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Picture a thin country 1000 miles long, run­
ning north and south, like Chile. Several nat­
ural attractions are located at the northern tip 
of the country. Suppose each of n resort de­
velopers plans to locate a resort somewhere on 
the country's coast (and all spots are equally 
attractive). After all the resort locations are 
chosen, an airport will be built to serve tour­
ists, at the average of all the locations includ­
ing the natural attractions. Suppose most 
tourists visit all the resorts equally often, ex­
cept for lazy tourists who visit only the resort 
closest to the airport; so the developer who 
locates closest to the airport gets a fixed bonus 
of extra visitors. Where should the developer 
locate to be nearest to the airport? 

The surprising game-theoretic answer is that 
all the developers should locate exactly where 
the natural attractions are. This answer re­
quires at least one natural attraction at the 
northern tip, but does not depend on the frac­
tion of lazy tourists or the number of devel­
opers ( as long as there is more than one) . 1 
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1 Douglas Gale ( 1995 Sec. 4) describes a related class 
of ''dynamic coordination'' games in which the returns to 
investing at time t depends on how much others invest 
after t. For example, a firm pioneering a new product stan­
dard benefits if more subsequent entrants use the same 
standard. In equilibrium, all firms invest immediately. 
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To see how this result comes about, denote 
developers' choices by mileage numbers on the 
coastline (from O to 1000) as x 1, x2 , ... , Xn. 
Locate all m of the natural attractions at 0. 
Then, the average location is A = (x1 + x2 + 
... + Xn)l(n + m) = nl(n + m)·x. If we define 
the fraction n I ( n + m) as p ( and note that p < 
1 as long as m 2: 1 ) , then the developer who 
is closest to A, or p · x, wins a fixed amount of 
extra business ( from the lazy tourists) . 

This game was first discussed by Herve 
Moulin (1986 p. 72) and studied experimen­
tally by Rosemarie Nagel (1995). It is solved 
by iterated application of dominance. The 
largest possible value of A is 1000 · p so any 
choice of x above 1000 · p is dominated by 
choosing 1000 · p. If developers believe others 
obey dominance, and therefore choose X; < 
1000 · p, then the maximum A is 1000 · p 2 so 
any choice larger than that is dominated. It­
erated application of dominance yields the 
unique Nash equilibrium, which is for every­
one to locate at zero. No matter where the av­
erage of the other developers' locations is, a 
developer wants to locate between that aver­
age and the natural attractions ( which is where 
the airport will be built); this desire draws all 
the developers inexorably toward exactly 
where the attractions are. 

We call these "p-beauty contest" games 
because they capture the importance of iter­
ated reasoning John Maynard Keynes de­
scribed in his famous analogy for stock market 
investment (as Nagel, 1995, pointed out). 
Keynes (1936 pp. 155-56) said 

... professional investment may be lik­
ened to those newspaper competitions in 
which the competitors have to pick out 
the six prettiest faces from a hundred 
photographs, the prize being awarded to 
the competitor whose choice most nearly 
corresponds to the average preferences 
of the competitors as a whole .... It is 
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not a case of choosing those which, to 
the best of one's judgment, are really the 
prettiest, nor even those which average 
opinion genuinely thinks the prettiest. 
We have reached the third degree where 
we devote our intelligences to anticipat­
ing what average opinion expects the av­
erage opinion to be. And there are some, 
I believe, who practise the fourth, fifth 
and higher degrees. 

In Keynes's ''newspaper competition'' peo­
ple want to choose exactly the same faces oth­
ers choose. Professional investment is not 
quite like this. Think of the time at which in­
vestors choose to sell a rising stock as picking 
a number. When many investors choose to 
sell, the stock crashes; the time of the crash is 
around the average number ( selling time) cho­
sen. Then professional investment is a p -
beauty contest ( with p < 1 ) in which investors 
want to sell a few days ahead of the crash­
picking a number equal top times the average 
number-but not too far ahead. 

Our paper reports experiments on p-beauty 
contest games. These games are ideal for 
studying an important question in game 
theory-how many iterations of dominance 
do players apply? The games are also useful 
for studying learning. 

Our central contribution is application top­
beauty contests of a pair of structural 
models-a model of first-period choices, and 
a related model of learning-similar to those 
used recently by Debra Holt (1993), Dale 
Stahl and Paul Wilson ( 1994, 1995), and oth­
ers. These models give a parsimonious way 
to empirically characterize the levels of iter­
ated dominance and iterated best response. In 
the model of first-period choices, players are 
assumed to obey different levels of iterated 
dominance. We estimate from the data what 
the distribution of the different levels is most 
likely to be. The results show substantial pro­
portions of players ( at least 10 percent) obey­
ing each of 0-3 levels. In the learning model, 
players are assumed to use different levels of 
iterated best response. A small fraction of 
players are adaptive, responding to past ob­
servations, but most exhibit some degree of 
sophistication, best responding to responses 
by adaptive learners. 

I. Iterated Dominance and Iterated 
Best Response 

A. Iterated Dominance 

Iterated dominance is perhaps the most ba­
sic principle in game theory. Games in which 
iterated application of dominance determine a 
unique equilibrium are called ''dominance 
solvable.'' In a dominance-solvable game, 
reaching the equilibrium requires some mini­
mal number of steps of iterated dominance 
( which we call the rationality threshold). 

The number of steps of iterated dominance 
people use is important for economics because 
many phenomena which appear irrational 
could be due to rational players expecting oth­
ers to behave irrationally. That is, the ''unrav­
elling'' toward unique equilibrium sometimes 
depends on many steps of iterated dominance. 
Potential examples include cooperation in fi­
nitely repeated prisoner's dilemma games, the 
winner's curse, escalating bids in the dollar 
auction, price bubbles in experimental markets 
( e.g., David Porter and Vernon L. Smith, 
1995), and coordination games in which play­
ers must coordinate on the level of iterated ra­
tionality (see Ho and Weigelt, 1996). 

There are good reasons to doubt that players 
behave as if they have more than a couple of 
steps of iterated rationality. Iterated reasoning 
is cognitively difficult. High levels of iterated 
rationality may not be easily justified by nat­
ural selection arguments (see Stahl, 1993). 
And many experimental studies indicate lim­
ited steps of iterated dominance. 

Randolph Beard and Richard Beil (1994) 
found that about 50 percent of the subjects vi­
olated one step. Using a similar game, Andrew 
Schotter et al. ( 1994) found that half their sub­
jects violated one step, and about 20 percent 
violated weak dominance in a matrix-form 
game. (The corresponding figures were only 8 
percent and 2 percent in a tree-form game.) 
John Van Huyck et al. ( 1994) studied a five­
strategy variant of a prisoner's dilemma, and 
found about three levels of iterated domi­
nance. Camerer et al. ( 1996) studied the 
"electronic mail game" introduced by Ariel 
Rubinstein (1989) and observed about two 
levels of iterated dominance. In Richard D. 
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McKelvey and Thomas R. Palfrey's study 
( 1992) of centipede games, most subjects re­
vealed two or three levels of iterated dominance. 
At the risk of overgeneralizing across games 
which are too different, it seems that subjects 
rarely violate dominance, but usually stop after 
one-three levels of iterated dominance. 

