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 The Bass diffusion model is a well-known parametric approach to estimating new product
 demand trajectory over time. This paper generalizes the Bass model by allowing for a

 supply constraint. In the presence of a supply constraint, potential customers who are not
 able to obtain the new product join the waiting queue, generating backorders and potentially
 reversing their adoption decision, resulting in lost sales. Consequently, they do not gener-
 ate the positive "word-of-mouth" that is typically assumed in the Bass model, leading to
 significant changes in the new product diffusion dynamics.

 We study how a firm should manage its supply processes in a new product diffusion
 environment with backorders and lost sales. We consider a make-tstock production envi-
 ronment and use optimal control theory to establish that it is never optimal to delay demand
 fulfillment. This result is interesting because immediate fulfillment may accelerate the dif-
 fusion process and thereby result in a greater loss of customers in the future. Using this
 result, we derive closed-form expressions for the resulting demand and sales dynamics over
 the product life cycle. We then use these expressions to investigate how the firm should
 determine the size of its capacity and the time to market its new product. We show that
 delaying a product launch to build up an initial inventory may be optimal and can be used
 as a substitute for capacity. Also, the optimal time to market and capacity increase with the
 coefficients of innovation and imitation in the adoption population. We compare our optimal
 capacity and time to market policies with those resulting from exogeneous demand forecasts
 in order to quantify the value of endogenizing demand.
 (Marketing-Operation Interface; Bass Diffusion Model; New Product Forecasting; Capacity Planning)

 1. Introduction this demand trajectory comes about is often left unan-
 When introducing a new product, a firm must trade swered (e.g., Fine and Li 1988). Because the demand
 off the cost of supply, including the cost of capacity process is exogenous rather than endogenous to the
 and inventories, with the revenues from the product's model, the chosen level of capacity does not affect the
 demand over its life cycle. An important operations demand dynamics.
 decision when launching a new product is the sizing In contrast to operations literature, marketing
 of capacity. Typically, capacity is determined by first research has focused on developing accurate char-
 specifying an exogenously defined demand trajectory acterizations of the demand process. Specifically, it
 for the new product over time. The question of how has long been argued that the demand and sales
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 of new products in the marketplace follow the pat-
 terns of social diffusion processes, similar to those in
 epidemiology and the natural sciences (see Mahajan
 et al. 1990 and 2000 for recent overviews). These
 models enable a firm to characterize the new prod-
 uct's demand process as a function of various internal
 and external factors (e.g., price, advertising, popula-
 tion characteristics, nature of innovation). They pro-
 vide the empirical foundation for forecasting demand
 of a new product over its life cycle. These models,
 however, assume that the supply of new products is
 unlimited and never constrained.

 Therefore, there is an apparent gap between the
 two streams of literature. On the one hand, the oper-
 ations literature has taken the demand process as
 given, searching for the optimal amount of capacity
 to install. On the other hand, the marketing litera-
 ture has looked at the demand process assuming that
 the diffusion process is never capacity constrained. This

 leaves an important question at the interface between
 the two unanswered: How does a new product diffuse in

 the presence of a supply constraint?

 In the presence of a (binding) supply constraint,
 potential customers who are unable to obtain the new
 product immediately may either patiently wait for
 the product, a phenomenon referred to as backorder-
 ing, or may impatiently abandon the adoption deci-
 sion, leading to customer losses. In order to generalize
 the existing diffusion models to include these phe-
 nomena, we must distinguish between the demand
 process and the actual sales process, the latter being
 bounded by the minimum of the demand and the
 available supply.

 A joint analysis of supply-related decisions and the
 corresponding demand dynamics also allows us to
 plan better operationally. For instance, current mod-
 els of capacity sizing treat the life-cycle demand as
 given and independent of the actual sales. If, how-
 ever, as postulated in the marketing literature, past
 sales do have an impact on future demand, the deter-
 mination of the optimal capacity sizing requires an
 endogenous characterization of the demand process.
 Therefore, in addition to providing descriptive char-
 acterizations of the constrained demand and sales

 dynamics, we derive prescriptive results on how to

 manage the new product's supply process. Specifi-
 cally, we analyze how much the firm should invest in
 capacity and when it should launch the new product.

 To determine how much capacity to install, the firm
 must trade off the cost of backordering and lost cus-
 tomers with the cost of overcapacity. In the presence
 of a short life cycle, the capacity decision is irre-
 versible (the lead time for adding/reducing capac-
 ity is too long to allow for capacity adjustments to
 occur during the product life cycle.) The phenomenon
 of short life cycle with capacity shortages resulting
 from long capacity lead time prevails in high-tech
 industries, such as semiconductors, video game con-
 soles, and pharmaceutical compounds. In these indus-
 tries, supply shortages have been repeatedly reported
 and industry observers have speculated about the
 magnitude of their impact on life-cycle demand (e.g.,
 Thomke 1999, Pisano 1997). In the absence of a
 joint analysis of supply-related decisions and demand
 dynamics, neither a quantification of sales losses nor
 an appropriate capacity recommendation is possible.

 The firm does not have to launch the new prod-
 uct right after the plant is ready for production. In
 a make-to-stock (MTS) environment, it is possible
 to delay product launch in order to preproduce (to
 build inventory prior to starting the sales). Many
 high-tech companies preproduce to ensure a sufficient
 level of volume at launch. For example, Nintendo
 recently delayed the launch of GameCube to guaran-
 tee enough volume at launch (Financial Times April
 19, 2001). Similarly, Microsoft postponed the launch
 of XBox when they failed to meet the target of 700,000
 boxes in initial inventory (Financial Times April 10,
 2001).

 As we will show, preproduction provides a substi-
 tute for installing capacity and thereby serves as a less
 costly mechanism for achieving the same life-cycle
 sales as with a higher capacity. However, preproduc-
 tion delays revenue collection and leads to higher
 inventory costs. In this paper, we determine the opti-
 mal time to launch the new product and start the new
 product diffusion process in order to maximize the
 life-cycle profits.

 Finally, one might argue that it may be optimal to
 sell less than what is currently demanded, even if there is
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 ample supply available. In the presence of a nonlin-
 ear diffusion dynamic with a positive feedback loop,
 such as the Bass diffusion model (Bass 1969), initially
 not selling a unit (even at the risk of losing this spe-
 cific customer) has a desirable effect of slowing down
 the diffusion process. This leads to a reduced demand
 peak and thereby avoids a greater customer loss in
 the future. By characterizing the optimal sales plan we
 show that delayed demand fulfillment does not maxi-
 mize life-cycle profits in a Bass-like diffusion environ-
 ment. The operations decisions discussed above form
 a hierarchy as illustrated in Figure 1.

 This paper makes three contributions to the opera-
 tions and marketing literature. First, we derive closed-
 form expressions of demand and sales dynamics
 in a Bass-like diffusion environment with a sup-
 ply constraint. To the authors' knowledge, this work
 is the first to do so. Second, we integrate capac-
 ity, time to market, and sales plan into a unified
 decision hierarchy. These interrelated decisions were
 treated separately in prior research. Third, we endo-
 genize demand dynamics in determining the opti-
 mal capacity in a constrained diffusion environment.
 Prior research has treated demand exogeneously to
 the capacity sizing decision.

 The rest of this paper is organized as follows.
 Section 2 reviews the relevant literature. Section 3

 presents the model formulation. We determine the
 optimal sales plan in ?4 and characterize the resulting
 demand and sales dynamics in ?5. In ?6 we determine
 the optimal time to market and capacity and quantify
 the effect of endogenizing demand on life-cycle prof-
 its. Section 7 concludes and suggests future research
 directions.

