 
contest, simple choice reinforcement predicts 
almost no learning (since most players are not 
reinforced). EWA fixes this mistake, because if 
players learn which of their unchosen strategies 
would have won and weight its forgone payoff 
by «5, they will learn much faster than reinforce­
ment predicts (which matches the lab data bet­
ter). Belief learning often predicts learning that 
is too rapid or not sharp enough (in price­
matching games) (Ho et al., 2002), which is 
consistent with <> < 1. 

Estimates across many games show that the 
best-fitting values of<> and cf, (a decay weight) 
are usually different than the values implicit in 
fictitious play (which is empirically the weakest 
of the simple models) and cluster near the rein­
forcement value ( «5 = 0) in mixed games. Pa­
rameter values also vary systematically across 
games. One way to model this variation is to 
replace fixed parameters with functions of ex­
perience, allowing both individual differences 
in "learning styles" and endogenous cross-game 
differences. The "fEW A" method (Ho et al., 
2002) does this by making cf, into a "change­
detector" function which goes toward 1 if other 
players are equilibrating and toward O when 

other players' choices are surprising ("starting 
afresh" after a surprise). Functional values pro­
duced this way closely match the best-fitting 
values of <> and cf, from a fixed-parameter spec­
ification. For example, a fixed cf, is estimated to 
be 0.36 for PBC games (because players realize 
that what happened more than a couple of pe­
riods ago is irrelevant), and the functional val­
ues average 0.58. Fixed cf, is close to 1 in mixed 
games, because a long history is needed to 
figure out what randomizing players might do, 
and the functional values average 0.89. Replac­
ing parameters with functions means that the 
fEW A model has only one free parameter to be 
estimated (a response sensitivity), which makes 
it more parametrically parsimonious than many 
other theories, and often just as accurate or 
better ( even in a new sample of games collected 
after the initial model was developed). 

III. Teaching 

In the adaptive-learning models described 
above, the learning rules do not use information 
about payoffs of others and do not account for 
the future effects of current actions. "Sophisti­
cation" can be added by assuming that some 
players realize others are learning (cf. Stahl, 
2000). When the same players are paired repeat­
edly ("partner-matching" in experimental jar­
gon), a sophisticated player can also "teach" by 
choosing current actions that influence how 
their learning partner will behave in the future, 
to the teacher's benefit. (This model borrows 
strategic foresight from repeated-game theory 
but assumes that some players learn from the 
past and lack strategic foresight.) Models of this 
sort can explain experimental data on finitely 
repeated trust games (when teaching benefits 
both players) and entry-deterrence (when teach­
ing benefits only the teacher) (Camerer et al., 
2002b) more accurately than stochastic equilib­
rium theories. 

IV. Conclusion 

Behavioral game theories limit the amount of 
rationality and mutual consistency of players, to 
explain experimental regularities while retain­
ing precision and cross-game generality. This 
paper described three examples of new theories: 
a one-parameter model of steps of thinking; a 
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hybrid model of learning from experience 
(and a one-parameter version); and a model of 
sophistication and strategic teaching in re­
peated games. If the goal is to predict data 
accurately, models like these should be ex­
plored as potential improvements over equi­
librium predictions. 
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