These studies did not try to carefully mea­
sure the fraction of subjects using various lev­
els of iterated dominance. We use the method 
of Stahl and Wilson ( 1995) to do so. They 
define ''level-0'' players as those who choose 
strategies randomly and equally often, and 
"level-k" players as those who optimize 
against lower-level [ level-( k - I)] players. In 
three-strategy matrix games, they estimate that 
most players are level- I or level-2. 

p-beauty contest games are better than the 
games above for studying levels of iterated 
dominance for two reasons. First, p-beauty 
contests have many more strategies so they 
can detect violations of higher levels of iter­
ated dominance. 

Second, p -beauty contest games are 
constant sum. In experiments a test of 
dominance is usually a joint test of utility­
maximization and the self-interest assumption 
(own-payoff-maximization). All the games 
described above are nonconstant sum games, 
in which violations of the self-interest as­
sumption are more likely, and caistaken for 
dominance violations. 2 For example, in 
McKelvey and Palfrey's centipede games, 15-
20 percent of the players who arrive at the 
final node violate dominance by ''passing.'' 
Passing means taking 20 percent of a $32 pie 
( earning $6.40 while the other player gets 
$25.60) instead of 80 percent of a $16 pie 
(earning $12.80 while the other gets $3.20). 
Players who maximize utility but care enough 
about others' payoffs 3 will pass and appear to 
violate dominance. Since p-beauty contests 

2 Another way to separate the two is to collect 
information-processing measures other than choices. For 
example, Camerer et al. (1993) show using measures of 
attention that players in a three-stage sequential bargaining 
game often do not look past the first stage, violating the 
computational underpinning of iterated dominance. 

3 For example, assume a linear additive "social utility 
function" in which player i's utility for the allocation (x,, 

are constant sum, altruistic behavior will dis­
appear as long as players care about their own 
payoffs more than those of others. 

B. Learning and Iterated Best Response 

The predominant view in modern game the­
ory is that equilibria in all but the simplest 
games are reached by a learning or evolutionary 
process rather than by reasoning. Many pro­
cesses have been studied ( e.g., Paul Milgrom 
and John Roberts, 1991; Kenneth Binmore et 
al., 1995; Alvin Roth and Ido Erev, 1995; 
Camerer and Ho, 1998) but more careful em­
pirical observations are needed to judge which 
rules describe learning best. 

p-beauty contests are useful for studying 
learning empirically. Because convergence is 
not immediate, there is healthy variation in the 
data which can be used to study adaptive dy­
namics. And adaptive learners, who simply 
learn from past observations, choose different 
numbers than sophisticated learners who re­
alize others are adapting; so the game can 
be used to estimate the proportions of adap­
tive and sophisticated types (Milgrom and 
Roberts, 1991). 

Our experiments use several variants of the 
p -beauty contest game. First, we compare 
"finite-threshold" games ( with p > I) in 
which the equilibrium can be reached in a fi­
nite number of steps of iterated dominance, 
with "infinite-threshold" games with p < I, 
in which the equilibrium cannot quite be 
reached in finitely many iterations of domi­
nance. (The developer-location game in the 
introduction is an infinite-threshold game.) 

Two other comparisons, between different 
group sizes n and values of p, are used to study 
whether the results are robust across parameter 

x) is x, + axj ( traceable, at least, to Edgewotth). Then 
passing is utility-maximizing in centipede if and only if 
( iff) a > 0.29. This point is even clearer from the large 
literature on ultimatum bargaining and public goods 
games. As many as half the players violate the conjunction 
of dominance and self-interest by rejecting low offers, giv­
ing money to others, contributing to a public good, or co­
operating in a prisoner's dilemma (e.g., Camerer and 
Richard H. Thaler, 1995; John Ledyard, 1995; David 
Sally, 1995). 
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variations. Group size is particularly interest­
ing because players in smaller groups exert 
more influence on the mean number; if they 
recognize this, they should choose lower num­
bers and converge more quickly, but in fact, 
small groups appear to converge more slowly. 

C. Key Results 

Our experiments and analysis yield several 
key results, which follow. 

• First-period choices are widely distributed 
and far from equilibrium, but subsequent 
choices converge toward the equilibrium 
point (particularly in the finite-threshold 
game). 

• First-period choices are consistent with a 
median of 2 steps of iterated dominance in 
the infinite-threshold game, and 1 step in the 
finite-threshold game. The estimated pro­
portions are spread across levels 0-3 (at 
least 10 percent in each) . 

• Choices after the first period are consistent 
with 70 percent of the subjects best respond­
ing to a weighted sum of previous target 
numbers ( weighting the previous target 
most strongly). 

• The parameter estimates are sensitive top, 
the group size, and whether subjects played 
a similar game before. 

II. The p-Beauty Contest Game 

In our experiments, a group of n subjects 
simultaneously choose a number from a closed 
interval [L, H]. The subject whose number is 
closest to p times the group mean wins n · 1r. 

Thus, the expected payoff per subject is 1r even 
though n varies across groups. Denote the tar­
get number by w = p·x= p· (x1 + X2 + ··· + 
Xn)ln. Subjects' payoffs are determined as fol­
lows. Denote the set of winners / * to be 
argmin; { I x; - w I } ( the set of players whose 
choices are closest to w). Each winner i E /* 
obtains a monetary prize of n · 1r I I /* I ( split­
ting n · 1r equally) and the remaining group 
members receive nothing. Variants of this 
game are denoted by G([L, H],p, n). 

Consider two variants of this game with n 
players: ( 1) finite threshold, FT(p, n) = 

G([lOO, 200], p, n), and (2) infinite thresh­
old, JT(p, n) = G([O, 100],p, n). While both 
games have an unique dominance-solvable 
equilibrium, JT(p, n) requires an infinite level 
of iterated reasoning to solve the game, 
whereas FT(p, n) requires only a finite level. 
Figures lA-B illustrate this with FT( 1.3, n) 
and /T(0.7, n). In these figures, the level of 
iterated rationality is indicated by R ( i) . For 
example, R ( 2) means that subjects are rational 
and know that others are rational. Figure lA 
shows the threshold level needed to solve 
FT( 1.3, n) is 3. Subjects with zero levels of 
iterated rationality may choose numbers from 
[100, 130) [i.e., R(0) 4 ]. Rational players will 
choose a number from [130, 200] because 130 
dominates any number in [100, 130) [i.e., 
R ( 1 ) ] . ( This illustration assumes a very large 
number of players, so that players can ignore 
their own effect on the mean and target num­
ber). Mutually rational players deduce it is in 
their interests to choose a number from [169, 
200] [i.e., R(2)]. To guarantee all subjects 
choose the unique equilibrium of 200 requires 
a threshold level of 3 [ since a subject at R ( 2) 
could choose less than 200]. When p = 1. 1, 
the threshold level is 8. 

In Figure lB, the threshold level for the 
IT( 0. 7, n) game is infinite. Rational players 
will only choose a number from [0, 70] be­
cause any number in ( 70, 100] is dominated 
by 70 [i.e., R( 1)]. Applying the same reason­
ing, mutually rational R(2) players will only 
choose a number from [O, 49] (i.e., 0.7·70). 
With k-levels of iterated rationality, players 
will pick numbers from [ 0, 0. 7 k + 1 • 100] . All 
players will choose the unique equilibrium of 
0 only if iterated rationality is infinite (i.e., 
0.7k-oask-oo). 