 2. Related Literature
 Our analysis builds on the traditional Bass model of
 new product diffusion (Bass 1969). The Bass model is
 recognized for its descriptive and predictive power,
 and indeed is used widely in marketing to forecast
 demand of new durable products. It predicts that new
 product demand is likely to follow specific patterns
 of social diffusion processes, similar to those in epi-
 demiology and the natural sciences. The Bass model
 laid the foundation for many articles in marketing
 (see Mahajan et al. 1990, and 2000 for comprehen-
 sive overviews) and, more recently, in research that
 cuts across marketing and operations (see Fine and
 Li 1988, Kurawarwala and Matsuo 1996).

 The Bass diffusion model posits that the popula-
 tion of potential adopters for a new product is subject
 to two means of communication: mass-media com-

 munication (external influence) and word-of-mouth

 Figure 1 The Hierarchy of Decisions in a Constrained New Product Diffusion
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 Time to market, t,
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 communication (internal influence). The external
 influence affects potential adopters directly, while the
 internal influence relies on the interaction between

 customers who have already adopted the product and
 potential adopters. The Bass model is a mathematical
 model to capture these effects based on ideas from
 contagion models in epidemiology.

 Although the congruency between the diffusion of
 a new product and the diffusion of an infectious
 disease is appealing, it is important to note one fun-
 damental difference between the two. The reproduc-
 tive capacity of a virus, defined as the number of
 offsprings that can be generated within one time
 period, grows proportionally with the diffusion of the
 disease. Obviously, this is not true for the availability
 of a new product in a supply chain. In a supply chain,
 there often exists a maximal production rate defined
 by the capacity of the plant.

 This shortcoming of the Bass model was first
 addressed by Jain et al. (1991), who studied the dif-
 fusion of new telephones in Israel from 1949 to 1987.
 Waiting times for a new telephone were in excess of
 three years, and, in the absence of competition, cus-
 tomer losses did not occur. In the Jain et al. formu-
 lation, the level of capacity grows with the number
 of backorders, which may be suitable for a service
 environment where the lead time to expand capacity
 is short. Also, their supply constraint is always bind-
 ing over the entire life cycle of the new product, and
 hence the sales trajectory is identical to the capacity
 level. These assumptions do not hold for most man-
 ufacturing environments, where customer losses are
 common, the lead time for changing capacity is long,
 and the supply constraint is not always binding. Our
 paper addresses these shortcomings by developing a
 general model of new product diffusion under supply
 constraint.

 When making supply side decisions, operations
 managers often assume that the underlying life-cycle
 demand dynamics of a new product are indepen-
 dent of the product availability (see Luss 1982 for
 an overview of capacity sizing models). A classi-
 cal approach to determining capacity under demand
 uncertainty is to use the newsvendor model, which
 converts a demand forecast into a supply plan by
 balancing the costs of excessive capacity with those

 of capacity shortages. However, this approach often
 ignores the nonstationarity in demand inherent in
 new product diffusion. Addressing this problem,
 Kurawarwala and Matsuo (1998) present a model
 of procurement in which the demand process fol-
 lows a Bass-type diffusion with known parameters
 of external and internal influence, but with unknown

 market size. Their model corresponds to an exten-
 sion of a conventional newsvendor model and pro-
 vides an example of how procurement policy can
 be influenced by new product diffusion dynamics.
 Finally, Fine and Li (1988) provide conditions under
 which a firm would switch from one supply pro-
 cess to another during the product life cycle. They
 assume demand dynamics with symmetrical growth
 and decline stages. The authors show that there are
 five possible process switching strategies, depend-
 ing on the relative cost parameters of the processes.
 Their analysis relies on the assumption that process
 switching decisions will not influence the underlying
 demand dynamics; thus, they assume that demand is
 exogenous to the model.

 We extend the existing literature by presenting a
 formal model of a new product's diffusion in the
 presence of a supply constraint. We thereby intro-
 duce important supply-chain phenomena, such as
 backordering and customer losses, into the field of
 new product diffusion. This represents the first joint
 analysis of supply and demand dynamics in a new
 product's supply chain. Building on this analysis, we
 address the managerial decisions of capacity sizing,
 time to market, and demand fulfillment policy.

 3. Model Formulation
 Consider a firm which plans an introduction of a new
 product. The firm faces a hierarchy of decisions. At
 the top of this hierarchy lies the capacity sizing deci-
 sion, which is based on the trade-off between the cost

 of supply shortages and the cost of overcapacity. In
 the presence of short life cycles and long lead times
 for changing production capacity, the selected level
 of production capacity c remains the same through-
 out the life cycle of the product. Our analysis can
 be extended to include a general capacity "trajectory"
 c(t); however, closed-form solutions would no longer
 be possible.
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 We assume the plant will be ready to start produc-
 tion at a known date, which we define as t = O. Given

 a level of capacity, the firm must decide on the time
 to market tl > 0. Delaying the product introduction
 may help the company to build inventory and thereby
 minimize the loss of sales due to insufficient product
 supply. At the same time, a delayed launch will move
 revenues further into the future as well as lead to an

 increase in inventory costs.
 Finally, once the diffusion process has started, the

 firm can decide on how much to sell at each moment

 in time, which we denote as s(t). In the presence of a
 nonlinear interaction between the potential adopters
 and those who already have bought the product, it
 is unclear whether selling as much as supply would
 permit is an optimal policy.

 After defining the three decisions, namely, how
 much capacity to install, when to launch the prod-
 uct, and how much to sell at time t, we now describe
 the demand dynamics of our model. Let m denote the
 size of the target population of potential adopters.1
 In what follows, we use D(t) and S(t) to denote the
 cumulative demand and sales of the new product
 at time t, respectively. Table 1 summarizes our key
 notations.

 At time t, a customer who was previously not ready
 to adopt may place an order. If the new product is
 available, the customer receives the product immedi-
 ately. If not, she can either wait for the new product
 by joining the waiting list (backordering) or abandon
 the adoption decision by canceling the order. Con-
 sequently, the customer population can be divided
 into four groups. The first group consists of poten-
 tial adopters who are not ready to adopt the product
 yet. The second group are adopters who have placed
 an order and already have received the new product.
 The third group are potential adopters on the wait-
 ing list and the fourth group are potential adopters
 who refuse to wait and hence cancel their orders (the
 so-called "lost" customers). We denote the size of the

 The variable m can be time dependent if the target population
 grows or declines over time. It can also vary with a firm's mar-
 ket mix variables such as price and level of advertising expendi-
 ture (e.g., Dodson and Muller 1978, Kalish 1985, Bass and Krishnan

 1999). For simplicity, we assume a fixed target population.

 Table 1 Summary of Model Notation

 C:

 t,:

 s(t), S(t):
 m:

 d(t), D(t):
 W(t):
 L(t):

 I:

 p,q:

 I(t):
 r(t), R(t):

 a(t):
 H:

 h:

 production capacity
 launch time

 sales rate and cumulative sales at time t

 initial size of potential adopter population

 demand rate and cumulative demand at time t

 waiting customer population at time t
 cumulative number of lost customers at time t

 rate of loss of waiting customers

 coefficients of innovation and imitation

 inventory at time t

 production rate and cumulative production at time t

 profit margin at time t

 variable cost of acquiring and maintaining a unit of capacity

 unit inventory holding cost (per unit time)

 third and fourth group at time t by W(t) and L(t),
 respectively. Figure 2 shows the interaction between
 the four customer groups.

