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1 Introduction

Economic experiments on strategic games typically generate data that, in early rounds,
violate standard equilibrium predictions. However, subjects normally change their be-
havior over time in response to experience. The study of learning in games is about how
this behavioral change works empirically. This empirical investigation also has a theo-
retical payoff: If subjects’ behavior converges to an equilibrium, the underlying learning
model becomes a theory of equilibration. In games with multiple equilibria, this same
model can also serve as a theory of equilibrium selection, a long-standing challenge for

theorists.

There are two general approaches to studying learning: Population models and indi-

vidual models.

1. Population models make predictions about how the aggregate behavior in a pop-

ulation will change as a result of aggregate experience. For example, in replicator
dynamics, a population’s propensity to play a certain strategy will depend on its
‘fitness’ (payoff) relative to the mixture of strategies played previously (Friedman,
1991; Weibull, 1995). Models like this submerge differences in individual learning
paths.

2. Individual learning models allow each person to choose differently, depending on

the experiences each person has. For example, in Cournot dynamics, subjects form
a belief that other players will always repeat their most recent choice and best-
respond accordingly.! Since players are matched with different opponents, their
best responses vary across the population. Aggregate behavior in the population

can be obtained by summing individual paths of learning.

This chapter reviews three major approaches to individual learning in games: experience-

weighted attraction (EWA) learning, reinforcement learning, and belief learning (includ-

! Another class of learning models involve imitation, where players repeat observed strategies rather

than evaluate all strategies (e.g., Schlag, 1999).



2 These models of learning strive to explain, for every

ing Cournot and fictitious play).
choice in an experiment, how that choice arose from players’ previous behavior and ex-
perience. These models assume strategies have numerical evaluations, which are called
“attractions.” Learning rules are defined by how attractions are updated in response to
experience. Attractions are then mapped into predicted choice probabilities for strategies

using some well-known statistical rule (such as logit).

The three major approaches to learning assume players are adaptive (i.e., they respond
only to their own previous experience and ignore others’ payoff information) and that
their behavior is not sensitive to the way in which players are matched. Empirical
evidence suggests otherwise. There are subjects who can anticipate how others learn
and choose actions to influence others’ path of learning in order to benefit themselves.
So, we describe a generalization of these adaptive learning models to allow this kind
of sophisticated behavior. This generalized model assumes that there is a mixture of
adaptive learners and sophisticated players. An adaptive learner adjusts his behavior
according to one of the above learning rules. A sophisticated player does not learn
and rationally best-responds to his forecast of others’ learning behavior. This model
therefore allows “one-stop shopping” for investigating the various statistical comparisons

of learning and equilibrium models.

2 EWA Learning

Denote player ¢’s jth strategy by s{ and the other player(s)’ strategy by s*,. The strat-
egy actually chosen in period t is s;(t). Player i’s payoff for choosing 3{ in period t is
mi(sl,s%.(t)). Each strategy has a numerical evaluation at time ¢, called an attraction
Al(t). The model also has an experience weight, N(t). The variables N(t) and A?(t) be-
gin with prior values and are updated each period. The rule for updating attraction sets
Al(t) to be the sum of a depreciated, experience-weighted previous attraction A (¢ — 1)

plus the (weighted) payoff from period ¢, normalized by the updated experience weight:

2While these learning models are primarily designed for games, they have also been applied to predict
product choice at supermarkets. For instance, Ho and Chong (2003) use EWA learning to analyze 130,265

purchase incidences and show that it can predict product choice remarkably well.



¢-N(t—1)- Ag(a,t —D+[0+(1=9)- I(s{,si(t))] -ﬁi(sf,s_i(t)).

Al(t) = 0

(2.1)

where indicator variable I(z,y) is 1 if x = y and 0 otherwise. The experience weight is
updated by:

N({t)=p-N(t—1)+1. (2.2)
Let K = %. Then p = ¢ - (1 — k) and N(t) approaches the steady-state value of
W. If N(0) begins below this value, it steadily rises, capturing an increase in the
weight placed on previous attractions and a (relative) decrease in the impact of recent

observations, so that learning slows down.

Attractions are mapped into choice probabilities using a logit rule (other functional

forms fit about equally well; Camerer and Ho, 1998):

NAL()

Pl(t+1) = (2.3)
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where A is the payoff sensitivity parameter. The key parameters are J, ¢, and x (which

are generally assumed to be in the [0,1] interval).