III. Experimental Design 

To investigate the degree of iterated ratio­
nality we studied games with infinite (IT) and 
finite (FT) thresholds, and different values of 

4 Irrational players may also choose a number outside 
of [100, 130) by chance; thus the number of players 
choosing between [ I 00, 130) is a lower bound on the num­
ber of R(O) players. 
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Equilibrium 
Point 

Attraction of Equilibrium Point i 
R{O) R(I) R(2) I 130 169 

JOO 
200 

FIGURE IA. A FINITE-THRESHOLD GAME, FT(n) = ([100, 200], 1.3, n) 

Attraction of Equilibrium Point 

R(2) R(l) R{O) 

8 12 17 24 34 49 70 
0 

JOO 

FIGURE 18. AN INFINITE-THRESHOLD GAME, IT(n) = ([O, 100], 0.7, n) 

p. The design also varied the group size n, to 
test whether smaller or larger groups behave 
differently. Table 1 summarizes the experi­
mental design. Each subject played one IT 
game and one FT game ( counterbalanced for 
order). 

There were 55 experimental groups with a 
total of277 subjects-27 groups of size 3, and 
28 groups of size 7. Subjects were recruited 
from a business quantitative methods class at 
a major undergraduate university in Southeast 
Asia. They were assigned to experimental ses­
sions randomly. Each participated in one 
session. 

A typical session was conducted as follows. 
Subjects reported to a room with chairs placed 
around its perimeter, facing the wall, so sub­
jects could not see the work of others. Subjects 
were randomly assigned seats, subject num­
bers, and given written instructions.5 After all 
subjects were seated, an administrator read the 
instructions aloud, and subjects were given the 

5 The one-page instructions are available from the au­
thors. Data and results of further analyses are also 
available. 

opportunity to ask questions.6 During the ex­
periment, subjects were not allowed to com­
municate with each other. Before round 1 
began, all subjects were publicly informed of 
the relevant number range [L, H], and the 
value of p. Then round 1 began. Subjects 
chose a number and wrote it on a slip of paper. 
An administrator then collected the responses 
of all subjects, calculated the average number, 
and publicly announced the average and the 
target number (p times the average). Payoffs 
were then privately announced to each subject 

6 We did not adhere strictly to the standard protocol in 
experimental economics, in which subjects are only al­
lowed to ask questions privately, and questions of general 
interest are repeated publicly by the experimenter. This 
protocol prevents subjects from communicating informa­
tion ad lib which can have powerful effects and inhibit 
proper replication. ( For example, if a subject asked: "Isn't 
the solution for everyone to choose O?'' publicly, that 
question could have a large effect which would be uncon­
trolled across treatments.) While allowing public ques­
tions was a mistake, there was only one such question 
(asking whether we were going to announce the target 
number) and it does not seem to have any perceptible 
influence ( comparing our results with Nagel's, for 
example). 
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TABLE 1-THE EXPERIMENTAL DESIGN 

3 

Finite ----> Infinite 
FT(l.3, 3)----> /T(0.7, 3) 

(7 groups) 
FT(l.1, 3)----> /T(0.9, 3) 

(7 groups) 

Infinite --> Finite 
/T(0.7, 3)----> FT(l.3, 3) 

(7 groups) 
IT(0.9, 3)----> FT(l.1, 3) 

(6 groups) 

Group size 

7 

FT(l.3, 7)----> IT(0.7, 7) 
(7 groups) 

FT(l.I, 7)----> /T(0.9, 7) 
(7 groups) 

/T(0.7, 7)----> FT(l.3, 7) 
(7 groups) 

IT(0.9, 7)-> FT(l.I, 7) 
(7 groups) 

for that round [the winner(s) received a pos­
itive payoff; all others received $0] .7 Then the 
next round began. All rounds were identical, 
and the game lasted for 10 rounds. 8 After the 
tenth round was completed, subjects partici­
pated in a second 10-round game in the same 
group, but with different parameter values ( see 
Table 1). After this second 10 rounds, subjects 
summed their earnings over all 20 rounds, and 
were paid their earnings in cash. Experiments 
lasted approximately 40 minutes. The value of 
1r was 0.5 Singapore dollars, so subjects 

7 Only the average and target were announced publicly. 
Payoffs to each subject were told to them privately. An 
alternative design is to withhold payoff info1mation en­
tirely. The potential problem with telling subjects their 
payoffs is that wealth effects alter incentives ( which may, 
for example, contribute to the surprising outlying 
"spoiler" responses of 100). In Section IV we point out 
that there is no systematic evidence that these spoiler 
choices came from subjects who were satiated in money 
from winning repeatedly. Furthermore, one reason for pri­
vately informing subjects of their payoffs is that some 
learning models assume players know their own payoff 
history and only reinforce choices that they pick, and we 
wanted to generate data that could be used to test these 
models. If they were only told the target number, but not 
the payoff from the number they chose, these models 
would not apply and could not be tested. 

8 Each subject played the game with the same group 
members for all 10 rounds. Since the game was constant 
sum, there was no reason for subjects to develop reputa­
tion or tacitly collude to increase overall payoffs. 

earned on average 10.00 Singapore dollars 
(about 7.00 U.S. dollars at that time).9 

IV. Basic Results 

This section summarizes basic results. Later 
sections report more refined structural esti­
mates of the number of levels of iterated dom­
inance and iterated best response subject use. 

RESULT 1: First-period choices are far 
from equilibrium, and centered near the inter­
val midpoint. Choices converge toward the 
equilibrium point over time. 

Figures 2A-H show histograms of the fre­
quencies of choices by subjects in each of the 
8 IT conditions. Only 2.2 percent of the sub­
jects chose the equilibrium in the first period. 
Most first-period distributions are sprinkled 
around the interval midpoint. Choices con­
verge toward the equilibrium point. 

There are fewer visible differences across 
FT conditions so the 8 FT conditions are col­
lapsed into two histograms in Figures 3A-B, 
aggregating across 3- and 7-person-groups. 
The first-period distributions are also sprinkled 
around the interval midpoint, but choices con­
verge more rapidly than in IT games across 
periods. About half the choices are exactly at 
the equilibrium of 200. 

Table 2 summarizes the degrees of iterated 
dominance suggested by number choices. The 
table has four panels, one for each value of p, 
adding 3- and 7-person groups and experience 

9 The standard deviations of payoffs are 3.22 for IT(p, 
7), 2.48 for FT(p, 7), 2.12 for IT(p, 3), and 1.95 for 
FT(p, 3). If subjects are equally skilled, the theoretical 
standard deviations are 3.89 (n = 7) and 2.24 (n = 3). 
Note that there is less variation in actual payoffs than pre­
dicted by the equal-skill benchmark. Most of the differ­
ence is due to the fact that subjects shared the prize in the 
event of a tie. Simulating the standard deviation of actual 
payoffs that would result if the whole prize were given to 
a randomly chosen subject in the event of a tie yields stan­
dard deviations that are extremely close to the equal-skill 
benchmark. Note that this finding casts some doubt on 
models in which players have persistent differences in 
skill, effort, or reasoning ability, etc., that create payoff 
differences. Or the standard deviation of payoffs may not 
be sensitive enough to detect individual differences. 
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levels together for each p. Each row reports 
the number of choices violating each level of 
iterated dominance ( in conjunction with lower 
levels) . The last row of each panel reports the 
number of players who chose the unique equi­
librium prediction. 1° For example, in condition 
FT( 1.3, n) in rounds 1-2, 44 responses out of 
280 (15.7 percent) exhibited zero levels of it­
erated dominance because they fall in the in­
terval [ 100, 130), 102 responses ( 36.4 
percent) exhibited only one level of iterated 
dominance by choosing in [ 130, 169), and so 
forth. 