 At any moment in time, a consumer who is ready
 to adopt the new product can either join the adopters,
 the waiting list, or the group of lost customers. Thus,

 Figure 2 The Four Customer Groups Under Constrained New Product
 Diffusion
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 we have:

 D(t) = S(t) + W(t) + L(t). (1)

 If the product supply is unlimited (the firm is never
 capacity constrained), the waiting list will always be
 empty and there will be no lost customers. Thus,
 demand D(t) and sales S(t) are identical. In the pres-
 ence of a supply constraint, potential adopters who
 are not able to obtain the product immediately join
 the waiting list W(t). We assume waiting customers
 abandon their adoption decisions after, on average, ?
 units of time:

 L(t) - IW(t).
 dt

 (2)

 This formulation allows us to capture the demand
 assumptions made by the existing operations mod-
 els, namely backordering (I = 0) and customer loss
 (I = +oo), as well as any intermediate case.

 The demand process itself, which defines the arrival
 of customer orders, follows Bass-like dynamics. Thus,
 the consumer's adoption decision is influenced by
 two factors: the independent innovation dynamics
 and the interaction dynamics between adopters S(t)
 and potential adopters who are still not ready to
 adopt the new product (m - D(t)). This interaction
 effect is also referred to as "internal influence" or

 "word of mouth":

 dD(t) = p[m - D(t)] + S(t)[m - D(t)]. (3)
 dt m

 Here, p and q are the coefficients of innovation and
 imitation, respectively.
 By using the Bass model as the demand model,
 we assume a certain uniqueness of the product to be
 launched, either in the form of a new brand or a new

 product category (e.g., movies, video game console,
 Pentium III). In both cases, one can argue that cus-
 tomer loss can occur because consumers are impatient
 or engage in cross-brand or cross-category substitu-
 tion. Note also that our model is sufficiently general to
 include the case of no customer loss by setting I = 0.2

 2While Bass's original study estimated the model on data from
 new product categories (e.g., air conditioners, power lawn mow-
 ers), the model has been successfully applied at the level of brands
 within a category (e.g., Kurawarwala and Matsuo 1998, Sawhney
 and Eliashberg 1996, Parker and Gatignon 1994, Mahajan et al.
 1993).

 In order to connect (1), (2), and (3) to the supply
 process, we consider the cumulative production, R(t),
 and the inventory of available products, I(t). Note
 that because we allow the possibility for the firm to
 select the rate at which it sells, we cannot impose a
 standard restriction of I(t)W(t) = 0. The total produc-
 tion up to time t is either sold or put into inventory:

 R(t) = I(t)+ S(t).  (4)

 The production rate can be expressed as:

 dR(t) ic, t < t*,
 r(t) d ( t) {t > t*

 dt ' t*.

 (5)

 The company produces at maximum capacity c until
 the time when demand drops below capacity (t* =
 min(t I dD(t)/dt < c, d2D(t)/dt2 < 0)). During the final
 phase of the diffusion (t > t*) the firm produces
 according to the demand rate dD(t)/dt in order to
 avoid unnecessary inventory. As the population of
 potential adopters, m, is finite, so is t* for any positive

 production capacity c.3
 For fixed values of production capacity c and

 launch time tl, we choose sales rate s(t) to maximize
 life-cycle discounted profits:

 P(c, tl) = max(j (a(t)s()-hI(t))e-tdtl{I(ttl)=ctl})
 s(t)>_O

 (6)

 where a(t) > 0 is the profit margin of the new prod-
 uct at time t and h is the inventory holding cost (per
 unit of inventory, per unit of time). The two terms
 in the objective function correspond to discounted
 life-cycle revenues and inventory costs, respectively.
 We observe that the expression for P(c, tl) can be
 simplified by shifting the time origin to tl: P(c, t) =
 e-tlP(c, tl), where

 P(c, tl) = maxf(t o (a(t)s(t)-hI(t))e-tdtI {I(O)=ctl}

 (7)

 3 In the next section we derive explicit expressions for t* for any
 combination of p, q, m, and c.
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 and a(t) = a(t + tl), s(t) = s(t + tl), I(t) = I(t + tl). In
 our analysis below we will drop the overbars from all
 these functions, thus, we will write a(t) instead of a(t).

 Once the optimal selling plan s*(t) is found, the
 company has to decide on the launch time tL > 0. For a
 given launch time tl, the discounted prelaunch inven-
 tory costs can be expressed as

 hjf cte-tdt= H (1-e-8t')- te-t'). (8)

 Thus, the best launch time tl, for given capacity c, can
 be found from

 P*(c)=max(P(c,tl)- (l-e -t')- te-))
 (9)

 Finally, the overall production capacity c has to be
 selected:

 max = (P*(c) - Hc),  (10)

 where H denotes the variable cost of acquiring
 and maintaining a unit of production capacity. The
 sequence of expressions (6), (9), and (10) reflects the
 implied hierarchical structure of the company's deci-
 sions, reflected by Figure 1. We start by investigating
 the "tactical" problem (6).

 4. Optimal Sales Plan
 The tactical decision chooses the sales rate s(t) to max-
 imize profits for fixed values of capacity c and launch
 time tl. This problem can be formulated within the
 optimal control framework as follows:

 P(c, tl) = max (f+(a(t)s(t) - hI(t))e- dt s(t)>_0 )
 dD

 s.t. -d = d(t), (11)
 dS
 d = s(t), (12) dt

 d2D = s(t)(m - D(t)) -d(p+ qS(t)) dt2= m
 dL
 dL = lW(t),

 dW
 d = d(t) - s(t)- lW(t), (13) dt

 dI
 = r(t) - s(t),

 I(t), W(t) > O,

 D(O) = S(O) = L(O) = W(0) = 0,

 I(O) = ctl, d(O) = pm.

 (14)

 (15)

 (16)

 The first two equations are self-explanatory. The
 third one is the time derivative of (3), the fourth one is

 (2), and the last two are time derivatives of (1) and (4),
 respectively. We note that nonnegativity constraints
 on I(t) and W(t) imply that r(t) > s(t) whenever
 I(t) = 0, and d(t) > s(t) whenever W(t) = 0. The fol-
 lowing result states the optimality of the maximum
 possible sales rate at any given t:

 PROPOSITION 1. For any profit margin a(t) > 0, hold-
 ing cost h > 0, and launch time tl > 0 in (16), the optimal
 sales rate is given by

 r(t), W*(t) > 0,

 s*(t) = min(r(t), d*(t)), I*(t) = O, W*(t) = 0, (17)
 d*(t), I*(t) > 0,

 where d*(t),I*(t), and W*(t) are the optimal values of
 demand rate, inventory, and waiting pool size, respectively.
 Also, I*(t)W*(t) = Ofor all t > 0.

 All proofs are presented in Ho et al. (2001). Propo-
 sition 1 suggests that when faced with the choice
 between selling an available unit immediately ver-
 sus delaying the sale in order to reduce the degree
 of future shortages, the firm should always favor
 the immediate sale. This result is interesting because
 an immediate demand fulfillment policy will acceler-
 ate the new product diffusion process and lead to a
 higher demand peak, resulting in a greater loss of cus-
 tomers. Proposition 1 shows that this negative effect
 of customer loss due to demand acceleration is out-

 weighed by the time benefit of immediate cash flow.
 This result runs counter to a recent result by Kumar

 and Swaminathan (2000), who suggest delayed
 demand fulfillment may be optimal in constrained
 new product diffusion. They have independently pro-
 posed an extension to the Bass diffusion model to
 include a supply constraint. Their model minimizes
 lost sales and assumes that limited supply always
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 results in an immediate loss of unsatisfied demand.

