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 INDIVIDUAL DIFFERENCES IN EWA LEARNING WITH

 PARTIAL PAYOFF INFORMATION

 Teck H. Ho, Xin Wang and Colin F. Camerer

 We extend experience-weighted attraction (EWA) learning to games in which only the set of possible
 foregone payoffs from unchosen strategies are known, and estimate parameters separately for each
 player to study heterogeneity. We assume players estimate unknown foregone payoffs from a strategy,
 by substituting the last payoff actually received from that strategy, by clairvoyantly guessing the actual
 foregone payoff, or by averaging the set of possible foregone payoffs conditional on the actual
 outcomes. All three assumptions improve predictive accuracy of EWA. Individual parameter estim-
 ates suggest that players cluster into two separate subgroups (which differ from traditional rein-
 forcement and belief learning).

 Central to economic analysis are the twin concepts of equilibrium and learning. In
 game theory, attention has turned recently to the study of learning (partly due to an
 interest in which types of equilibria might be reached by various kinds of learning,
 e.g. Mailath, 1998). Learning should be of general interest in economics because
 strategies and markets may be adapting much of the time or non-equilibrium
 behaviour emerges, due to imperfect information, rationality limits of agents, trading
 asynchronies, and supply and demand shocks. Understanding more about how
 learning works can be helpful in predicting time paths of behaviour in the economy,
 and designing institutional rules which speed learning. In game theory, under-
 standing initial conditions and how learning occurs might also supply us with tools to
 predict which of many equilibria will result when there are multiple equilibria
 (Crawford, 1995).
 The models of learning in simple games described in this article are not meant to be

 applied directly to complex markets and macroeconomic processes. However, the hope
 is that by honing models sharply on experimental data (where we can observe the game
 structure and the players moves clearly), we can create robust models that could
 eventually be applied to learning in naturally-occurring situations, e.g., hyperinflations,
 as in Marcet and Nicolini (2003).

 There are two general empirical approaches to understanding learning in games
 (Ho, forthcoming; Camerer, 2003, chapter 6):

 Population models and individual models.

 1 Population models make predictions about how the aggregate behaviour in a
 population will change as a result of aggregate experience. For example, in
 replicator dynamics, a population's propensity to play a certain strategy will
 depend on its 'fitness' (payoff) relative to the mixture of strategies played pre-
 viously.' Models like this are obviously useful but submerge differences in
 individual learning paths.

 1 Another important class of models involve imitation (Schlag, 1999); still another is learning among
 various abstract decision rules (Stahl and Haruvy, 2004).
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 2 Individual learning models allow each person to choose differently, depending on
 the experiences they have. Our 'experience-weighted attraction' (EWA) model,
 for example, assumes that people learn by decaying experience-weighted lagged
 attractions, updating them according to received payoffs or weighted foregone
 payoffs, and normalising those attractions. Attractions are then mapped into
 choice probabilities using a logit rule. This general approach includes the key
 features of reinforcement and belief learning (including Cournot and fictitious
 play), and predicts behaviour well in many different games; see Camerer et al.
 (2002) for a comprehensive list.

 In this article, we extend the applicability of EWA in two ways: by estimating learning
 rules at the individual level and modelling cases where the foregone payoff from
 unchosen strategies is not perfectly known (e.g., most extensive-form games).
 First, we allow different players to have different learning parameters. In many

 previous empirical applications, players are assumed to have a common learning rule,
 exceptions include Cheung and Friedman (1997), Stahl (2000) and Broseta (2000).
 Allowing heterogeneous parameter values is an important step for four possible

 reasons.

 (i) While it seems very likely that detectable heterogeneity exists, it is conceivable
 that allowing heterogeneity does not improve fit much. If not, then we have
 some assurance that 'representative agent' modelling with common parameter
 values is an adequate approximation.

 (ii) If players are heterogeneous, it is likely that players fall into distinct clusters,
 perhaps corresponding to familiar learning rules like fictitious play or rein-
 forcement learning, or to some other kinds of clusters not yet identified.2

 (iii) If players are heterogeneous, then it is possible that a single parameter estim-
 ated from a homogeneous representative-agent model will misspecify the mean
 of the distribution of parameters across individuals." We can test for such a bias
 by comparing the mean of individual estimates with the single representative-
 agent estimate.

 (iv) If players learn in different ways, the interactions among them can produce
 interesting effects. For example, suppose some players learn according to an
 adaptive rule and others are 'sophisticated' and know how the first group learn
 (e.g., Stahl, 1999). Then in repeated games, the sophisticated players have an
 incentive to 'strategically teach' the learners in a way that benefits the sophis-
 ticates (Chong et al., 2006). Understanding how this teaching works requires an
 understanding of heterogeneity in learning.

 2 Camerer and Ho (1998) allowed two separate configurations of parameters (or 'segments') to see whe-
 ther the superior fit of EWA was due to its ability to mimic a population mixture of reinforcement and belief
 learners but they found that this was clearly not so. The current study serves as another test of this possibility,
 with more reliable estimation of parameters for all players.
 " Wilcox (2006) shows precisely such a bias using Monte Carlo simulation, which is strongest in a game with

 a mixed-strategy equilibrium but weaker in a stag-hunt coordination game. The strongest bias is that when the
 response sensitivity 2 values are dispersed, then when a single vector of parameters is estimated for all subjects
 the recovered value of 6 is severely downward-biased compared to its true value. He suggests random effects
 estimation of a distribution of { values to reduce the bias.
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 Second, most theories of learning in games assume that players know the foregone
 payoffs to strategies they did not choose. Theories differ in the extent to which
 unchosen strategies are reinforced by foregone payoffs. For example, fictitious play
 belief learning theories are equivalent to generalised reinforcement theories in which
 unchosen strategies are reinforced according to their foregone payoffs as strongly as
 chosen strategies are. But then, as Vriend (1997) noted, how does learning occur when
 players are not sure what foregone payoffs are? This is a crucial question for applying
 these theories to naturally occurring situations in which the modeller may not know the
 foregone payoffs, or to extensive-form games in which players who choose one branch
 of a tree do not know what would have resulted if they chose another path. In this
 article we compare three ways to add learning about unknown foregone payoffs ('payoff
 learning') to describe learning in low-information environments.4
 The basic results can be easily stated. We estimated individual-level EWA parameters

 for 60 subjects who played a normal-form centipede game (with extensive-form feed-
 back) 100 times (Nagel and Tang, 1998). Parameters do differ systematically across
 individuals. While parameter estimates do not cluster naturally around the values
 predicted by belief or reinforcement models, they do cluster in a similar way in two
 different player roles, into learning in which attractions cumulate past payoffs, and
 learning in which attractions are averages of past payoffs.
 Three payoff learning models are used to describe how subjects estimate foregone

 payoffs, then use these estimates to reinforce strategies whose foregone payoffs are not
 known precisely. All three are substantial improvements over the default assumption
 that these strategies are not reinforced at all. The best model is the one in which
 'clairvoyant' subjects update unchosen strategies with perfect guesses of their foregone
 payoffs.