Table 2 shows that substantial numbers of 
subjects exhibit each of the lowest levels of 
iterated dominance ( and consequently, very 
few choose the equilibrium), particularly in 
earlier rounds. ( Later rounds are consistent 
with higher levels of iterated dominance, but 
that is probably due to learning rather than 

10 Levels of rationality higher than the threshold are 
indistinguishable, and pooled in "Equilibrium Play." 

more sophisticated iterated reasoning per se. ) 
Section V below gives more precise estimates. 

RESULT 2: On average, clwices are closer to 
the equilibrium point for games with finite 
threslwlds, and for games with p farther from l. 

Comparing the Figure 2 and 3 histograms 
shows that after the first round, choices are 
further from equilibrium in the infinite­
threshold games ( Figure 2 ) , compared to 
finite-threshold games ( Figure 3 ) . 11 The 
overall frequencies of equilibrium play are 
highly significantly different in FT and IT 
games (51.6 percent vs. 4.9 percent, x2 = 
1493,p < 0.001). 

In addition, more choices are at equilibrium 
in games with p farther from zero (p = 1.3 vs. 
p = 1.1, x2 = 171.6,p < 0.001; andp = 0.7 
vs. p = 0.9, x2 = 5.9,p < 0.05). Analyses of 

11 Note that the tall bars in the back comer of Figures 
28 and 2D represent frequent choices of 1-10, not zero. 



958 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 1998 

: 0.7 

" 0 
.c 
0 

0 
C 
0 
'c 
0 a. 
2 
a. 

C) 

~ 

Round 

C) 

~ 
C) 
<0 

Choices 

FIGURE 38. CHOICES OVER ROUND IN FT GAMES PLAYED BY 7-PERSON GROUPS 

variance (ANOVA) using each group's mean 
choice for the first or last five rounds also 
shows a strong effect of p, at significance lev­
els from 0.000 to 0.08, for each of the two 
groups of rounds ( 1-5 or 6-10) and threshold 
levels. For example, means for p = 0. 7 are 
lower than means for p = 0.9 for the first five 
rounds ( 31.57 vs. 44.66) and the last five 
rounds (17.76 vs. 27.83). 

RESULT 3: Choices are closer to equilib­
rium for large ( 7-person) groups than for 
small ( 3-person) groups. 

Figures 3A-B illustrate the typical effect of 
group size: Larger groups ( Figure 3B) choose 
higher numbers at the start, and converge to 
equilibrium more quickly than the small 
groups in the same condition (Figure 3A). 
The quicker convergence in large groups is 
also evident in IT games ( e.g., Figures 2A and 
2E). Across rounds, the proportions of equi­
librium play by subjects in 3- and 7-person 

groups are significantly different in finite­
threshold games (39.6 percent vs. 56.6 per­
cent, x2 = 67.3, p < 0.001) and marginally 
significant in infinite-threshold games ( 3. 7 
percent vs. 5.4 percent, x2 = 3.4, p < 0.10). 
Means of larger groups also start closer to the 
equilibrium for the Fl' games and, for both 
kinds of games, lie closer to the equilibrium 
in every round. ANOV As on group means ag­
gregated over rounds 1 - 5 or 6- 10 show 
highly significant differences across group 
sizes in comparisons for all values of p and 
experience levels (p-values range from 0.003 
to 0.014). 

The group-size effect goes in a surprising 
direction because each member of a small 
group has a larger influence on the mean and 
should choose closer to equilibrium if he/ she 
takes account of this. For example, if p = 0.7 
and you think others will choose an average 
of 50, you should choose the solution to C = 
0.7· (C + (n - 1)·50)/n, which is 30.4 if 
n = 3 and 33.3 if n = 7. But large groups 
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TABLE 2-FREQUENCIES OF LEVELS OF ITERATED DOMINANCE OVER ROUND IN FT AND IT GAMES 
WITH VAR YING p-V ALU ES 

Games/Round 1-2 3-4 

FT(l.3, n) 
R(O) 44 27 
R(I) 102 18 
R(2) 101 70 
Equilibrium Play 33 165 

FT(l.I, n) 
R(O) 12 9 
R(l) 9 2 
R(2) 14 4 
R(3) 27 7 
R(4) 96 24 
R(5) 65 59 
R(6)-R(IO) 42 103 
Equilibrium Play 9 66 

IT(0.1, n) 
R(O) 42 11 
R(l) 65 21 
R(2) 53 30 
R(3) 35 53 
R(4) 39 50 
R(5) 13 43 
R(6)-R(10) 25 71 
>R(ll) 2 1 
Equilibrium Play 6 0 

IT(0.9, n) 
R(O) 12 3 
R(l) 7 2 
R(2) 23 4 
R(3) 17 12 
R(4) 33 18 
R(5) 14 21 
R(6)-R(IO) 117 142 
>R(l 1) 47 69 
Equilibrium Play 4 3 

choose lower numbers. Perhaps, as a referee 
suggested, adjusting for n takes extra thought 
which limits the number of steps of iterated 
reasoning subjects do. This represents an in­
teresting puzzle for future research. 

RESULT 4: Choices by experienced subjects 
are no different than choices by inexperienced 
subjects in the first round, but converge faster 
to equilibrium. 

We define experience to be cross-game ex­
perience, previous play with a different p­
beauty contest (e.g., experience with an IT 
game for FT-game players, or vice versa) . 
Obviously this kind of experience may differ 

5-6 7-8 9-10 Total 

14 14 11 110 
12 10 4 146 
49 22 7 249 

205 234 258 895 

10 7 13 51 
4 2 3 20 
2 1 1 22 
5 4 2 45 
1 6 4 131 

13 7 11 155 
118 76 72 411 
121 171 168 535 

13 16 15 97 
5 7 3 101 

14 8 12 117 
37 21 21 167 
44 47 41 221 
35 36 32 159 

108 102 91 397 
12 18 25 58 
12 25 40 83 

4 2 7 28 
1 0 1 11 
3 2 1 33 
1 0 2 32 

10 5 3 69 
12 6 3 56 

100 80 60 499 
136 162 175 589 

7 17 22 53 

from repeated experience with the same 
game, but our paper does not explore this dif­
ference. Figures 2A-B illustrate the effects 
of experience in IT games. Experienced sub­
jects choose similar numbers to inexperi­
enced subjects in the first round, but converge 
much faster. 

Two types of learning transfer by experi­
enced subjects can be distinguished: ''imme­
diate transfer'' ( if choices are closer to 
equilibrium in the first round), and ''structural 
transfer'' if convergence is faster across the 10 
rounds. 