 We introduce a more general model of new product
 diffusion, which, in addition to the lost sales, allows

 for backlogging of demand. In addition, the tactical
 sales planning in our modeling framework is driven
 by profit maximization, rather than minimization of
 lost sales. The use of life-cycle profits as the objective
 results in the optimality of an immediate demand ful-
 fillment policy.

 5. Supply-Constrained New
 Product Diffusion

 In this section, we analyze the diffusion dynam-
 ics under the optimal sales plan established above.
 Our goal is twofold. First, we are interested in spec-
 ifying the demand and sales dynamics D(t) and
 S(t) and comparing them to the unconstrained Bass
 demand dynamics. Second, we would like to obtain
 the expression for discounted profits (6), which we
 use in determining the optimal capacity and time to
 market. Below we provide separate analyses of the
 cases of patient (1 = 0) and impatient (I > 0) cus-
 tomers. We therefore search for the solution to the

 system of differential equations (1), (2), (3), (4), (5),
 and (17) for particular values of production capacity
 c and launch time tl subject to the following initial
 conditions:

 W(0) = S(O) = L(O) = 0, I(0) = ctl. (18)

 5.1. Patient Customers

 In the case of patient customers, all unsatisfied orders
 are backlogged, L(t) = 0. The product diffusion is
 described by:

 D(t) = S(t)+ W(t),

 R(t) + ctI = S(t) + I(t),

 dD(t) p[-D(t)]+ S(t)[m-D(t)],
 dt <

 dR(t) c, tt*,
 dt dD(t) > t*

 dt ' t

 c, W(t) > 0,

 min(c, dD(t)) I(t) =0, dS(t) dt (19)
 dt W(t) =0,

 dD(t)
 dD(t) I(t) > 0. dt

 with t* = min(t I dD(t)/dt < c, d2D(t)/dt2 < 0). This set
 of equations is to be solved with the initial conditions
 D(0) = S(0) = R(0) = 0.

 Below we analyze the new product diffusion pro-
 cess for any chosen capacity c and launch time tl.
 In particular, we show that, depending on these
 two decisions, the diffusion can exhibit three dif-
 ferent regimes. The first regime is observed when
 capacity and preproduction inventory are sufficiently
 high, and the presence of the limited production
 capacity is never felt by the diffusion process. This
 regime exhibits the classical Bass dynamics. The sec-
 ond regime is observed when the diffusion process
 begins with an unconstrained phase, then enters a
 constrained phase for a duration, and finishes with
 a second unconstrained phase. The third regime is
 observed when the product is launched immediately
 (t, = 0) and the capacity c is lower than the ini-
 tial demand rate. Consequently, the diffusion process
 starts with a constrained phase and switches to an
 unconstrained phase at a later point in time.

 Regime 1: Unconstrained Diffusion (UD). In this
 regime, c and tl are high enough to ensure that
 W(t) = 0 for every t. Our model then reduces to
 the classical Bass dynamics (3) with D(t) = S(t) and
 D(0) = S(0) = 0. We note that even without prepro-
 duction (tl = 0), the presence of limited supply will
 not constrain the diffusion process, provided that the
 production capacity is sufficiently high. The smallest
 capacity level ensuring that the Bass diffusion pattern
 is preserved is determined as follows. Let us define
 T+ = max(rlc = dBass(T)) as the last time when the Bass
 demand rate equals to c:

 pm(q + p)2 exp((p + q)T+)
 C-

 (q + pexp((p + q)T+))2
 so that

 1 p q 1 () 1+1-( 7 T+= = P+q In +-In 1- 7=P+<? \P) P+q 1- 1- c \ V ''*'/~~

 (20)

 (21)
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 where co = m(p + q)2/4q is the maximum demand rate
 under Bass diffusion. We note that

 DBa(T+) = m(q - p) m(p + q)2 c DBass(T+)- 2q 2q C
 Then, Bass diffusion is preserved as long as cr+ >
 DBass(T+), so that the combination of production and
 inventory is enough to satisfy the demand at all times.
 Thus, for tI = 0, the smallest production rate necessary
 to sustain unconstrained Bass diffusion, cs(p, q, m), is
 determined as the capacity c satisfying the equation
 Tr+ = DBass(T+):

 c ln(q)+ 1 l 1-
 lp+q P P+q 11- /1- c

 m(q-p) m(p+ q) - (22)
 2q 2q V C

 It follows that cj(p, q, m) < co(p, q, m): Because the
 inventory can be used to satisfy customer orders, the
 unconstrained diffusion can be preserved even if the
 production capacity c is smaller than the maximum
 demand rate in the Bass regime. This observation is
 illustrated by Figure 3.4
 For c < c (p, q, m), the Bass regime can be sustained

 only if t1 > 0, so that there is additional inventory
 present. The following statement defines the smallest
 value of tl preserving the Bass diffusion regime for
 each c.

 LEMMA 1. For a given level of production capacity c,
 the new product diffusion dynamics follow the Bass regime
 if and only if the launch time tI exceeds the critical level
 t (c) given by

 0,  c > c - s

 m(q - p) + m(p+q) 1 -c
 2qc 2qc co
 1 (nfq\ - i+ -I

 p+q C<CP

 P+q 1- 1- c< (+1c)

 4 To illustrate the shape of this curve, we use the average values of
 p, q, and m from Bass (1969).

 Figure 3 Unconstrained Diffusion (UD) Under Make-to-Stock
 Production

 [in 06]

 3.5

 3.0

 2.5

 2.0

 1.5

 1.0 -

 0.5

 0

 5 10 15 20 25

 The critical launch

 c: dt*(c)/ldc 0.
 time is a nonincreasing function of

 The relation t7(c) defines a critical curve in (c, tl)
 space which separates the regions of constrained dif-
 fusion and Bass diffusion. Managerially, Lemma 1
 provides the level of preproduction that avoids any
 supply shortages over the entire life cycle.

 Regime 2: Initially Unconstrained Diffusion
 (IUD). According to Lemma 1, for any given level
 of production capacity c, if the launch delay is long
 enough the diffusion process will never sense the
 presence of limited supply of products. Below, we will
 look at the case when, for a given c, 0 < tI < t*(c).
 In this case, the prelaunch inventory is insufficient to

 support Bass diffusion regime over the entire life cycle
 of the product, and therefore a constrained diffusion
 will be observed.

 Because the finite amount of inventory is available
 at t = 0, it will be possible to sustain an unconstrained

 Bass diffusion for a finite duration. Consequently, the
 diffusion process goes through three distinct phases:
 (1) an initial unconstrained Bass diffusion (UP1), (2) a
 period of constrained diffusion (CP), and (3) a second
 unconstrained Bass diffusion (UP2). Below we pro-
 vide a detailed analysis of each phase. Our main goal
 is to characterize the switching times between these
 diffusion phases and to derive demand and sales
 trajectories.
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 During UP1, the diffusion dynamics are de-
 scribed by

 D(t)= St) pm- exp((p + q)t) - 1 -
 D(t)= St) pmq+pexp((p+q)t)j'

 W(t) = 0.  (24)

 Demand and sales rates are identical, and both are

 increasing with time: s(t) = d(t), ds(t)/dt > 0. The UPi
 lasts until the combination of production and inven-
 tory can no longer sustain an unconstrained Bass dif-
 fusion. Thus, the ending time of this phase, which we
 denote as r1, is determined as

 q+p

 q +p exp ((p +q),r)Ji
 (25)

 At t = r1, the constrained phase (CP) begins. Dur-
 ing the constrained phase, there are customers wait-
 ing (W(t) > 0) and the sales rate dS/dt is equal to
 capacity c. In this phase, the solution to (19) is subject
 to initial conditions

 D(r1) = ~ -exp ((p +q)r1)- 1 -
 D(,l) D,= pm q + pexp ((p + q)r1)=c +tI

 S(T1) = D  (26)

 to the demand rate d (t). For t > r2, the diffusion con-
 tinues as the unconstrained Bass process (UP2):

 D(t) = S(t)

 =M- ~~(m -D2)(P +q)
 q- ID +p+D2) exp((p +q)(t -r2))'

 W(t) = 0,
 (29)

 where V2 = D(r2).- In UP2, demand and sales rates
 are equal again, and are decreasing functions of time:
 s(t) = d(t), ds(t)/dt < 0. We observe that once Bass
 dynamics replace the "constrained" diffusion it never
 "switches" back. Thus, for all t > r2, and d(t) remains
 less than c.