 1. EWA Learning with Partial Payoff Information

 1.1. The Basic EWA Model

 Experience-weighted attraction learning was introduced to hybridise elements of
 reinforcement and belief-based approaches to learning and includes familiar variants
 of both as special cases. This Section will highlight only the most important features of
 the model. Further details are available in Camerer and Ho (1999) and Camerer et al.
 (2002).

 In EWA learning, strategies have attraction levels which are updated according to
 either the payoffs the strategies actually provided, or some fraction of the payoffs
 unchosen strategies would have provided. These attractions are decayed or depreciated
 each period, and also normalised by a factor which captures the (decayed) amount of
 experience players have accumulated. Attractions to strategies are then mapped into
 the probabilities of choosing those strategies using a response function which guar-
 antees that more attractive strategies are played more often.

 4 Ho and Weigelt (1996) studied learning in extensive-form coordination games and Anderson and
 Camerer (2000) studied learning in extensive-form signalling games but both did not consider the full range
 of models of foregone payoff estimation considered here.
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 EWA was originally designed to study n-person normal form games. The players are
 indexed by i (i= 1, 2,...,n), and each one has a strategy space Si
 s s2 ,... sm- s}, where si denotes a pure strategy of player i. The strategy space for

 the game is the Cartesian products of the Si, S = S1 x S2 x ... x S,. Let s=
 (Si, S2,... ,sn) denote a strategy combination consisting of n strategies, one for each
 player. Let si = (sl,... ,si1, si+1,... ,sn) denote the strategies of everyone but player i.
 The game description is completed with specification of a payoff function
 ri(si, s-i) E , which is the payoff i receives for playing si when everyone else is playing
 the strategy specified in the strategy combination s_i. Finally, let si(t) denote i's actual
 strategy choice in period t, and s_i(t) the vector chosen by all other players. Thus,

 player i's payoff in period t is given by nri[si(t), s_i(t)].

 1.2. Updating Rules

 The EWA model updates two variables after each round. The first variable is the
 experience weight N(t), which is like a count of 'observation-equivalents' of past
 experience and is used to weight lagged attractions when they are updated. The second
 variable is A7 (t), i's attraction for strategy j after period t has taken place. The variables
 N(t) and AX(t) begin with initial values N(0) and Ai(0). These prior values can be
 thought of as reflecting pregame experience, either due to learning transferred from
 different games or due to introspection.5

 Updating after a period of play is governed by two rules. First, experience weights are
 updated according to

 N(t) = pN(t - 1) + 1, t 1. (1)

 where p is a discount factor that depreciates the lagged experience weight. The second
 rule updates the level of attraction. A key component of the updating is the payoff that
 a strategy either yielded, or would have yielded, in a period. The model weights
 hypothetical payoffs that unchosen strategies would have earned by a parameter 6, and
 weights payoff actually received, from chosen strategy si(t), by an additional 1 - 6 (so it
 receives a total weight of 1). Using an indicator function I(x, y) which equals 1 if x = y

 and 0 if x T4 y, the weighted payoff for i's jth strategy can be written
 {6 + (1 - 6)I[sJ, si(t)]}cni[s, si(t)]. The rule for updating attraction sets AX(t) to be a
 depreciated, experience-weighted lagged attraction, plus an increment for the received
 or foregone payoff, normalised by the new experience weight. That is,

 XA(t) - . N(t - 1)A (t - 1) + {6 + (1 - 6)I[sj, si(t)]}ti[s, s-i(t)] N(t)

 The factor 0 is a discount factor that depreciates previous attractions. Let K =
 (4 - p)/1. Then the parameter K adjusts whether the experience weight depreciates
 more rapidly than the attractions. Notice that the steady-state value of N(t) is 1/ (1 - p)
 (and does not depend on N(0)). In the estimation we impose the restriction

 5 Boulding et al. (1999) and Biyalogorsky et al. (2006) show that managers tend to have a large initial
 experience count N(0).
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 N(0) < 1/(1 - p) which guarantees that the experience weight rises over time, so the
 relative weight on new payoffs falls and learning slows down.
 Finally, attractions must be mapped into the probabilities of choosing strategies in

 some way. Obviously we would like P? (t) to be monotonically increasing in A (t) and

 decreasing in Aik(t) (where k , j). Three forms have been used in previous research: A logit or exponential form, a power form, and a normal (probit) form. The various
 probability functions each have advantages and disadvantages. We prefer the logit
 form

 e lAA(t)

 (t 1) e(3)

 because it allows negative attractions and fits a little better in a direct comparison with
 the power form (Camerer and Ho, 1998). The parameter { measures sensitivity of
 players to differences among attractions. When 2 is small, probabilities are not very
 sensitive to differences in attractions (when 2 = 0 all strategies are equally likely to be
 chosen). As A increases, it converges to a best-response function in which the strategy
 with the highest attraction is always chosen.
 Bracht and Ichimura (2001) investigate the econometric identification of the EWA
 model and show that it is identified if the payoff matrix is regular (i.e., no two strategies

 receive the same payoff) and 2 ~ 0, IpN(0)I < c0 and N(0) 1 + pN(O). Conse-
 quently, we impose 2 > 0, 0 < p < 1, and 0 < N(0) < 1/(1 - p) in our estimation.6
 In some other recent research, we have also found it useful to replace the free
 parameters for initial attractions, Al(0), with expected payoffs generated by a cognitive
 hierarchy model designed to explain choices in one-shot games and supply initial
 conditions for learning (Camerer et al., 2002; Chong et al., 2006).7

 1.3. Special Cases

 One special case of EWA is choice reinforcement models in which strategies have levels
 of reinforcement or propensity which are depreciated and incremented by received
 payoffs. In the model of Harley (1981) and Roth and Erev (1995), for example

 RR (t) = { R(t - 1) + ii[&s, s-i(t)] if s = si(t), ORi(t- 1) if s 4 si(t).
 Using the indicator function, the two equations can be reduced to one:

 R (t) = R (t - 1) + I[s, si(t)]7i[si, s-i(t)]. (5)

 6 Salmon (2001) evaluates the identification properties of reinforcement, belief-based, and the EWA
 models by simulation analysis. He uses each of these models to generate simulated data in simple matrix
 games and investigate whether standard estimation methods can accurately recover the model. He shows that
 all models have difficulties in recovering the true model but the EWA model can identify its true parameters
 (particularly 6) more accurately than reinforcement and belief-based models.