In general, there is little immediate transfer 
because experienced subjects' choices in the 
first round are not much different than the 
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choices of inexperienced subjects. 12 But there 
is some evidence of structural transfer because 
ANOV As show that group means of experi­
enced subjects are closer to equilibrium in the 
first five rounds (F = 4.60, p < 0.04) and 
about the same in the last five rounds (F ~cc 

0.07, p < 0.80) for FT games, and closer to 
equilibrium in IT games (F = 2.62, p < 0.11, 
and F = 15.67, p < 0.001). And overall, the 
proportion of equilibrium play is significantly 
higher for experienced subjects (x 2 = 28.2 
(FT) and x2 = 125.6 (IT), bothp < 0.001). 

Finally, a minor but eye-catching feature of 
the data evident in Figures 2-3 is the occa­
sional choice of extreme numbers like l 00. 
These ''spoiler'' choices occur 2.5 percent of 
the time and rarely occur more than once per 
subject. Spoilers tend to follow previous 
losses, so they are probably due to frustration 
or to misguided attempts to win by single­
handedly raising the mean dramatically. Spoil­
ers are even more rare in games where the 
target number depends on the median instead 
of the mean (Camerer et al., 1997; John Duffy 
and Nagel, 1997) . The analyses below ex­
clude spoilers ( an alternative is to include a 
proportion of ''level - l '' types as in Stahl, 
1996a). Including them makes little substan­
tive difference ( see Ho et al., 1996). 

V. Further Results: Levels 
of Iterated Dominance 

The figures in Table 2 use the simplest 
method for approximating the level of iterated 
dominance revealed by choices: Count the 
number of choices in each of the intervals [ 0, 
pk+ 1 • l 00] ( or the corresponding intervals 
when p > 1 ) . For example, since 4.4 percent 
of the subjects chose numbers in ( 90, l 00] in 
IT( 0. 9, n) games in rounds 1-2, then we can 
conclude that at least 4.4 percent violated 
dominance. Since 2.6 percent of the subjects 
chose numbers in ( 81, 90], we can conclude 

"The only exception is the p = 0.7 case where expe­
rienced subjects are further from the equilibrium point, 
exhibiting "negative transfer." For p = 0.7. t = -2.14, 
p < 0.01 for n = 7, and t = -2.15, p < 0.01 for n = 3. 

that at least 2.6 percent of the subjects violate 
the conjunction of dominance, and one level 
of iterated dominance. (Or put differently, we 
can be sure these subjects are not performing 
two or more levels of iterated dominance.) 

These numbers are simply a lower bound on 
the rates at which various levels of rationality 
are violated. The bounds cannot be tightened 
without using some method for distinguishing 
how many of the 2.6 percent subjects in the in­
terval ( 81, 90] , for example, are violating dom­
inance and how many are obeying dominance 
but violating one-step iterated dominance. 

The method we use posits a simple struc­
tural model of how dominance-violating level-
0 players choose, assume that level-I players 
obey dominance but believe that others are 
level-0 players, etc. This method was first used 
by Stahl and Wilson ( 1994, 1995) .11 

Begin with the assumption that level-0 play­
ers choose numbers randomly from a truncated 
normal density with meanµ and variance a 2 • 14 

Level- L players are assumed to believe that all 
other players ( besides themselves) choose 
from the level L - 1 density BL _ 1 (x). Believ­
ing this, they mentally simulate n - I draws 
from the level L - 1 distribution and compute 
the average of those draws. (For reasons we 
explain below, assume they allow these draws 
to be correlated with correlation p.) Then they 
choose p times the average ( including their 
own choice), giving a density that satisfies 

where Bi- 1 is the k-th draw from random 
variable BL- 1 • This gives a random variable 
for level- L players' choice 

13 While having only integer-level types is restrictive, 
Stahl ( 1996b) reported that allowing noninteger-level 
types does not improve fit of a rule learning model to 
Nagel's original data. 

14 We also tried a uniform distribution over all possible 
number choices, but the uniform almost always fit worse 
than the normal. 
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Notice that since the level-0 density is truncated 
at 100 (for the p < I case), the level-I density 
is automatically truncated at [p · ( n - I ) / ( n -
p) · 100]; so level-I players never violate dom­
inance. Similarly, since the level-2 density is 
truncated at [p·(n - 1)/(n - p)]2· 100, level-
2 types never violate dominance and never vi­
olate one step of iterated dominance. 15 

It is easy to show that the mean and vari­
ance of BL obey the following recursive 
relationships: 

(3) 

(4) 

p·(n - 1) 
E(Bd = ---·E(BL-1), 

n-p 

p2 [ Var(Bd = 2 • (n - 1) + 2p 
(n - p) 

(n - l)·(n - 2)] 
· 2 ·Var(BL-1). 

An important feature of this model is that if 
p < I, as the level L rises, the variance in the 
distribution of choices BL falls 16 [because the 
term p 2 I ( n - p) 2 • [ ( n - I ) + 2p · ( n - I ) · 
(n - 2 )/2] is less than one]. The variance 
falls because the players are assumed to take 
an average of n - I other players' choices, 
which will have less variance than an individ­
ual choice. This implies that the level- I play­
ers' density will be rather narrow, the level-2 
players' density will be narrower still, and so 
forth. Allowing higher-level players to per-

15 One criticism of this method is that it assumes all 
players think they are ''smarter'' ( or reason more deeply) 
than others. While this is logically impossible, it is con­
sistent with a large body of psychological evidence show­
ing widespread overconfidence about relative ability (see, 
e.g., Camerer and Dan Lovallo, 1996). An alternative ap­
proach includes some degree of "self-consciousness": 
Level-L types to believe that a fraction wi of others are 
level-L types like themselves, then perhaps impose ( or 
test) the rational expectations assumption that the per­
ceived Wi is close to the econometrician's best estimate, 
given the data (as in McKelvey and Palfrey, 1992, 1995, 
1996). 

16 In general, the same thing can be said for the case if 
p > 1 as long asp is small. However, if pis close to 1, 
then one can have Var(Bi) > Var(Bi- 1 ). 

ceive a nonzero correlation p among ( simu­
lated) choices by lower-level players slows 
down the rate of reduction in Var(Bd with L, 
and turns out to fit the data much better than 
the restriction p = 0. 

The assumptions above give a density of 
first-period choices by each of the level 
types. The crucial problem is how to "as­
sign" a level type to players who choose 
numbers x; that different types might 
choose. Take the p = 0.7 case as a clarifying 
example. Suppose a player chooses 63. This 
choice could come from a level-0 player or 
from a level- I player. We assign this choice 
to a level-0 type iff a level-0 type is more 
likely to have made that choice than a level-
1 type [i.e., iff B0 (63) > B1(63)]. Note 
that this method seems, at first blush, to be 
biased in favor of finding higher-level 
types: Since the higher-level types always 
choose closer and closer to the equilibrium, 
a person who chooses a low number ran­
domly ( a student who picks her age in 
years, for example) will seem to be mis­
classified as a high-level type. This is not 
true, however, because the variance of the 
high-type distributions shrinks ( sometimes 
dramatically, if the group size is large). As 
a result, depending on the parameter values, 
only players who choose in a narrow range 
of low numbers will be classified as high 
types. [Note that a level-2 type would never 
pick 63, i.e., B2 ( 63) = 0, and similarly for 
higher-level types.] 