 Denote by TB = l/(p + q) In (q) the time of maximnum
 p

 demand rate for Bass diffusion and by rl the switch-
 ing time between the unconstrained (UP1) and con-
 strained (CP) phases in RIUD regime, given by (25).
 Also, define

 =, + qQ1+t))(m - c(r1 + ti)),

 V ~~qc
 V m(p + qc(r1 + t1)/M)2

 is given by

 D(t) = m-(m-Dl)

 xexp (p+q2DI)(t~ -rD)+L (t -,rlD

 S(t) = D+(-r)

 W(t) = -c(t-,r1)+(m-Dl)

 (27)

 The constrained phase ends at tihme r2 when, for the

 first time after rl, there are no customers waiting:

 r2= min(tlIt > ri,W(t) =O). (28)

 From (27) we see thatT2 is finite, since limt,. W(t) < 0.
 We observe that in the constrained phase, the sales
 rate s(t) = c is constant and, in general, is not equal

 Now we can use (25) and (27) to describe the demand
 and the sales processes in this regime:

 LEMMA 2 (PEAK DEMAND AND SALEs RATEs).- The
 maximum demand rate in the IUD regime occurs at

 D
 m;ax=  (30)

 qc (T, + t') , M

 .-P-
 qc M m

 T, , m -.-p -ti,
 qc m

 M

 T, I .-P -tl<Tl<TBI
 qc m

 TBI Tl ' TBI

 5indeed, from the definition of T2, for small a, it follows that

 d2D/dt2(t = T2- E) < 0, and d2D/dt2 (T2 + E) - d2D/dt2 (T2 _ E) +
 q/m(m - D2)(dD/dt(T2 - E) - c) < d2D/dt2(T2 _ a) < 0. However, the
 Bass curve for d(t) has a unique maximum, and d 2D/dt2 may
 switch sign only once. Then, from d2D/dt2(T2 + a) < 0, it folloWS
 that d2D/dt2 < 0 for all t > r2, and d(t) remains less than c.

 196 ~~~~~~~~~~~~~~~MANAGIEMIENT SCIENCE/Vol. 48, No. 2, February 2002
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 '-,v- exp(- 1(1 - dl

 ~~ T1~~T2

 The maximum sales rate in IUD regime occurs at

 I. TB, Ti <TB,f

 and is equal to

 S (Tmax) =
 T'1 <-TB I

 Tl>T

 (31)

 Figure 4a

 [in 106]
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 0.5 _

 0

 Initially Unconstrained Diffusion (IUD), Regime 1

 5 10 15 20 25

 (32)

 Figure 4b Initially Unconstrained Diffusion (IUD), Regime 2

 (33)

 Several observations can be made with respect to

 results of Lemmna 2. First of all, for all values of pro-

 duction capacity Tm~ax < Tmax, in particular, for T,

 m/(qc)(Vqc/m - p) - t1, Tmax is strictly less then Tmiax~

 while for m/qc(,Iqc/m - p) - t, < T1 < TB, demand and

 sales rates peak at the same time. More so, not

 only the peak times, but also the peak values for

 demand and sales rates coincide under these condi-

 tions. Finally, for T1 > TB, peak timnes and peak values

 for demand and sales rates coincide with those for

 unconstrained Bass diffusion. The properties of diffu-

 sion as described in the lemma above are illustrated

 for the case of t, = 0 in Figures 4a, 4b, and 4c.

 Regime 3: Initially Constrained Diffusion (ICD).

 When t, = 0 and the production capacity c is smaller

 than the initial rate of the inflow of potential adopters

 pm, the diffusion initially proceeds in a constrained

 mode (W(t) > 0 for 0 < t < T2), later (at t = T2) replaced

 by unconstrained Bass process (W(t) = 0 for t > T2).

 T'hese two phases are similar to the last two phases

 of the diffusion process for pm < c < c*(p, q, in). In

 particular, during the initial constrained period, the

 Figure 4c Initially Unconstrained Diffusion (IUD), Regime 3

 [in 1 06]

 3.5 -

 3.0 - ~~~~~~~~p=0.0163221

 2.5 - ~~~~~~~~q=0.325044
 m=4.12984x]

 2.0 - ~~~~~~~~~c= 1.66373x]

 0.5 - ~ ~ d(t)=s (t) . ......

 0 . ......

 5 10 15 20 25
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 diffusion dynamics are described by (27) with Tr = 0,
 D1 =0:

 D(t)=m(l-exp -pt++ 2 ),

 S(t) = ct,

 W(t) =-ct+m(1 -exp(-(pt+ 2 )). (34)

 The "switching" time T2 is defined, as before, by

 2 = min(t I t > 0, W(t) = 0). (35)

 Note that, as in the constrained phase for the IUD
 regime, the rate of sales s(t) is, in general, different
 from the demand rate d(t). Similar to Lemma 1, the
 demand and the sales dynamics in the ICD regime
 can be described as follows:

 LEMMA 3 (DEMAND AND SALES DYNAMICS IN ICD
 REGIME). Define cS = p2m/q, u = c/cS. Then the maxi-
 mum demand rate in the ICD regime occurs at

 D O, O0 cCS

 C 0< C < pm,
 p u

 and is equal to

 pm, O<c <cS,
 d(raD ) = - exp( ( 1-- )pm,

 cs < c < pm.

 The maximum sales rate is equal to c.

 (37)

 We note that, unlike the IUD regime, ICD demand
 and sales rates are very different from the Bass diffu-
 sion rates. This result is the reflection of the strongly

 constraining production capacity in this regime and
 is illustrated in Figures 3a, 3b, and 3c. In Figure 3a,
 the demand peak is identical to the Bass demand
 peak. In Figures 3b-3c, the demand peak is differ-
 ent from the Bass demand peak. While the demand
 and sales peaks coincide in Figure 3b, they do not in
 Figure 3c. Comparing these diffusion processes, we
 note that as the production capacity is decreased, so
 is the observed peak demand rate.