 7 Another approach to reducing parameters is to replacing fixed parameters with 'self-tuning' functions of
 experience (Ho et al., 2007). This model fits almost as well as one with more free parameters and seems
 capable of explaining cross-game differences in parameter values.
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 This updating formula is a special case of the EWA rule, when 6 = 0, N(0) = 1, and
 K = 1. The adequacy of this simple reinforcement model can be tested empirically by
 setting the parameters to their restricted values and seeing how much fit is compro-
 mised (adjusting, of course, for degrees of freedom).
 In another kind of reinforcement, attractions are averages of previous attractions, and

 reinforcements, rather than cumulations (Sarin and Vahid, 2004; Mookerjhee and
 Sopher, 1994, 1997; Erev and Roth, 1998). For example

 R (t) = dpR(t - 1) + (1 - O)I[s, si(t)]ji[sj, s-i(t)]. (6)
 A little algebra shows that this updating formula is a special case of the EWA rule,

 when 6 = 0, N(0) = 1/(1 - 0), and K = 0.
 In belief-based models, adaptive players base their responses on beliefs formed by

 observing their opponents' past plays. While there are many ways of forming beliefs, we
 consider a fairly general 'weighted fictitious play' model, which includes fictitious play
 (Brown, 1951; Fudenberg and Levine, 1998) and Cournot best-response (Cournot,
 1960) as special cases.
 In weighted fictitious play, players begin with prior beliefs about what the other

 players will do, which are expressed as ratios of counts to the total experience. Denote
 total experience by N(t) = mJ i Nki(t).8 Express the probability that others will play
 strategy k as BkCi(t) = Nki(t)/N(t), with Nki(t) > 0 and N(t) > 0.
 Beliefs are updated by depreciating the previous counts by 0, and adding one for the

 strategy combination actually chosen by the other players. That is,

 S pNki(t - 1) + I[Ski, S-i(t)

 - hm-i ONhAi(t - 1) + I[shi, Si(t)]} " This form of belief updating weights the belief from one period ago 4 times as much
 as the most recent observation, so P can be interpreted as how quickly previous

 experience is discarded.9 When ) = 0 players weight only the most recent observation
 (Cournot dynamics); when = 1 all previous observations count equally (fictitious
 play).

 Given these beliefs, we can compute expected payoffs in each period t,

 E(t) Bki(t)t(s' ski). (8) k=1

 The crucial step is to express period t expected payoffs as a function of period t - 1
 expected payoffs. This yields:

 EN(t - 1)El(t - 1) + r[si, s-i(t)] EN(t - 1) + 1

 8 Note that N(t) is not subscripted because the count of frequencies is assumed, in our estimation, to be the
 same for all players. Obviously this restriction can be relaxed in future research.

 9 Some people interpret this parameter as an index of 'forgetting' but this interpretation is misleading
 because people may recall the previous experience perfectly (or have it available in 'external memory' on
 computer software) but they will deliberately discount old experience if they think new information is more
 useful in forecasting what others will do.
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 Expressing expected payoffs as a function of lagged expected payoffs, the belief
 terms disappear into thin air. This is because the beliefs are only used to compute
 expected payoffs, and when beliefs are formed according to weighted fictitious play, the
 expected payoffs which result can also be generated by generalised reinforcement
 according to previous payoffs. More precisely, if the initial attractions in the EWA

 model are expected payoffs given some initial beliefs (i.e., Ak(0) =- E(0)), K = 0 (or
 = p), and foregone payoffs are weighted as strongly as received payoffs (6 = 1), then
 EWA attractions are exactly the same as expected payoffs.
 This demonstrates a close kinship between reinforcement and belief approaches.

 Belief learning is nothing more than generalised attraction learning in which strategies
 are reinforced equally strongly by actual payoffs and foregone payoffs, attractions are
 weighted averages of past attractions and reinforcements, and initial attractions spring
 from prior beliefs.'0

 1.4. Interpreting EWA

 The EWA parameters can be given the following psychological interpretations.

 1 The parameter 6 measures the relative weight given to foregone payoffs, com-
 pared to actual payoffs, in updating attractions. It can be interpreted as a kind of
 counterfactual reasoning, 'imagination' of foregone payoffs, or responsiveness
 to foregone payoffs (when 6 is larger players move more strongly toward ex post
 best responses)." We call it 'consideration' of foregone payoffs.

 2 The parameter 0 is naturally interpreted as depreciation of past attractions,
 A(t). In a game-theoretic context, 0 will be affected by the degree to which
 players realise other players are adapting, so that old observations on what
 others did become less and less useful. Then 0 can be interpreted as an index of
 (perceived) change.

 3 The parameter K determines the growth rate of attractions, which in turn affects
 how sharply players converge. When K = 1 then N(t) = 1 (for t > 0) and the
 denominator in the attraction updating equation disappears. Thus, attractions
 cumulate past payoffs as quickly as possible. When K = 0, attractions are
 weighted averages of lagged attractions and past payoffs, where the weights are
 ON(0) and 1.
 In the logit model, whether attractions cumulate payoffs, or average them, is

 important because only the difference among the attractions matters for their
 relative probabilities of being chosen. If attractions can grow and grow, as they
 can when K = 1, then the differences in strategy attractions can be very large. This

 implies that, for a fixed response sensitivity, 2, the probabilities can be spread
 farther apart; convergence to playing a single strategy almost all the time can be
 sharper. If attractions cannot grow outside of the payoff bounds, when K = 0 then

 10 Hopkins (2002) compares the convergence properties of reinforcement and fictitious play and finds
 that they are quite similar in nature and that they will in many cases have the same asymptotic behaviour.
 11 The parameter 6 may also be related to psychological phenomena like regret. These interpretations also

 invite thinking about the EWA model as a two-process model that splices basic reinforcement, perhaps
 encoded in dopaminergic activity in the midbrain and striatum, and a more frontal process of imagined
 reinforcement. In principle these processes could be isolated using tools like eyetracking and brain imaging.
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 convergence cannot produce choice probabilities which are so extreme. Thus,
 we think of K as an index of the degree of commitment to one choice or another
 (it could also be thought of as a convergence index, or confidence).