The most important parameter, ¢, is the weight on foregone payoffs relative to re-
alized payoffs. It can be interpreted as a kind of “imagination” of foregone payoffs, or
responsiveness to foregone payoffs (when ¢ is larger players move more strongly toward
ex post best responses). We call it “consideration” of foregone payoffs. The weight on
foregone payoff ¢ is also an intuitive way to formalize the “learning direction” theory of
Selten and Stoecker (1986). Their theory consists of an appealing property of learning:
Subject move in the direction of ex-post best-response. Broad applicability of the theory
has been hindered by defining “direction” only in terms of numerical properties of ordered
strategies (e.g., choosing ‘higher prices’ if the ex-post best response is a higher price than

the chosen price). The parameter § defines the “direction” of learning set-theoretically



by shifting probability toward the set of strategies with higher payoffs than the chosen

ones.

The parameter ¢ is naturally interpreted as depreciation of past attractions, Ag (t—1).
In a game-theoretic context, ¢ will be affected by the degree to which players realize other
players are adapting, so that old observations on what others did become less and less

useful. So we can interpret ¢ as an index of (perceived) “change” in the environment.

The parameter x determines the growth rate of attractions, which in turn affects how
sharply players converge. When x = 0, the attractions are weighted averages of lagged
attractions and payoff reinforcements (with weights ¢ - N(t — 1)/(¢ - N(t — 1) + 1) and
1/(¢-N(t—1)41). When x = 1 and N(t) = 1, the attractions are cumulations of previous
reinforcements rather than averages (i.e., AJ(t) = ¢- Al(t — 1)+ [0+ (1 —0) - I(s], 5:(1))] -
mi(s],5_i(t))). In the logit model, the differences in strategy attractions determine their
choice probabilities. When &k is high the attractions can grow furthest apart over time,
making choice probabilities closer to zero and one. We therefore interpret x as an index

of “commitment”.

3 Reinforcement Learning

In cumulative reinforcement learning (Harley, 1981; Roth and Erev, 1995), strategies
have levels of attraction which are incremented by only received payoffs. The initial

reinforcement level of strategy j of player 4, s7, is R}(0). Reinforcements are updated as

follows:
Ri(t) = { ¢ - R;(t — D4 mi(s], s_4(t) if SJ = 5(t), 51)
¢-RI(t—1) if 5] # s;(t).
Using the indicator function, the two equations can be reduced to one:
Ri(t) = ¢ Ri(t — 1) + I(s], 5:(t)) - mi(s], 5-a(1)). (3.2)

This updating formula is a special case of the EWA rule, when § = 0, N(0) = 1, and

Kk=1.



In average reinforcement learning, updated attractions are averages of previous at-
tractions and received payoffs (e.g. Mookerjhee and Sopher, 1994, 1997; Erev and Roth,
1998). For example

Ri(t)=¢- RI(t = 1)+ (1= ¢) - I(s],5:(t)) - mi(s, s (t)). (3.3)
A little algebra shows that this updating formula is also a special case of the EWA

rule, when 6 = 0, N(0) = ﬁ,
cases of EWA learning, their predictive adequacy can be tested empirically by setting

and k = 0. Since the two reinforcement models are special

the appropriate EWA parameters to their restricted values and seeing how much fit is

compromised (adjusting, of course, for degrees of freedom).

4 Belief Learning

In belief-based models, adaptive players base their responses on beliefs formed by ob-
serving their opponents’ past plays. While there are many ways of forming beliefs, we
consider a fairly general “weighted fictitious play” model, which includes fictitious play
(Brown, 1951; Fudenberg and Levine, 1998) and Cournot best-response (Cournot, 1960)
as special cases. It corresponds to bayesian learning if players have a Dirichlet prior
belief.?

In weighted fictitious play, players begin with prior beliefs about what the other
players will do, which are expressed as ratios of strategy choice counts to the total

experience. Denote total experience by N(t) = 3, N*.(t). Express the belief that others

k
will play strategy k as B* (t) = N]\*,Zg), with N*.(¢) > 0 and N(t) > 0.

Beliefs are updated by depreciating the previous counts by ¢, and adding one for the
strategy combination actually chosen by the other players. That is,

Bt (1= O N+ I )
Sale - NE(E—1) + I(s";, 5-4(1))]
3This class of models however does not include the belief-type learning approach proposed by Craw-

ford (1995).

(4.1)




This form of belief updating weights the belief from one period ago ¢ times as much as
the most recent observation, so ¢ can be interpreted as how quickly previous experience
is discarded. When ¢ = 0 players weight only the most recent observation (Cournot

dynamics); when ¢ = 1 all previous observations count equally (fictitious play).