Put more formally, assume that a fraction 
wL of the players are of level L, and wf is the 
fraction of choices assigned to Lin each level­
of-dominance interval or "bin" b. The total 
proportion of level-L types is wL = Lt~o 
Nb· w UN ( where Lm is the maximum level es­
timated [ 3 in our analyses] and Nb is the num­
ber of observations in bin b). Define the 
observations x in bin b by those x which satisfy 
[p(n - 1)/(n - p)]b+ 1 • 100 < x ~ [p(n -
1)/(n - p)]b· 100. (There are a total of Lm + 
1 bins.) For observations in bin b, the density 
function is 

b 

(5) B(x) = I, wf · Bdx). 
L=O 
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Of course, Lho wL = I. Then the log­
likelihood of observing a sample (x; , i = 
1, ... , N) is: 

N 

L = 0, ... ,L,,,) = L Log(B(x;) ). 
i= 1 

The objective is to maximize the log­
likelihood U 1 by choosing µ 1 , a,, p, wt; b = 
0, ... , Lm, L = 0, ... , Lm. 

The left columns of Table 3 report 
maximum-likelihood parameter estimates for 
IT and FT games, using only first-round data. 

In both games the estimates of wL show sub­
stantial proportions, at least 12 percent, in all 
level categories from 0-3. (Higher-level types 
are included in level 3) . The median level is 
two for IT games and one for FT games. The 
IT games also have a larger fraction of high­
level types than FT games. The estimated cor­
relation p is 1.00 in both cases. This implies 
that higher-level subjects are choosing much 
more variable numbers than would be pre­
dicted if they were simply best responding to 
an average of independent choices by others. 
Their behavior is consistent with players 
choosing against a ''representative-agent 
player'' or composite, neglecting variation in 
the sample mean. 17 

The rightmost columns of Table 3 show pa­
rameter estimates using Nagel's ( 1995) data 
with p = '12 and p = 213 in IT games. Estimates 

17 The correlation p might be a game-theoretic incar­
nation of the "representativeness" heuristic in statistical 
judgment (see, for example, Daniel Kahneman and Amos 
Tversky, 1982). People using representativeness judge 
likelihoods of samples by how well they represent a pop­
ulation or process. Representativeness inadvertently ne­
glects other statistical properties like variation-in this 
case, higher-level players neglect the fact that independent 
draws tighten the variance of the average they best respond 
to. A related phenomenon has been observed in experi­
ments on "weak link" coordination games, in which a 
player's payoff depends upon his action and the minimum 
action chosen by others. The densities of first-round 
choices in these games is strikingly similar across groups 
of different sizes ( even though the chance of getting a low 
minimum rises sharply as the group grows), as if players 
represent all other players as a single composite. 

of normalized level percentages ( from her Fig­
ure 2) are shown in parentheses. Our estimates 
using her data suggest more level O's and 
fewer level 2's and 3's than in our data. 

Our method for estimating the proportions 
of level types and Nagel's method give some­
what different results. Our estimates suggest 
more level O's and fewer level 2's and 3's than 
her estimates. Her method posits an n -step rea­
soning process which begins from a reference 
point, 50, for the numbers reported in Table 3. 
Our method estimates this starting point, in­
stead, giving a level-0 distribution mean of 
µ = 35.53 for p = 1/ 2 and µ = 52.23 for p = 
2/3• She then tests the theory by counting the 
frequencies of choices in number intervals cor­
responding to various reasoning levels. Our 
structural method, in contrast, uses all the data 
and assigns each observation to some level of 
reasoning (based on relative likelihood), giv­
ing a more complete picture. For example, her 
method does not classify the 20 percent of 
subjects who choose greater than 50 in the 
first round in the p = 213 game ( normalizing 
the percentages she reported spreads the 20 
percent evenly over level categories). Our 
method mostly classifies these 20 percent as 
level O's and consequently, we estimate a 
much higher level-0 proportion ( our 28 per­
cent vs. her 13 percent). Also, by estimating 
a lower level-0 mean than Nagel assumed 
(35.53 vs. 50) in the p = 1/ 2 case, we count 
more players as level-0 types. 

VI. Further Results: Levels of Iterated 
Best Response 

In this section we estimate a class of learn­
ing models to understand the dynamic process 
by which choices change over rounds. This 
class of learning models posits various levels 
of "iterated best response" and applies the 
same basic ideas in the last section of levels of 
iterated dominance underlying first-round 
choices, but applies it to learning over rounds. 

In the model, level-0 learners simply choose 
a weighted sum of target numbers in previous 
rounds. Level-1 learners assume all others are 
level-0 learners and best respond to anticipated 
choices by level-0 learners. Level-2 learners 
best respond to level- I learners, and so forth. 
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TABLE 3-MAXIMUM-LIKELIHOOD ESTIMATES AND LOG-LIKELIHOODS FOR LEVELS 
OF ITERATED DOMINANCE (FIRST-ROUND DATA ONLY) 

Out data 

Parameter 
(groups of 3 or 7) 

estimates IT(p, n) FT(p, n) 

Wo 15.93 21.72 

w, 20.74 31.46 

W2 13.53 12.73 

w, 49.50 34.08 

µ 70.13 100.50 

()" 28.28 26.89 

p 1.00 1.00 

-LL 1128.29 1057.28 

These levels capture the distinction between 
adaptive learning (responding only to previ­
ous observations) and sophisticated learning 
(best responding to anticipated play by others) 
which is discussed, among others, by Milgrom 
and Roberts ( 1991 ) . Level-0 learners are 
adaptive; higher levels are sophisticated. 

To express the model formally, denote sub­
jects' choices at round t E { 1, 2, ... , 10} by 
x 1(t), x2 (t), ... , Xn(t). The target number at 
round t, w(t) = p·x(t) = p· (xi (t) + x2(t) + 
... + Xn (t)) In. Suppose a subject of level L 
forms a guess G{,(t) about what another sub­
ject j will choose. Given G{,(t), the subject 
chooses a best response to maximize his or her 
expected payoff. That is, the subject will 
choose BL(t) such that 

n 

B[,(t) + L G{(t) 
(7) B[,(t)=p· J-2 

n 

Or 

(8) 
p n . 

B[,(t) = --· L G{,(t), 
n - p J-2 

The guess of level-L subjects at time tis as­
sumed to be the best response of level L - 1 's 
(hence the term "iterated best response"), 
i.e., 

(9) 

Nagel's data 
(groups of 16-18) 

IT(0.5, n) IT(2/3, n) 

45.83 (23.94) 28.36 (13.11) 

37 .50 (29 .58) 34.33 ( 44.26) 

16.67 (40.84) 37.31 (39.34) 

0.00 (5.63) 0.00 (3.28) 

35.53 (50.00) 52.23 (50.00) 

22.70 14.72 

0.24 1.00 

168.48 243.95 

The level-0 subject} is assumed 18 to choose 
randomly from a normal density with mean 
µ( t) equal to a weighted sum of the R previous 
target numbers ( where R corresponds to level 
of recall), and variance er 2( t). That is, 

R 

(10) µ(t) = I, f3s·w(t - s). 
s=l 

The parameters f3s capture the influence of past 
target numbers on the current choice. In ad­
dition, the correlation between subject choices 
in any level is p (for the same reasons given 
in the previous section). The standard devia­
tion o-( t) is allowed to grow or decline as 
follows: 

(11) a(t) = a· er'. 