 4 The term Al(0) represents the initial attraction, which might be derived from
 some analysis of the game, from selection principles or decision rules, from
 surface similarity between strategies in the game being played and strategies
 which were successful in similar games etc. Belief models impose strong
 restrictions on A (0) by requiring initial attractions to be derived from prior
 beliefs.12 Additionally, they require attraction updating with 6 1 and K = 0.
 EWA allows one to separate these two processes: players could have arbitrary
 initial attractions but begin to update attractions in a belief-learning way after
 they gain experience.

 5 The initial-attraction weight N(0) is in the EWA model to allow players in belief-
 based models to have an initial prior which has a strength (measured in units of
 actual experience). In EWA, N(0) is therefore naturally interpreted as the
 strength of initial attractions, relative to incremental changes in attractions due
 to actual experience and payoffs. If N(0) is small then the effect of the initial
 attractions wears off very quickly (compared to the effect of actual experience).
 If N(0) is large then the effect of the initial attractions persists.'3

 In previous research, the EWA model has been estimated on several samples of
 experimental data, and estimates have been used to predict out-of-sample. Forecasting
 out-of-sample completely removes any inherent advantage of EWA over restricted
 special cases because it has more parameters. Indeed, if EWA fits well in-sample purely
 by overfitting, the overfitting will be clearly revealed by the fact that predictive accuracy
 is much worse predicting out-of-sample than fitting in-sample.
 Compared to the belief and reinforcement special cases, EWA fits better in weak-link

 coordination games - e.g. Camerer and Ho (1998), where out-of-sample accuracy was not
 measured - and predicts better out-of-sample in median-action coordination games and
 dominance solvable 'p-beauty contests' (Camerer and Ho, 1999), call markets (Hsia,
 1998),'unprofitable games' (Morgan and Sefton, 2002), partially-dominance-solvable
 R&D games (Rapoport and Almadoss, 2000), and in unpublished estimates we made in
 other 'continental divide' coordination games (Van Huyck et al., 1997). EWA only pre-
 dicted worse than belief learning in some constant-sum games (Camerer and Ho, 1999),
 and has never predicted worse than reinforcement learning.
 To help illustrate how EWA hybridises features of other theories, Figure 2 shows a

 three-dimensional parameter space - a cube - in which the axes are the parameters 6,
 0, and K. Traditional belief and reinforcement theories assume that learning param-
 eters are located on specific edges of the cube. For example, cumulative reinforcement

 12 This requires, for example, that weakly dominated strategies will always have (weakly) lower initial
 attractions than dominant strategies. EWA allows more flexibility. For example, players might choose ran-
 domly at first, choose what they chose previously in a different game, or set a strategy's initial attraction equal
 to its minimum payoff (the minimax rule) or maximum payoff (the maximax rule). All these decision rules
 generate initial attractions which are not generally allowed by belief models but are permitted in EWA
 because A (0) are flexible.
 13 This enables one to test equilibrium theories as a special kind of (non)-learning theory with N(0) very

 large and initial attractions equal to equilibrium payoffs.
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 theories require low consideration (6 = 0) and high commitment (K = 1). (Note that
 the combination of low consideration and high commitment may be the worst possible
 combination, since such players can get quickly locked in to strategies which are far
 from best responses.) Belief models are represented by points on the edge where
 consideration is high (6 = 1) but commitment is low (K = 0). This constrains the
 ability of belief models to produce sharp convergence, in coordination games for
 example (Camerer and Ho, 1998, 1999). Cournot best-response and fictitious play
 learning are vertices at the ends of the belief-model edge.'4
 It is worth noting that fictitious play was originally proposed by Brown (1951) and

 Robinson (1951) as a computational procedure for finding Nash equilibria, rather than
 a theory of trial-by-trial learning. Cournot learning was proposed about 160 years ago
 before other ideas were suggested. Models of reinforcement learning were developed
 later, and independently, to explain behaviour of animals who presumably lacked
 higher-order cognition to imagine or estimate foregone payoffs. They were introduced
 into economics byJohn Cross in the 1970s and Brian Arthur in the 1980s to provide a
 simple way to model bounded rationality. Looking at Figure 2, however, one is hard
 pressed to think of an empirical rationale why players' parameter values would neces-
 sarily cluster on those edges or vertices which correspond to fictitious play or rein-
 forcement learning (as opposed to other areas, or the interior of the cube). In fact, we
 shall see below that there is no prominent clustering in the regions corresponding to
 familiar belief and reinforcement models, but there is substantial clustering near the
 faces where commitment is either low (K = 0) or high (K = 1).

 1.5. EWA Extensions to Partial Payoff Information

 In this paper, partial foregone payoff information arises because we study a reduced
 normal-form centipede game but with extensive-form feedback (see Table 1 and
 Figure 1). In this game, an Odd player has the opportunity to take the majority of a
 growing 'pie' at odd numbered decision nodes {1, 3, 5, 7, 9, 11, 13}; the Even player
 has the opportunity to take at nodes {2, 4, 6, 8, 10, 12, 14}. Each player chooses when
 to take by choosing a number. The lower of the two numbers determines when the pie
 stops growing and how much each player gets. The player who chooses the lower
 number always gets more. Players receive feedback about their payoffs and not the
 other's strategy. Consequently, the player who chooses to take earlier cannot infer the
 other player's strategy from observing the payoffs because the game is non-generic in
 the sense that multiple outcomes lead to the same payoffs (see Table 1).
 Our approach to explaining learning in environments with partial payoff informa-

 tion is to assume that players form some guess about what the foregone payoff might
 be, then plug it into the attraction updating equation. This adds no free parameters to
 the model.