Given these beliefs, we can compute expected payoffs in each period ¢,

Ef(t) = ZBZ(t)W(Sg, s*.). (4.2)

The crucial step is to express period t expected payoffs as a function of period ¢t — 1

expected payoffs. This yields:

(4.3)

By expressing expected payoffs as a function of lagged expected payoffs, we make the
belief terms disappear. This is because the beliefs are only used to compute expected
payoffs, and when beliefs are formed according to weighted fictitious play, the expected
payoffs which result can also be generated by generalized reinforcement according to
previous payoffs. More precisely, if the initial attractions in the EWA model are expected
payoffs given some initial beliefs (i.e., A7(0) = E/(0)), & = 0 (or ¢ = p), and foregone
payoffs are weighted as strongly as received payoffs (§ = 1), then EWA attractions are
exactly the same as expected payoffs. Put differently, belief learning is “mathematically
equivalent” or “observationally equivalent” to EWA learning with 6 = 1, k = 0 and
A(0) = E/(0).

This demonstrates a close kinship between reinforcement and belief approaches. Belief
learning is nothing more than generalized attraction learning in which strategies are
reinforced equally strongly by actual payoffs and foregone payoffs and attractions are

weighted averages of past attractions and reinforcements.*

4Hopkins (2002) compares the convergence properties of reinforcement and fictitious play and finds

that they are quite similar in nature and that they will in many cases have the same asymptotic behavior.



5 A Graphical Representation

Since reinforcement and belief learning are special cases of EWA learning, it is possible
to represent all three learning models in a three-dimensional EWA cube (see Figure
1). The vertex 6 = 1 and k = 0 corresponds, to weighted fictitious play models. The
corners ¢ = 0 and ¢ = 1 correspond to Cournot best-response dynamics and fictitious
play, respectively. Reinforcement models in which only chosen strategies are reinforced
according to their payoffs correspond to vertices in which § = 0, and x = 1 (cumulative
reinforcement) or k = 0 (averaged reinforcement). Interior configurations of parameter
values incorporate both the intuition behind reinforcement learning, that realized payoffs
weigh most heavily (6 < 1), and the intuition implicit in belief learning, that foregone

payoffs matter too (§ > 0).

The cube shows that contrary to popular belief for many decades, reinforcement
and belief learning are simply two extreme configurations on opposite edges of a three-
dimensional cube, rather than fundamentally unrelated models. Figure 1 also shows
estimates of the three parameters in 20 different studies (Camerer, Ho, and Chong,
2002). Each point is a triple of estimates.”> Most points are sprinkled throughout the
cube, rather than at the extreme vertices mentioned in the previous paragraph, although
some (generally from games with mixed-strategy equilibria) are near the averaged rein-
forcement corner § = 0 and xk = ¢ = 1.5 Parameter estimates are generally significantly
inside the interior of the cube, rather than near the vertices. Thus, we may conclude that
subjects’ behavior is often neither belief nor reinforcement learning.” The cube shows

which games these nested approaches fail and why.

5These parameter estimates were typically obtained by the maximum likelihood method. Initial
attractions could be either estimated using data or set to plausible values using the cognitive hierarchy

model of one-shot games (see Camerer, Ho, and Chong, 2004).
6Ho, Camerer, and Chong (in press) provide an explanation for how § and ¢ vary across games by

endogenizing them as functions of game experience. This self-tuning approach provides a one-parameter

model, which makes EWA learning more amenable to field applications.
"Players are assumed to have the same learning parameters. Allowing for heterogeneity often improves

fit. However, the population is not simply a mixture of reinforcement and belief learning. In fact, such
a mixture is significantly worse than a mixture of two types of EWA learners in predictive performance
(Camerer and Ho, 1998).



6 Linking Learning and Equilibrium Models

The adaptive learning models presented above do not permit players to anticipate learn-
ing by others. Omitting anticipation logically implies that players do not use information
about the payoffs of other players, and that whether players are matched together repeat-
edly or are randomly re-matched should not matter. Both of the latter implications are
unintuitive and experiments with experienced subjects have provided evidence to show

otherwise.

In Camerer, Ho, and Chong (2002) and Chong, Camerer, and Ho (2006), we pro-
posed a simple way to include “sophisticated” anticipation by some players that others
are learning, using two additional parameters. We assume a fraction « of players are
sophisticated. Sophisticated players think that a fraction (1 — /) of players are adaptive
and the remaining fraction o of players are sophisticated like themselves. They use the
EWA model (which nests reinforcement and belief learning as special cases) to forecast
what the adaptive players will do, and choose strategies with high expected payoffs given

their forecast.