Assume that a fraction a[, of the players are 
level-L best responders, and compose a 

18 In an earlier draft we assumed level-0 types chose a 
weighted sum of previous target numbers and their own 
previous choices. However, the coefficients on previous 
choices were rarely significant so those terms were 
dropped from specification ( 10). Our earlier analysis also 
allowed only level-I types and referees wisely coaxed us 
to do this more general analysis. 
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mixture of the underlying densities to form an 
overall density of number choices, B. Then 
B(x) is given by: 

Lm 
(12) B(x) = L, aL-BL(x), 

L=O 

where Lm is the highest level allowed (re­
stricted to three in our estimates) . 

When Lm = 1, level-0 learners choose from 
a normal density with mean given by ( 10) 
above and level-1 learners choose from a nor­
mal density with mean given by p·(n - 1)/ 
(n - p). [L:= 1 fJs·w(t - s)]. This implies 
that when pis further from 1, and n is small, 
choices will be closer to equilibrium [because 
the fraction p·(n - 1)/(n - p) is less 
(greater) than one for IT ( FT) games]. Our 
experiment was designed to test these 
predictions. 

In addition, variants of three familiar special 
cases are nested in the general model. These are 
Cournot dynamics ( Antoine Augustin Cournot, 
1838), a variant of fictitious play ( George 
Brown, 1951), and a hybrid case in which pre­
vious observations are given geometrically de­
clining weight. 

1. Modified Fictitious Play. -Fictitious play 
learning rules assume that the probability 
of another player's future choice is best 
predicted by the empirical frequency of that 
choice in previous plays. A plausible vari­
ant of this applied to the p-beauty contest 
game is that subjects are all level-1 learners 
who expect all others to choose an equally 
weighted average of the numbers they 
chose in the past. Modified fictitious play 
can thus be tested by restricting all types to 
be level 1 (a1 = 1), and fJ1 = ··· =(JR= 
(J. ( A further restriction is (J = 1 IR but, as 
we shall see, that is strongly rejected.) 

2. Geometric Weighted Average. -Fictitious 
play weights all previous observations 
equally. A more plausible model assigns geo­
metrically decreasing weights to older obser­
vations, then averages them. The declining 
weight model will fit learning better if subjects 
realize that choices come from a nonstationary 
distribution ( or others are learning too), and 
therefore give more recent observations more 

weight. In this model, all types are level 1 
(a1 = 1) and fJs = (Js. 

3. Cournot Dynamics. -Cournot best­
response dynamics assumes that players 
guess others will repeat their most previous 
choices-i.e., all types are level 1 (a 1 = 
1) and (] 1 = 1, (]2, ... , (JR= 0. 

The log-likelihood of observing a sample of 
N subjects over a total of 10 periods is given 
by: 

N IQ 

(13) LLz= L l Log( B(x; (s))). 
i= 1 s= 1 

Some subtle issues arise in implementing the 
estimation. The standard method in estimating 
models with R lags is to exclude the first R 
rounds of data. Since we estimate models with 
R up to 3, this means discarding 30 percent of 
the data. We fix initial conditions of the model 
by estimating a hypothetical ''initial target num­
ber'' w(O). Level-0 learners are assumed to act 
as if they had observed the target number w(O), 
before making their first-round choice. Contin­
uing along the same lines, to estimate the model 
with R = 3 we estimate hypothetical target num­
bers w(-1) and w(-2). This method fixes the 
initial conditions, uses all the data, and uses the 
same data for different R values so they can be 
fairly compared. 

There is also a heteroskedasticity problem 
in the data because the variance of choices 
generally falls over time. The likelihood func­
tion is a product of many normal densities. 
Since normal densities include a term which is 
the reciprocal of the standard deviation, den­
sities become much larger when variances fall. 
As a result, later-period data will have a large 
influence on the coefficient estimates. To cor­
rect for this, we transformed the choices X; ( t) 
at time t by subtracting the sample mean 
(m(t)) and dividing by the sample standard 
deviation ( s ( t)), giving transformed choices 
of x! (t) = (x; (t) - m(t) )I s(t). If the sample 
size is large, the transformed choices at every 
period will have a standard normal density .19 

19 We also tried transforming the data by multiplying 
the choices in period t by 50/ m( t - 1) in the IT games 
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The transformed data has a predicted mean of 
(µ(t) - m(t))ls(t) and standard deviation of 
a(t)/ s(t). All results reported below are based 
on the transformed data. 

Table 4 reports parameter estimates for re­
call lengths R = 1, 2 and 3.20 Generally R = 
3 fits best, as indicated by x2 statistics in the 
bottom rows comparing each model with the 
model with one less lag, though the improve­
ment of fit over the one-period-lag R = 1 
model is modest. 

The estimates of learner-level proportions 
aL show that in both IT and FT games, a sub­
stantial portion of the players are level- I best 
responders. Specifically, in IT games, about 70 
percent of the players are level- I learners and 
the remaining 30 percent are level O's. In FT 
games, there are 11 percent, 68 percent, and 
21 percent level O's, l's, and 2's, respectively. 
All models restricted to only one type are 
strongly rejected in favor of the many-type 
model. 21 

Estimates of the hypothetical initial target 
numbers w(O) are quite plausible, around 45 
for IT games and 144 for FT games. A nega­
tive y suggests that standard deviation de­
clines over the periods, which is consistent 
with the observed data. The estimated initial 
standard deviations of level-0 choices, fi, are 
reasonable too. 

The estimates of /J 1 are above one for IT 
games and below one for FT games, 22 which 

( see Stahl, 1996a) and by reflecting choices around 100 
and multiplying them by 50/(200 - m(t - 1)) in the FT 
games. These transformations tended to "overscale" the 
data so that the variances of the transformed data in the 
later periods became much higher than those of the initial 
periods, when the later-period data are close to 
equilibrium. 

20 To check for robustness of transformation, we also 
estimated the parameters using the original data. The pro­
portions of levels of iterated best response were essentially 
the same in every combination except for R = 3 in the IT 
games. In that combination, the proportions of levels 0 
and 1 are 28.5 percent and 71.5 percent, respectively. 

21 The x 2 statistics (twice the difference in log­
Iikelihood) are 471 and 922 (a0 = 1 only), 1002 and 858 
(a, = 1 ), 1594 and 1012 (a2 = 1 ), and 2336 and 1124 
( a 3 = 1) for IT and FT games, respectively. 