 First define the estimate of the foregone payoff as fti(si, t) (and ft is just the known
 foregone payoff when it is known). Note that fii(si, t) does not generally depend on si(t) because, by definition, if the other players' strategy was observed then the foregone

 14 Note that EWA learning model has not been adapted to encompass imitative learning rules such as those
 studied by Schlag (1999). One way to allow this to allow other payoffs to enter the updating of attractions.
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 Table 1

 Payoffs in Centipede Games, Nagel and Tang (1998)

 Even player number choices
 Odd player
 number choices 2 4 6 8 10 12 14

 1 4 4 4 4 4 4 4

 1 1 1 1 1 1 1

 3 2 8 8 8 8 8 8
 5 2 2 2 2 2 2

 5 2 3 16 16 16 16 16
 5 11 4 4 4 4 4

 7 2 3 6 32 32 32 32
 5 11 22 8 8 8 8

 9 2 3 6 11 64 64 64
 5 11 22 45 16 16 16

 11 2 3 6 11 22 128 128
 5 11 22 45 90 32 32

 13 2 3 6 11 22 44 256
 5 11 22 45 90 180 64

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 A B A B A B A B A B A B A B 256
 -+pass I-pass --pass --pass -pass -*pass I--pass -*pass -.pass --pass -opass -pass -*pass 64

 take take take take take take take take take take take take take

 4 2 8 3 16 6 32 11 64 22 128 44 256
 1 5 2 11 4 22 8 45 16 90 32 180 64

 Fig. 1. The Extensive Form of Centipede Game, Nagel and Tang (1998)

 payoff would be known. When the foregone payoff is known, updating is done as in
 standard EWA. When the foregone payoff is not known, updating is done according to

 NJ (t) = pNi(t - 1) + 1, t> 1 (10)
 and

 A N(t) - AN(t - 1)A((t - 1) + {6 + (1 - 6)I[s), si(t)]}ici(s, t) (11) N( ( t)

 Three separate specifications of fr(s, t) are tested: last actual payoff updating, payoff
 clairvoyance and the average payoff in the set of possible foregone payoffs conditional
 on the actual outcome. When players update according to the last actual payoff, they
 recall the last payoff they actually received from a strategy and use that as an estimate of
 the foregone payoff. Formally,

 i(s, t)-= i[s ,s_i(t)] if ?- si(t), (12)
 ki(s, t - 1) otherwise.

 To complete the specification, the estimates 7i(sr , 0) are initialised as the average of
 all the possible elements of the set of foregone payoffs.

 Let us illustrate how this payoff learning rule works with the Centipede game given in
 Table 1 and Figure 1. Suppose player A chooses 7 and player B chooses 8 or higher.
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 Fig. 2. EWA's Model Parametric Space

 Since player A 'took first' she receives a payoff of 32, and she knows that if she chose 9
 instead, she would receive either 11, if player B chose 8, or 64 if player B chose 10, 12,
 or 14. In this case we would initialise 7ri(9, 0) = (11 + 64)/2. Notice that we average only
 the unique elements of the payoff set, not each payoff associated with every strategy
 pair. That is, even though 64 would result if player A chose 8 and B chose 10, 12, or 14,
 we only use the payoff 64 once, not three times, in computing the initial 7i.(9, 0).

 Updating using the last actual payoff is cognitively economical because it requires
 players to remember only the last payoff they received. Furthermore, it enables them to
 adjust rapidly when other players' behaviour is changing, by immediately discounting
 all previous received payoffs and focusing on only the most recent one.

 If one thinks of the last actual payoff as an implicit forecast of what payoff is likely to
 have been the 'true' foregone one, then it may be a poor forecast when the last actual
 payoff was received many periods ago, or if subjects have hunches about which foregone
 payoff they would have got which are more accurate than distant history. Therefore, we
 consider an opposite assumption as well - 'payoff clairvoyance'. Under payoff clairvoy-
 ance, ii(s~, t) - ni[s, si(t)]. That is, players accurately guess exactly what the foregone
 payoff would have been even though they were not told about this information.

 Finally, an intermediate payoff learning rule may be is to use the average payoff of
 the set of possible foregone payoffs conditional on the actual outcome to estimate the
 foregone payoff in each period. It is the same as the way we initialise the last actual
 payoff rule but apply the same rule in every period. Like before, we average only the
 unique elements in the payoff set.
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 The last-actual-payoff scheme recalls only observed history and does not try to
 improve upon it (as a forecast); consequently, it can also be applied when players do
 not even know the set of possible foregone payoffs. The payoff-clairvoyance scheme
 uses knowledge which the subject is not told (but could conceivably figure out). The
 average payoff rule lies between these two extreme. We report estimates and fit mea-
 sures for the three models.

 2. Data

 Nagel and Tang (1998) (NT) studied learning in the reduced normal-form of an
 extensive-form centipede game. Table 1 shows the payoffs to the players from taking at
 each node. (Points are worth 0.005 deutschemarks.) They conducted five sessions with
 12 subjects in each, playing 100 rounds in a random-matching fixed-role protocol. A
 crucial design feature is that while the players choose normal-form strategies, they are
 given extensive-form feedback. That is, each pair of subjects is only told the lower
 number chosen in each round, corresponding to the time at which the pie is taken and
 the game stops. The player choosing the lower number does not know the higher
 number. For example, if Odd chooses 5, takes first, and earns 16, she is not sure
 whether she would have earned 6 by taking later, at node 7 (if Even's number was 6) or
 whether she would have earned 32 (if Even had taken at 8 or higher), because she only
 knows that Even's choice was higher than 5. This ambiguity about foregone payoffs is
 an important challenge for implementing learning models.

 Table 2 shows the overall frequencies of choices (pooled across the five sessions,
 which are similar). Most players choose numbers from 7 to 11.