 The properties of the three regimes described above
 are summarized in Table 2. As these results indi-

 Table 2 Demand and Sales Dynamics for the Three Diffusion Regimes

 Initially Constrained Diffusion (ICD)

 Capacity is

 constrained right

 from the beginning;

 however, there is

 still a demand peak

 Vcq-m e (1 - )

 Initially Unconstrained Diffusion (IUD)

 Demand peak is different

 from the Bass demand

 peak. Demand and sales

 peak do not coincide

 (m- c(r,1 + tl),)r, )

 1 (1 _ m(p+qc(r, +t/)/m)2 )

 Demand peak is different

 from the Bass demand

 peak. Demand and

 sales peak coincide

 (p+ q(lt))

 Unconstrained Diffusion (UD)

 Demand peak Because of the
 coincides with inventory, tl
 the Bass traditional E

 demand peak diffusion is

 m(p+ q)2
 4q

 e

 :he

 Bass

 possible, even if
 c is below the

 demand peak

 m(p+q)2
 4q

 x (m - c(r + t))

 ( )

 (P + qc(T+tl))

 x (m - c(T + t,))

 Define rl as given

 by (20)

 TI  _1 in( 1 In q P+q VP} P+q \P}

 (P+ qC(l+ )

 x (m - c(rT + t))

 Define 1T as given

 by (20)

 Define c; as
 in (17)
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 Regime

 Behavior

 Peak

 demand

 rate

 Capacity is
 constrained

 from the

 beginning;

 sales fall

 with no peak

 pm

 0

 c

 Time of

 demand

 peak

 Peak

 sales

 rate

 1 /cq/p2m-1
 p cq/p2m

 c
 m(p + q)2

 4q
 m(p+q)2

 4q
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 cate, the presence of supply constraints in product
 diffusion may have a significant impact on the posi-
 tion and the heights of the observed peaks in sales
 and demand. This in turn has substantial implications
 for the estimation of the diffusion parameters from
 observed sales and demand.

 5.2. Impatient Customers
 In the general case, when waiting for the new product
 makes some customers revise their adoption decision
 (I > 0), sales revenue is not only delayed, but also
 partially lost. Below we derive sales and demand tra-
 jectories and compute the number of lost customers.
 The solution to the diffusion equations (1), (2), (3), (4),
 (5), and (17) subject to initial conditions (18) can be
 described as follows:

 PROPOSITION 2. New product diffusion dynamics sub-

 ject to customer loss exhibit the same diffusion regimes

 outlined in Lemmas 1-3. Diffusion dynamics in the
 unconstrained phases remain unchanged, while constrained

 phases are now described by

 D(t,) = m - (m - D1)

 x exp - ((p+ D (t - lT) +
 S(t, ) = D1 + c(t -),

 c

 W(t, I) = -(1 -exp(-I(t- rl)))

 +(m - D1) exp(-l(t - r1))

 x (1 -exp(- (p ,(t - ) 2)))
 + (m - D1) exp(-I(t - r))

 //_rm mP 2
 x Iqc exp 2qc

 x ( ~-(t-l)+ p

 ~-qc)))
 L(t, I) = D(t, l)- S(t, I)- W(t, l),

 where ?(x) = 1/V2i Sfxo exp(-2) ds is the standard nor-
 mal CDF, p = p+ql - l, and D1 = c(r1 + tl) with rl from
 (25). The constrained phase ends at

 72(l) = min(t I t > r7, W(t, l) = 0).  (39)

 Proposition 2 provides a complete characterization
 of the diffusion dynamics under supply constraint.
 Figures 3 and 4a-c show that the demand and sales
 dynamics generally do not coincide. Note that sales
 dynamics follow demand dynamics in certain parts
 of the life cycle and mirror capacity in the remaining
 parts.

 A nice by-product of the above characterizations
 is that they enable the firm to track the fraction of
 lost customers at any time. This metric can be used
 by the firm to quantify the lost market opportunities
 and to improve capacity planning for future product
 launches.

 In the presence of customer loss, the duration of the
 constrained phase depends on the loss parameter 1:

 PROPOSITION 3. The length of the constrained phase
 Tc(l) = r2(l) - r1 is the smallest positive solution to

 exp(lTc)-1

 ( ( -( ^ -HG2m)))

 = (m-Dj) 1- exp(- Tc+2

 x( / T + + -P ( ) (40) \ (m1)m qc qc
 with D1 and p defined in Proposition 2. T,(l) is a decreas-
 ing function of 1:

 aTC() < 0.
 dl  (41)

 Proposition 3 suggests that the duration of the
 constrained phase decreases as customer impatience
 increases. If customer impatience reflects the degree
 of competition in the industry, the length of the con-
 strained phase decreases with the intensity of com-
 petition. For example, in Jain et al. (1991), customers
 wait for three years for the installation of their tele-
 phone supplied by a monopolist. Consequently, the

 MANAGEMENT SCIENCE/Vol. 48, No. 2, February 2002  199

This content downloaded from 137.132.123.69 on Wed, 07 Dec 2016 03:10:06 UTC
All use subject to http://about.jstor.org/terms



 HO, SAVIN, AND TERWIESCH
 Managing Demand and Supply Dynamics in New Product Diffusion

 length of the constrained phase is almost the length of
 the product life cycle. In general, this result indicates
 that a higher level of capacity and preproduction may
 be necessary in more competitive industries.

 In the case of infinitely impatient customers, any
 unsatisfied demand is lost, and T2 is the earliest time

 after T1 when the demand rate d(t) becomes equal to
 sales rate s(t) = c:

 T,(oo) = min(T T> 0, c = (m -D)( p + q + T)
 m

 m m 2 xexp -((P +q )T+m2) ) .(42)

 This result implies that the timings and amplitudes
 of the demand and sales peaks remain the same as in
 the case of 1 = 0, and the results presented in Table 2
 are fully applicable to the case of impatient customers.

 The total fraction of customers lost due to wait-

 ing may serve as an important measure of customer
 service:

 PROPOSITION 4. The fraction of customers lost is given

 by

 (m-D1)(1-exp[-(pTc,l)+ 2) )-c(I)
 f(1) =  m

 (43)

 where D1 is defined in the Proposition 2. f () is an increas-

 ing function of I:

 'f > 0. (44)

 For the case of infinitely impatient customers, we
 have

 6. Optimal Supply Decisions
 The above characterizations of demand and sales

 dynamics allow us to determine the optimal capacity
 and time to market. We first use these characteriza-

 tions to develop expressions for the life-cycle profits
 for given values of capacity and time to market. We
 then use these expressions for computing the optimal
 capacity and time to market.

 6.1. Life-Cycle Profits
 We first turn to expression (6) for the life-cycle prof-
 its. For analytical tractability, we consider the case of
 constant profit margin: a(t) = a. For given values of
 production capacity c and launch time tl, let

 rI = min(ric(T+ t) =m(1  q+p

 q+pexp((p + q)) '
 (46)

 D, = c(l + tl),  (47)

 and

 T2 = + T  (48)

 where Tc is the duration of the constrained phase,
 given by the smallest positive solution to (40). Define

 D2= (m -D) exp-((P + D1)Tc + T2) (49)

 and

 I(x,y, ,p,q,m)

 =fydtexp(-Ot)(m(1- q+p ))' = dtexP( t) (m(1 q+pexp((p+q)t)))

 (50)

 COROLLARY. The fraction of customers lost for I -- oo

 can be expressed as

 f(oo) = 1 D c pm+ qc (45) m m pm + qDs + qcT,(oo)'

 Given that in most managerial situations the loss
 parameter I is not readily available, the expression
 provided by this corollary may be used as an upper
 bound estimate on the fraction of customers lost.

 The following result characterizes the life-cycle profits
 in terms of c and tl.

 PROPOSITION 5. The life-cycle profits P(c, tl) can be
 expressed as

 +00

 P(c, t) = (as(t)-hI(t))e-0tdt
 = (aO+h)I(0, T, , p, q,m)

 +ac(r + tl)exp(-OT1)
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 ac
 + - (exp(- T) - exp(- T2))

 (- 6 ) (1-exp(-_rl))

 + - exp(-0rl) + aexp(-T02)

 xI 0,+oo,0,p+ q c(2+,),q D2* D) . (51)

 We observe that in spite of complex appear-
 ance, the computation of life-cycle profits reduces
 to evaluating several expressions (including two eas-
 ily computable one-dimensional integrals) containing
 switching times Tr and r2. Both of these switching
 times are expressed through the solutions to simple
 transcendental equations. Their values are easily com-
 puted numerically. Below we present the results of a
 numerical study focused on computing the optimal
 values of capacity c and time to market tl.