22 The discrepancy in estimates /J, shows that parame­
ters for IT and FT learning differ ( the differing aL esti­
mates show this as well), so it can be rejected as a general 
theory of learning with invariant parameters. 

may seem odd since it implies that level-0 learn­
ers are picking numbers that are further from 
equilibrium than the previous target number. But 
keep in mind that level- I learners choose a frac­
tion p · ( n - 1)/(n - p) of their guess about the 
average level-0 choice. When this fraction is 
multiplied by the typical /J 1 , the product is usu­
ally around one or lower ( for IT games), which 
captures the idea that level- I players choose 
numbers around or lower than l?revious target 
numbers. If the estimates of /3 1 were much 
lower, that would force the level- I choices to be 
"too small" to fit the data well. 

We also estimated the learning-model pa­
rameters separately for each of the eight treat­
ment combinations for both IT and FT 
games.23 Parameter estimates are substantially 
different for different values of p as well as n 
and levels of experience, but not in an inter­
esting way. The Cournot, fictitious play, and 
geometrically declining weight restrictions on 
f3s are all strongly rejected.24 This is not sur­
prising given the estimates in Table 4, because 
/J 1 is generally different from one and /32 as 
well as /33 are usually nonzero ( rejecting 
Cournot). In addition, /J's are different from 
each other and do not grow or decline geo­
metrically ( rejecting the other two theories). 

Na gel ( 1996) reports informal tests of a 
"learning direction" theory. In learning direc­
tion theory, players are assumed to change their 
strategies in the direction of ex post best re­
sponses. Our working paper reports tests of two 
versions of this theory. One version is set­
theoretic, and predicts the direction of change 
correctly 60 percent of the time. Another ver­
sion, which is statistically comparable to the it­
erated best-response model, fits worse than the 
latter model ( adjusted for degrees of freedom). 

Stahl ( 1996a) proposes a kind of rein­
forcement learning model in which decision 
rules are reinforced rather than specific 

23 The eight analyses are not reported for the sake of 
brevity. 

24 For all data, using R = 3, the x 2 statistics for 
Cournot, fictitious play, and geometric weights are 1252, 
1780, and 1558 for IT games, and 1086, 1038, and 927 
for FT games. Note that Cournot fits much worse than the 
R = 1 version because it forces fJ, = 1. 
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TABLE 4-MAX[MUM-LIKELIHOOD ESTIMATES AND Loo-LIKELIHOODS 

FOR THE ITERATED BEST-RESPONSE LEARNING MODELS 

Game 
parameter estimates R=l 

IT(p, n) 
ao 0.2878 
a, 0.7122 
a2 0.0000 
a3 0.0000 

/3, 0.962 
/32 
{33 

w(O) 50.97 
w(-1) 
w(-2) 

a 38.66 
'Y -0.118 
p 0.000 

LL -2317.94 
x2 

FT(p, n) 
ao 0.1185 
a, 0.6771 
a2 0.2044 
a3 0.0000 

/3, l.027 
/32 
{33 

w(O) 149.08 
w(-1) 
w(-2) 

a 30.52 
'Y -0.012 
p 0.000 

LL -442.75 
x2 

strategies. In his rule-learning approach, sub­
jects choose one of K decision rules, where 
decision rule k chooses a number equal to 
pk· w ( t - I ) after observing a previous target 
number w ( t - I ) . Rules are reinforced by 
their expected payoff. Reinforcing rules, 
rather than specific numbers, does reinforce 
reasoning the ''best'' number of steps ahead. 
Fitting this model to Nagel's data, and using 

Infinite-threshold (N = 2711 ); 
Finite-threshold (N = 2668) 

Recall period 

R=2 R=3 

0.3132 0.2850 
0.6868 0.7150 
0.0000 0.0000 
0.0000 0.0000 

1.464 l.414 
-0.464 0.197 

-0.573 

45.27 44.87 
37.03 48.61 

41.85 

30.122 41.08 
-0.133 -0.125 

0.000 0.000 

-2242.49 -2098.70 
150.90 287.58 

0.1195 0.1135 
0.6801 0.6771 
0.2004 0.2094 
0.0000 0.0000 

0.970 0.913 
0.060 0.059 

0.060 

148.13 143.657 
154.64 222.159 

224.626 

29.73 29.954 
-0.008 -0.008 

0.000 0.000 

-437.80 -435.02 
9.90 5.62 

several other free parameters, Stahl finds that 
initial propensities toward k between 0-2 are 
about equal, and in about half the sessions 
propensities move toward k = 2 over four pe­
riods. In addition, he rejects a variety of alter­
native models ( some nested, some not), 
including behavior reinforcement, forecasting 
of changes in the ratios of target numbers, and 
direction learning. 



VOL. 88 NO. 4 HO ET AL.: ITERATED REASONING IN "p-BEAUTY CONTESTS" 967 

Two differences between the first-period es­
timation in Table 3, and the iterated best­
response estimation in Table 4, are worth 
noting. First, our method estimates fewer high­
level types ( 2 or 3) in the learning model. 
Since the learning model uses information 
from many rounds, there may be a natural ten­
dency to classify players in mid-level types but 
we have not fully explored this possibility. 
(That is, if a player lurched from a level-0 type 
to a level-2 type across rounds, the data they 
generate might suggest existence of a level-1 
type.) Another possibility is that subjects sim­
ply do more steps of iterated reasoning when 
thinking about the first round than when de­
ciding how to react to experience. Second, the 
estimates of the perceived correlation between 
players' choices, p, are around 1 for estimated 
iterated dominance and around O for estimated 
iterated best response. This is because there is 
more dispersion in the first-round data; to ex­
plain the broad range of data requires that the 
higher-level type distributions not shrink in 
variance too much, which requires estimating 
p is large ( since distribution variance is in­
creasing in p). Over rounds, however, actual 
choice variance shrinks sop is "allowed" to 
go toward zero and the model can still fit the 
data. 

VII. Conclusion 

Our results show that choices reveal a lim­
ited number of steps of iterated dominance 
[ which could be taken as a sharp measure of 
the degree of bounded (mutual) rationality] . 

In the original work on these games, Nagel 
( 1995 ) reports an average initial choice 
around 36, which corresponds to about two 
levels of iterated dominance. Duffy and Nagel 
( 1997) basically replicated these patterns 
when the target number was the median, mean, 
or maximum chosen in a group. They find no 
substantial difference between mean and me­
dian games, and higher choices in the maxi­
mum game (see also Nagel, 1998). 

Our results extend these earlier findings in 
several ways. We draw a novel distinction be­
tween games with finite and infinite rationality 
thresholds and show that finite-threshold 

games converge more quickly and reliably.25 

Our use of a Stahl-Wilson-type structural 
model of levels of reasoning, estimated from 
first-round choices, gives a sharper character­
ization of levels of iterated dominance. Using 
different group sizes reveals a puzzling effect­
smaller groups learn slower. Playing different 
games sequentially shows some evidence of 
positive learning transfer. 

By using 10 rounds ( and collecting eight 
times as much data), we get a fuller picture of 
learning. The extra data enable reliable esti­
mates of learning models. Tests of various 
learning models suggest two stylized facts. 
First, the data are consistent with presence of 
adaptive (level-0) learners who simply re­
spond to experience, and sophisticated (level-
1 and higher) learners who best respond to 
lower-level learners. Thus, any learning model 
which hopes to describe well should include 
both types. Second, familiar learning models 
which are special cases of our approach, in­
cluding Cournot best-response dynamics 
( which looks back only one period) and fic­
titious play, are clearly rejected. 
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