 If a subject's number was the lower one (i.e., they chose 'take'), there is a strong
 tendency to choose the same number, or a higher number, on the next round. This can
 be seen in the transition matrix Table 3, which shows the relative frequency of choices
 in round t + 1 as a function of the choice in round t, for players who 'take' in round t
 (choosing the lower number). For example, the top row shows that when players
 choose 2 and take, they choose 2 in the next round 28% of the time, but 8% choose 4
 and 32% choice 6, which is the median choice (and is italicised). For choices below 7,
 the median choice in the next period is always higher. The overall tendency for players
 who chose 'take' to choose numbers which increase, decrease, or are unchanged are

 Table 2

 Relative Frequencies (%) Choices in Centipede Games, Nagel
 and Tang (1998)

 Odd numbers % Even numbers %

 1 0.5 2 0.9
 3 1.6 4 1.7
 5 5.4 6 11.3

 7 26.1 8 33.1
 9 33.1 10 31.1
 11 22.5 12 14.3
 13 10.8 14 7.7
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 Table 3

 Transitions after Lower-Number (Take) Choices, Nagel and Tang (1998)

 Choices in period t + 1 after 'Take'

 choice in t 2 4 6 8 10 12 14 Total no.

 2 0.28 0.08 0.32 0.08 0.12 0.04 0.08 25
 4 0.11 0.11 0.40 0.15 0.15 0.06 0.02 47
 6 0.05 0.32 0.41 0.14 0.06 0.01 296
 8 0.01 0.05 0.56 0.36 0.02 0.01 594
 10 0.01 0.12 0.73 0.14 0.01 353
 12 0.03 0.05 0.07 0.83 0.02 59

 1 3 5 7 9 11 13 Total no.

 1 0.07 0.29 0.21 0.07 0.21 0.07 0.07 14
 3 0.04 0.09 0.44 0.13 0.18 0.09 0.02 45
 5 0.01 0.06 0.20 0.47 0.15 0.08 0.03 156
 7 0.01 0.04 0.60 0.28 0.07 617
 9 0.01 0.08 0.62 0.26 0.03 545
 11 0.17 0.60 0.23 173
 13 0.09 0.91 46

 shown in Figure 3a. Note that most 'takers' then choose numbers which increase, but
 this tendency shrinks over time.
 Table 4 shows the opposite pattern for players who choose the higher number and
 'pass' - they tend to choose lower numbers. In addition, as the experiment progressed
 this pattern of transitions became weaker (more subjects do not change at all), as
 Figure 3a shows.
 NT consider several models. Four are benchmarks which assume no learning: Nash
 equilibrium (players pick 1 and 2), quantal response equilibrium (McKelvey and Palfrey,
 1995), random play and an individual observed-frequency model which uses each
 player's observed frequencies of choices over all 100 rounds. NT test choice-reinforce-
 ment of the Harley-Roth-Erev RPS type and implement a variant of weighted fictitious
 play which assumes players know population history information. The equilibrium and
 weighted fictitious play predictions do not fit the data well. This is not surprising because
 both theories predict either low numbers at the start, or steady movement toward lower
 numbers over time, which is obviously not present in the data. QRE and random
 guessing do not predict too badly, but the individual-frequency benchmark is the best of
 all. The RPS (reinforcement) models do almost as well as the best benchmark.

 3. Estimation Methodology

 The method of maximum likelihood was used to estimate model parameters. To
 ensure model identification as described in Section 1.2, we impose the necessary
 restrictions on the parameters N(0), p, 6 and X in our estimation procedure.'5 We used

 15 Specifically, we apply an appropriate transformation to ensure each of the parameters will always fall
 within the restricted range. For example, we impose A = exp(qi) to guarantee that A > 0, Although qi is
 without restriction, the parameter A will always be positive. Similarly, we apply a logistic transformation, i.e.
 p = 1/[1+ exp(q2)] and 6 = 1/[fl+ exp(q3)] to restrict p and 6 to be between 0 and 1. Finally,
 N(0) = [1/(1 - p)]/[1 + exp(q4)] so that N(0) is between 0 and 1/(1 - p).
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 Fig. 3. Transition Behaviour. (a) Actual Data; (b) EWA-Payoff Clairvoyance (Representative Agent
 Model); (c) EWA-Payoff Clairvoyance (Individual Model)

 the first 70% of the data to calibrate the models and the last 30% of the data to predict
 out-of-sample. Again, the out-of-sample forecasting completely removes any advantage
 more complicated models have over simpler ones which are special cases.
 We first estimated a homogeneous single-representative agent model for reinforce-
 ment, belief, and three variants of EWA payoff learning. We then estimated the EWA
 models at the individual level for all 60 subjects. In the centipede game, each subject
 has seven strategies, numbers 1, 3,...,13 for Odd subjects and 2, 4,...,14 for even
 subjects. Since the game is asymmetric, the models for Odd and Even players were
 estimated separately. The log of the likelihood function for the single-representative
 agent EWA model is

 30 70

 LL[6,, K, ,, N(0)] = log[Pi( (t)] (13) i=1 t=2

 and for the individual level model for player i is:
 70

 LL[i, 4il, Ki, i, Ni(0)] -= log[P~ ) (t)] (14) t=2

 where the probabilities PS'() (t) are given by (3).
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 Table 4

 Transitions after Higher-Number (Pass) Choices, Nagel and Tang (1998)

 Choices in period t + 1 after 'Pass'

 choice in t 2 4 6 8 10 12 14 Total no.

 2 0
 4 0.50 0.50 2
 6 0.08 0.23 0.15 0.33 0.18 0.03 39
 8 0.01 0.04 0.29 0.49 0.15 0.04 0.01 388
 10 0.01 0.01 0.08 0.40 0.40 0.06 0.03 572
 12 0.01 0.03 0.10 0.21 0.54 0.11 364
 14 0.06 0.10 0.19 0.65 231

 1 3 5 7 9 11 13 Total no.