All the adaptive models discussed above (EWA, reinforcement, belief learning) are
special cases of this generalized model with o = 0. The assumption that sophisticated
players think some others are sophisticated, creates a small whirlpool of recursive thinking
which implies that quantal response equilibrium (QRE; McKelvey and Palfrey, 1995) and
Nash equilibrium, are special cases of this generalized model. Our specification also shows
that equilibrium concepts combine two features which are empirically and psychologically
separable: “social calibration” (accurate guesses about the fraction of players who are
sophisticated, @ = «'); and full sophistication (a« = 1). Psychologists have identified
systematic departures from social calibration called “false uniqueness” or overconfidence

(a > ') and “false consensus” or curse of knowledge (o < o).

Formally, adaptive learners follow the EWA updating equations given above (i.e.,
(2.1) and (2.2)). Sophisticated players have attractions B}(t) and choice probabilities
QJ(t + 1) specified as follows:



Bl(t) = %:[(1 —a!) - PE(t+1)+ Q% (t+ 1)] - mi(s], s*)), (6.1)
B ()

The generalized model has been applied to experimental data from 10-period p-beauty
contest games (Ho, Camerer, and Weigelt, 1998). In these games, seven subjects choose
numbers in [0,100] simultaneously. The subject whose number is closest to p times the
average (where p = .7 or .9) wins a fixed prize. Subjects playing for the first time are
called “inexperienced”; those playing another 10-period game (with a different p) are

called “experienced”.

Table 1 reports results and parameter estimates. For inexperienced subjects, adding
sophistication to adaptive EWA improves log likelihood (LL) substantially both in- and
out-of-sample. The estimated fraction of sophisticated players is & = .236 and their

estimated perception & = 0. The consideration parameter ¢ is estimated to be .781.

Experienced subjects show a larger improved fit from sophistication, and a larger
estimated proportion, & = .752. (Their perceptions are again too low, of = 413, showing
a degree of overconfidence.) The increase in sophistication due to experience reflects a
kind of “learning about learning,” which is similar to rule learning (i.e., subjects switch

their learning rule over time) (Stahl, 2000).%

Figure 2a shows actual choice frequencies for experienced subjects across the ten pe-
riods. Figures 2b-e show predicted frequencies for cumulative reinforcement, weighted
fictitious play, EWA, and the generalized model. Figure 2b shows that cumulative re-
inforcement model learns far too slowly because only one player wins each period and
the losers get no reinforcement. Figure 2c shows that belief models with low values of

¢ update beliefs very quickly but do not capture anticipatory learning, in which some

8There is also an empirical question of whether learning parameters should be the same across games.
For prediction, it is best if parameters are stable and universal across games, but that is unlikely to be
true if the parameters reflect behavioral tendencies that respond to changes in games. The challenge is

then to model how the “self-tuning” change occurs (see Ho, Camerer, and Chong, in press).



10

Table 1. Parameter Estimates for p-beauty Contest Game

inexperienced subjects  experienced subjects
Generalized EWA  Generalized EWA

Model Learning Model Learning
0] 0.436 0.000 0.287 0.220
) 0.781 0.900 0.672 0.991
K 1.000 1.000 0.927 1.000
N(O) 0.253 0.000 0.000 0.887
! 0.236 0.000 0.752 0.000
o/ 0.000 0.000 0.412 0.000
LL
(in sample) -2095.32  -2155.09 -1908.48 -2128.88
LL
(out of sample) -968.24  -992.47 -710.28  -925.09

subjects anticipate others are learning, best-respond, and leapfrog ahead. As a result, the
frequency of low choices (1-10) predicted by belief learning only grows from 20% in period
5 to 35% in period 10, while the actual frequencies grow from 40% to 55%. Similarly,
EWA learning is not able to capture the fast equilibration of experienced subjects (Figure

2d). Adding sophistication (Figure 2e) captures the actual frequencies quite closely.

7 Conclusions

We describe three major approaches of adaptive learning models. We show that EWA
learning is a generalization of reinforcement and belief learning and that the latter two
nested models are intimately related. Specifically, they differ mainly in the way they
treat foregone payoffs; reinforcement learning ignores them and belief learning treats
them the same as actual payoffs. Estimation results from dozens of studies show that the

emergence of behavior is neither reinforcement nor belief learning in most games. The
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EWA cube provides a simple way for detecting how these simpler models fail and why.

We also describe a generalization of these adaptive models to study anticipation by

some players that others are learning. This generalized model nests equilibrium and the

adaptive learning models as special cases and is a powerful framework for analyzing both

equilibrium and learning simultaneously. We show that it can improve the predictive

performance of the adaptive learning models when players are experienced and able to

anticipate how others learn.
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