 6.2. A Numerical Study
 We conduct a numerical study to compute the optimal
 time to market for a given value of capacity c. This
 analysis is particularly relevant for situations where
 capacity can only be increased in big chunks (e.g.,
 building an additional production facility). We sub-
 stitute Equation (51) into Equation (9) and use the
 resulting expression to find the optimal time to mar-
 ket tl.

 Optimal Time to Market. We define the relative
 innovation factor of a diffusion as the ratio of its coef-

 ficient of innovation (p) and the average coefficient
 of innovation reported in Bass (1969) (Pave = 0.01632).
 Similarly, we define the relative imitation factor of
 a diffusion as the ratio of its coefficient of imita-

 tion with respect to its average value (qave = 0.3250).
 Figures 5a-5b show how the optimal time to market,
 tl, varies with the innovation and imitation factors for

 three different levels of capacity: c = 25%, 50%, 75%
 of Cg(p, q, m). The discounting factor 0 and the loss
 parameter I were set at 0.01 and 0.1 respectively. We
 observe that for a fixed value of capacity, the optimal
 time to market increases with both the innovation and

 imitation factors. This increase is more dramatic for

 lower levels of capacity.

 Figure 5a The Optimal Production Delay t, for Fixed Production
 Capacity As a Function of Innovation Parameter p (Pave =
 0.0163221, q = 0.325044, m = 4.12984 x 107, 0 = 0.01, / =

 0.1, h = 0.001)

 ti

 40

 30

 20

 10

 c =0.25xcj(p,,,q,m)

 c = 0.5xc(p^,,q,m)

 .^^^-^ c=0.75xc(p,,,q,m)
 1 2 3 4 5 P/Pave

 Figure 5b The Optimal Production Delay t, for Fixed Produc-
 tion Capacity As a Function of Imitation Parameter
 q (p =0.0163221, qae = 0.325044, m = 4.12984 x 107, =
 0.01, = 0.1, h= 0.001)

 tl c =0.25xc :(p,,q,m)
 40

 30

 c = 0.5 x c,(p,q,m)

 20

 10 c=0.75xc (p...,q,m)

 1 2 3 4 5

 A comparison of Figures 5a and 5b reveals that the
 optimal time to market is more sensitive to imitation
 than innovation factors. We believe this is due to the

 nonlinear effect of imitation on the sales process. This
 result implies that it is more important to obtain a pre-

 cise estimate for q than for p. Since prior research sug-
 gests that q is more seriously biased by ill-conditioned
 data than p (Van den Bulte and Lilian 1997, Van den
 Bulte 2000), the importance of obtaining a precise esti-
 mate for q cannot be overemphasized.
 Figure 6 plots toPt(c) for three different values of
 inventory holding cost: h = 0.001, 0.01, 0.1. The dis-
 counting factor 0 and the loss parameter I were set
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 Figure 6 Optimal Values of the Production Delay t As a Function of
 the Production Capacity c for Different Values of the Inven-

 tory Holding Cost h (p = 0.0163221,q = 0.325044, m =
 4.12984 x 107, = 0.001, /= 0.001)

 t - I \

 at 0.001 and 0.001, respectively. We observe that for
 a fixed value of inventory holding cost, the optimal
 time to market shortens as the production capacity is
 increased. Thus, prelaunch inventory and production
 capacity play the roles of substitutes in constrained
 new product diffusion. A comparison of the toPt(c)
 curves for different values of h shows that as the

 value of the inventory holding cost increases, the opti-
 mal time to market decreases for the same level of

 production capacity, resulting in lower inventory.
 Our results suggest that firms may want to substi-

 tute capacity with preproduction by delaying prod-
 uct launch. This is particularly relevant if the capacity
 is costly to acquire and if the word-of-mouth effect
 is dominant, leading to a high demand peak. Indus-
 try examples where word-of-mouth effect is domi-
 nant include high-technology products with network
 externalities as well as products with high fashion
 contents (Van den Bulte 2000). The impact of insuffi-
 cient preproduction can be dramatic, as illustrated by
 the recent introduction of the Sega Dreamcast video
 game console (Thomke 1999). Due to failure to use
 preproduction to meet initial demand (which led to a
 slow diffusion of the new product), Sega was forced
 to withdraw the product prematurely.

 Optimal Capacity Size. If the firm does not want
 to incur any supply shortage, the minimal level of
 capacity without preproduction is cs(p, q,m). This
 value can be used as the upper bound for the capac-
 ity investment under constrained new product diffu-

 sion. Once the optimal time to market is established,
 (10) can be used to determine the optimal production
 capacity level c?pt. In this numerical study, the val-
 ues of cOPt were computed through a one-dimensional
 search on a capacity interval [0, cs(p, q, m)].

 Figure 7 shows how c?Pt varies with the innovation
 and imitation factors. As shown, the optimal capacity
 increases with both the innovation and imitation fac-

 tors. Interestingly, the optimal capacity exhibits a clear
 saturation effect as the speed of diffusion increases.

 Figure 8 plots cOPt as a function of capacity cost H
 for three different values of inventory holding cost:
 h = 0.001, 0.05, 0.5. As expected, c?Pt is a decreasing
 function of H. In particular, high cost of capacity

 Figure 7a Optimal Production Capacity As a Function of Innova-
 tion Parameter p (Pave = 0.0163221, q = 0.325044, m =
 4.12984 x 107, 0 = 0.05, = 0.1, h= 0.001, H = 4)

 c
 Copt

 3' 106

 2.5' 106

 /1 2 3 4 5

 P/Pave
 1.5' 106 /

 Figure 7b Optimal Production Capacity As a Function of Imita-
 tion Parameter q (p = 0.0163221, qav = 0.325044, m =
 4.12984 x 107, = 0.05,/= 0.1,h = 0.001, H =4)

 copt
 3' 106-

 2.5' 106-

 2' 106

 1.5' 106

 1' 106

 500000

 .. . . . . .... q/q It a 4
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 Figure 8 Optimal Production Capacity Values coPt As a Function of
 the Capacity Holding Cost H for Different Values of the

 Inventory Holding Cost h (p = 0.0163221, q = 0.325044, m =

 4.12984 x 107, 0 = 0.1,/ = 0.1)

 coPl/c (p,q,m)

 0.8 --\ ?h = 0.001
 h = 0.05 \

 0.6 -

 h = 0.5

 0.4-

 0.2 \

 2 4 6 8 10

 forces the system to operate in the low production
 capacity regime, resulting in low profit values. Also,
 higher inventory costs push the optimal inventory
 levels down and result in lower optimal production
 capacities for the same level of capacity cost. When H
 is negligibly small, high inventory cost will result in
 an optimal production level that is much lower than
 c*(p, q, m).

 Value of Endogenizing Demand. We can deter-
 mine the value of endogenizing demand by compar-
 ing the optimal profits with the profits obtained under
 the assumption that the demand dynamics follow the

 original Bass dynamics. This latter assumption we
 will label as "Bass heuristic." Under the Bass heuris-

 tic, the life-cycle profits will still be expressed by (51);
 however, the values of 72 and D* should be computed
 differently.

 LEMMA 4. Let

 DBass(t) = m( - (q +p)/(q +pexp((p + q)t))).