 3 1.00 1

 5 0.60 0.20 0.20 5
 7 0.01 0.06 0.25 0.48 0.10 0.06 0.04 156
 9 0.01 0.04 0.33 0.48 0.11 0.02 446
 11 0.01 0.02 0.10 0.31 0.43 0.12 490
 13 0.01 0.05 0.10 0.34 0.50 276

 There is one substantial change from methods we previously used in Camerer and
 Ho (1999). We estimated initial attractions (common to all players) from the first
 period of actual data, rather than allowing them to be free parameters which are
 estimated as part of the overall maximisation of likelihood.16 We switched to this
 method because estimating initial attractions for each of the large number of strategies
 chewed up too many degrees of freedom.
 To search for regularity in the distributions of individual-level parameter estimates,
 we conducted a cluster analysis on the three most important parameters, 6, q, and K.
 We specified a number of clusters and searched iteratively for cluster means in the
 three-dimensional parameter space which maximises the ratio of the distance between
 the cluster means and the average within-cluster deviation from the mean. We report
 results from two-cluster specifications, since they have special relevance for evaluating

 16 Others have used this method too, e.g., Roth and Erev (1995). Formally, define the first-period fre-
 quency of strategy j in the population as f'. Then initial attractions are recovered from the equations

 e AJN(0)

 k ek() = fj= 1,..., m. (15)
 (This is equivalent to choosing initial attractions to maximise the likelihood of the first-period data, sepa-

 rately from the rest of the data, for a value of 2 derived from the overall likelihood-maximisation.) Some
 algebra shows that the initial attractions can be solved for, as a function of 2, by

 -A(0) lmA l(0)=-n(fJ),j= 1,...,m (16) A(0 -ml. J() ,.
 where fi =ffiJ/(kfk)l/m is a measure of relative frequency of strategy j. We fix the strategy j with the lowest
 frequency to have A'(0) = 0 (which is necessary for identification) and solve for the other attractions as a
 function of A and the frequencies fJ.

 Estimation of the belief-based model (a special case of EWA) is a little trickier. Attractions are equal to
 expected payoffs given initial beliefs; therefore, we searched for initial beliefs which optimised the likelihood
 of observing the first-period data. For identification, 2 was set equal to one when likelihood-maximising
 beliefs were found, then the derived attractions which resulted were rescaled by 1/2.
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 whether parameters cluster around the predictions of belief and reinforcement theo-
 ries. Searching for a third cluster generally improved the fit very little.'7

 4. Results

 We discuss the results in three parts: Basic estimation and model fits; individual-level
 estimates and uncovered clusters; and comparison of three payoff-learning extensions.

 4.1. Basic Estimation and Model Fits

 Table 5 reports the log-likelihood of the various models, both in-sample and out-
 of-sample. The belief-based model is clearly worst by all measures. This is no surprise
 because the centipede game is dominance-solvable. Any belief learning should move
 players in the direction of lower numbers but the numbers they choose rise slightly over
 time. The EWA-Payoff Clairvoyance is better than the other EWA variants. Reinforce-
 ment is worse than any of the EWA variants, by about 50 points of log-likelihood out-of-
 sample. (It can also be strongly rejected in-sample using standard X2 tests.) This finding
 challenges (Nagel and Tang, 1998), who concluded that reinforcement captured the
 data well, because they did not consider the EWA learning models.

 Another way to judge the model fit is to see how well the EWA model estimates
 capture the basic patterns in the data. There are two basic patterns:

 (i) players who choose the lower number (and 'take earlier', in centipede jargon)
 tend to increase their number more often than they decrease it, and this ten-
 dency decreases over time; and

 (ii) players who choose the higher number ('taking later'), tend to decrease their
 numbers.

 Figure 3a shows these patterns in the data and Figures 3b-c show how well the EWA
 model describes and predicts these patterns. The EWA predictions are generally quite
 accurate. Note that if EWA were overfitting in the first 70 periods, accuracy would
 degrade badly in the last 30 periods (when parameter estimates are fixed and out-of-
 sample prediction begins); but it generally does not.

 4.2. Payoff Learning Models

 Tables 5-6 show measures of fit and parameter estimates from the three different
 payoff learning models. The three models make different conjectures on the way
 subjects estimate the foregone payoffs. All three payoff learning models perform better
 than reinforcement (which implicitly assumes that the estimated foregone payoff is
 zero, or gives it zero weight). This illustrates that EWA can improve statistically on
 reinforcement, even in the domain in which reinforcement would seem to have the

 biggest advantage over other models - i.e., when foregone payoffs are not known. By
 simply adding a payoff-learning assumption to EWA, the extended model outpredicts
 reinforcement. Building on our idea, the same value of adding payoff learning to EWA

 17 Specifically, a three-segment model always leads to a tiny segment that contains either 1 or 2 subjects.
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 Table 5

 Log Likelihoods and the Parameter Estimates of the Various Representative-Agent Adaptive Learning Models

 LL Parameter Estimates (Standard Error)

 Model Number of parameters In Sample Out of Sample 9p 6 K NO 2

 Odd Players
 Reinforcement 2 -2713.2 -1074.5 0.92 0.00 1.00 1.00 0.01

 (0.0002) (0.0000)
 Belief 3 -3474.2 -1553.1 1.00 1.00 0.00 100 0.57

 (0.0009) (0.0000) (0.0008)
 EWA, Recent Actual Payoff 5 -2667.6 -1069.8 0.91 0.14 1.00 1.00 0.01

 (0.0002) (0.0003) (0.0000) (0.0000) (0.0000)
 EWA, Payoff Clairvoyance 5 -2596.6 -1016.8 0.91 0.32 1.00 1.00 0.01

 (0.0002) (0.0001) (0.0000) (0.0000) (0.0000)
 EWA, Average Payoff 5 -2669.3 -1064.9 0.91 0.15 1.00 1.00 0.01

 (0.0002) (0.0002) (0.0000) (0.0000) (0.0000)
 Even Players
 Reinforcement 2 -2831.8 -991.7 0.92 0.00 1.00 1.00 0.01

 (0.0002) (0.0000)
 Belief 3 -3668.9 -1556.0 0.87 1.00 0.00 0.16 0.04

 (0.0014) (0.0004) (0.0000)
 EWA, Recent Actual Payoff 5 -2811.9 -983.0 0.91 0.15 1.00 1.00 0.01

 (0.0002) (0.0001) (0.0000) (0.0000) (0.0000)
 EWA, Payoff Clairvoyance 5 -2791.4 -953.2 0.90 0.24 1.00 7.91 0.13

 (0.0002) (0.0004) (0.0006) (0.0000) (0.0000)
 EWA, Average Payoff 5 -2802.1 -1039.2 0.90 0.17 0.99 1.01 0.01

 (0.0006) (0.0005) (0.0015) (0.0000) (0.0000)
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 Table 6

 A Comparison between the Representative-Agent and Individual-level Parameter Estimates of
 the Various EWA Models

 LL Mean Parameter Estimates

 Model In Sample Out of Sample (p 6 K NO 2

 Odd Players
 EWA, Recent Actual Payoff
 Representative-Agent -2667.6 -1069.8 0.91 0.14 1.00 100 0.01
 Individual-level -2371.2 -1050.6 0.86 0.25 0.48 1.65 0.19