 Then, under the Bass heuristic, the value of the "switch-
 ing" time 72 is the smallest solution to

 DBass(72) = exp(-(T72- T7))DBass(T1)

 + (m + )(1-exp(-l(T - 71)))

 - lm(p + q) 2 exp(/(u- r2)) du (52)
 - q+pexp((p+q)u)'

 such that r2 > T1, where r1 is given by (46). Also, D* =
 DBass(72).

 Using (52) and (51), we can compute the overall
 profits under the Bass heuristic for any value of pro-
 duction capacity and establish the value of production
 capacity cBp,t which maximizes (10) computed under
 the Bass heuristic.

 We can study the value of endogeneity as a function
 of the diffusion characteristics. Figures 9a-9b show
 the corresponding results. First, the value gained
 by endogenizing demand can be significant. In our

 Figure 9a The Relative Performance Gap Between the Optimal Profits and Profits from the Bass Heuristic As a Function of Innovation Parameter

 p (pave = 0.0163221, q = 0.325044, m = 4.12984 x 107, = 0.05, / = 0.1, h = 0.001, H = 8)

 (0ot - i.Bs )/. O
 0.08 -

 0.07

 0.06

 0.05

 0.04

 3  P/Pave
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 Figure 9b The Relative Performance Gap Between the Optimal Profits and Profits from the Bass Heuristic As a Function of Imitation Parameter

 q (p = 0.0163221,qav = 0.325044, m = 4.12984 x 107, = 0.05, / = 0.1, h = 0.001, H = 8)

 opt - Bas)/. opt

 0.1

 0.08

 0.06

 0.04

 0.02

 2 3

 numerical example, the saving is 6% if the innovation
 and imitation factors are both equal to one. Second,
 the figures reveal an interesting qualitative result. The
 value of endogeneity first increases and reaches a
 peak and then decreases for both the innovation and
 imitation factors. For a slow rate of diffusion (small
 innovation and imitation factor), the optimal demand
 dynamics are less likely to be constrained (they are
 more like original Bass dynamics), so the value of
 endogeneity is small. When the rate of diffusion is
 large, the product life cycle is compressed and the
 optimal demand dynamics are heavily constrained. In
 such cases, a large fraction of customers will be lost.
 Put differently, there is no useful information to be
 gained in the slow diffusion rate and it is too expen-
 sive to act on the useful information when the diffu-

 sion rate is high.
 Figure 10 graphs the relative difference in profits

 (10) computed at cOPt and cBass as a function of capac-
 ity maintenance cost H for 0 = I = 0.1, h = 0.001 (profit
 values TrBass under the Bass heuristic were computed
 by using the life-cycle profit expression (51) with c =
 cpt and T2 and D2 given by (48) and (49), respec-
 tively).

 We observe that the fraction of profit lost due to
 the use of the exogenous model of demand dynam-
 ics can be rather high for intermediate and high
 values of capacity costs. In these high cost scenar-
 ios, the diffusion occurs in the regime where the
 capacity is severely constrained. As cost of capacity

 q/q ve

 Figure 10 The Relative Performance Gap Between the Optimal Prof-
 its and Profits from the Bass Heuristic As a Function

 of the Capacity Holding Cost H (p = 0.0163221,q =
 0.325044, m = 4.12984 x 107, = 0.1., h = 0.001)

 8 8.5 9 9.5 10

 decreases, the optimal capacity increases so that the
 degree of capacity constraint diminishes. As a result,
 both exogenous and endogenous models of demand
 dynamics result in similar optimal capacity levels.

 7. Discussion
 In this paper we provide a joint analysis of demand
 and sales dynamics in a constrained new product dif-
 fusion. Our analysis generalizes the Bass model to
 include backordering and customer losses. In addi-
 tion, we determine the diffusion dynamics when
 the firm actively chooses supply-related decisions to
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 influence the diffusion process. We derive closed-form
 expressions for the optimal diffusion dynamics (both
 sales and demand) and show how the timing and the
 amplitude of the peak demand rate differ from that
 of the Bass model.

 Our results suggest that it is important to include
 supply constraints in the estimation of diffusion
 parameters such as the coefficients of innovation (p)
 and imitation (q). An estimation which assumes the
 Bass model, despite the occurrence of supply short-
 ages during life-cycle, is likely to lead to biased esti-
 mates of parameters. Consequently, demand forecasts
 based on these estimated parameters could be system-
 atically biased as well.

 In addition to characterizing the resulting diffu-
 sion dynamics in the presence of supply constraint,
 we investigate how supply-related decisions such as
 capacity sizing and time to market may interact. We
 show that an increase in the amount of preproduc-
 tion (by delaying the product launch) can act as a
 substitute for capacity. This substitution strategy can
 be particularly relevant when incremental changes in
 capacity are prohibitively expensive.

 We also analyze how optimal time to market and
 capacity vary with the diffusion parameters. We show
 that both the timing and capacity are more sensitive
 to the coefficient of imitation q than to the coefficient

 of innovation p, suggesting a need for a precise esti-
 mate for the former. In addition, the optimal capacity
 exhibits a saturation effect as the speed of the diffu-
 sion increases.

 Finally, we show that the value of endogenizing
 demand in determining supply-related decisions can
 be substantial. This is so because the diffusion process
 depends on the amount of capacity in place. The link
 between capacity and diffusion dynamics is partic-
 ularly important when word-of-mouth effects create
 a causal link between the past and the future sales.
 Thus, using an exogenous characterization of demand
 to determine capacity can be suboptimal in such
 situations.

 Our model allows managers to improve their oper-
 ations decision making in three ways. First, our
 characterizations of the constrained new product dif-
 fusion dynamics can be used to develop more accu-
 rate forecasts of demand. This improved accuracy will

 lead to more informed decisions, resulting in higher
 profits. Second, this paper highlights the importance
 and benefits of endogenizing demand. This observa-
 tion challenges the standard assumption that demand
 forecasts merely serve as inputs to operations plan-
 ning processes and are not affected by supply deci-
 sions. Third, our results suggest it is optimal to
 preproduce and have an initial inventory serve as a
 substitute for capacity, if new product diffusion does
 not begin before product launch. This may explain
 why many high-tech firms choose to preproduce
 before product launch.

 Our model of supply-constrained diffusion opens
 up several avenues for future research:

 * Estimation of diffusion parameters: Our model sug-
 gests that estimation of diffusion parameters p, q, and
 m may be significantly biased if the supply to the
 diffusion process is constrained. The extent to which
 these diffusion parameters are biased can be easily
 studied by simulating sales and demand data from a
 constrained process and using usual estimation pro-
 cedures to estimate them as if the process is uncon-
 strained. Moreover, the expression for the fraction of
 customers lost over the life cycle, f(l), can be used
 to estimate the total number of lost customers. We

 believe this will make product diffusion models more
 realistic and hence more applicable.

 * Using marketing mix variables to influence diffusion:
 The firm can also use marketing mix variables such as
 price and advertising to influence the diffusion pro-
 cess. Prior studies have investigated these effects but
 without considering supply constraint (e.g., Kalish
 1985). It will be interesting to investigate how the
 presence of supply constraint affects the determina-
 tion of these marketing-mix variables.

 * Waiting time dynamics: Our results can be used
 in future research related to customer service metrics,
 such as the average lead time a customer must wait
 before she receives the new product.

 In conclusion, this paper enables a deeper under-
 standing of the interaction between supply and
 demand in the adoption of new products and ser-
 vices. We hope our work will be the beginning of a
 larger stream of work that endogenizes new product
 demand in order to enhance operations management
 decisions.
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