 EWA, Payoff Clairvoyance
 Representative-Agent, -2596.6 -1016.8 0.91 0.32 1.00 1.00 0.01
 Individual-level -2301.2 -1052.0 0.92 0.44 0.38 1.84 0.13

 EWA, Average Payoff
 Representative-Agent -2669.3 -1064.9 0.91 0.15 1.00 1.00 0.01
 Individual-level -2334.6 -1017.2 0.89 0.26 0.25 2.75 0.22

 Even Players
 EWA, Recent Actual Payoff
 Representative-Agent -2811.9 -983.0 0.91 0.15 1.00 1.00 0.01
 Individual-level -2442.5 -912.7 0.89 0.32 0.33 2.80 0.17

 EWA, Payoff Clairvoyance
 Representative-Agent -2791.4 -953.2 0.90 0.24 1.00 7.91 0.13
 Individual-level -2421.7 -927.6 0.90 0.47 0.34 3.94 0.17

 EWA, Average Payoff
 Representative-Agent -2802.1 -1039.2 0.90 0.17 0.99 1.01 0.01
 Individual-level -2432.4 -960.6 0.84 0.35 0.39 4.59 0.15

 is shown by Anderson (1998) in bandit problems, Chen and Khoroshilov (2003) in a
 study ofjoint cost allocation, and Ho and Chong (2003) in consumer product choice at
 supermarkets.

 The three payoff learning assumptions embody low and high degrees of player
 knowledge. The assumption that players recall only the last actual payoff - which
 may have been received many periods ago - means they ignore deeper intuitions
 about which of the possible payoffs might be the correct foregone one in the very
 last period. Conversely, the payoff clairvoyance assumption assumes the players
 somehow figure out exactly which foregone payoff they would have got. The average
 payoff assumption seems more sensible and infers the foregone payoff based on the
 observed actual outcome in each period. Surprisingly, the payoff clairvoyance
 assumption predicts better. The right interpretation is surely not that subjects are
 truly clairvoyant, always guessing the true foregone payoff perfectly but simply that
 their implicit foregone payoff estimate is closer to the truth than the last actual
 payoff or the average payoff is. For example, consider a player B who chooses 6 and
 has the lower of the two numbers. If she had chosen strategy 8 instead, she does
 not know whether the foregone payoff would have been 8 (if the other A subject
 chose 7), or 45 (if the A subject chose 9, 11, or 13). The payoff clairvoyance
 assumption says she knows precisely whether it would have been 8 or 45 (i.e.,
 whether subject A chose 7, or chose 9 or more). While this requires knowledge she
 does not have, it only has to be a better guess than the last actual payoff she got
 from choosing strategy 8 and the average payoff for the clairvoyance model to
 provide the best fit.
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 4.3. Individual Differences

 The fact that Nagel and Tang's game lasted 100 trials enabled us to estimate individual-
 level parameters with some reliability (while imposing common initial attractions).
 Figures 4a-b show scatter plot 'parameter patches' of the 30 estimates from the payoff-
 clairvoyance EWA model in a three-parameter 6 - 0 - K space. Each point represents
 a triple of estimates for a specific player; a vertical projection to the bottom face of the
 cube helps the eye locate the point in space and measure its 0 - K values. Figure 4a
 shows Odd players and Figure 4b shows Even players.
 Table 5 shows the mean of the parameter estimates, along with standard deviations

 across subjects, for the EWA models. Results for Odd and Even players are reported
 separately, because the game is not symmetric. The separate reporting also serves as a
 kind of robustness check, since there is no reason to expect their learning parameters
 to be systematically different; and in fact, the parameters are quite similar for the two
 groups of subjects.
 The EWA parameter means of the population are quite similar across the three

 payoff-learning specifications and player groups (see Table 6). The consideration
 parameter 6 ranges from 0.25 to 0.47, the change parameter 0 varies only a little, from
 0.84 to 0.92, and the commitment parameter K from 0.25 to 0.48. The standard devi-
 ations of these means can be quite large, which indicates the presence of substantial
 heterogeneity.
 Individuals do not particularly fall into clusters corresponding to any of the familiar

 special cases (compare Figure 2 and Figures 4a-b). For example, only a couple of the
 subjects are near the cumulative reinforcement line 6 = 0, K = 1 (the 'bottom back
 wall'). However, quite a few subjects are clustered near the fictitious play upper left
 corner where 6 = 1, l = 1 and K = 0.
 The cluster analyses from the EWA models do reveal two separate clusters which are

 easily interpreted. The means and within-cluster standard deviations of parameter
 values are given in Table 7. The subjects can be sorted into two clusters, of roughly
 equal size. Both clusters tend to have 6 around 0.40 and 0 around 0.80-0.90; however,
 in one cluster K is very close to zero and in the other cluster K is close to one.
 Graphically, subjects tend to cluster on the front wall representing low (K = 0) com-
 mitment, and the back wall representing high (K = 1) commitment.

 In most of our earlier work (and most other studies), all players are assumed to
 have the same learning parameters (i.e., a representative agent approach). Econo-
 metrically, it is possible that a parameter estimated with that approach will give a
 biased estimate of the population mean of the same parameter estimated across
 individuals, when there is heterogeneity. We can test for this danger directly by
 comparing the mean of parameter estimates in Table 6 with estimates from a single-
 agent analysis assuming homogeneity. The estimates are generally close together, but
 there are some slight biases which are worth noting. The estimates from the repre-
 sentative agent approach show that 4 tends to be very close to the population mean.
 However, 6 tends to be under-estimated by the representative-agent model, relative to
 the average of individual-agent estimates. This gap explains why some early work on
 reinforcement models using representative-agent modelling (which assumes 6 = 0),
 leads to surprisingly good fits. Furthermore, the parameter K from the single-agent
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 Fig. 4. Individual-level Payoff Clairvoyance EWA Model Parameter Patches. (a) Odd Subjects; (b)

 Even Subjects

 model tends to take on the extreme value of 0 or 1, when the sample means are
 around 0.40. Since there is substantial heterogeneity among subjects - the clusters
 show that subjects tend to have high Ks near 1, or low values near 0 - as if the single-
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 Table 7

 A Cluster Analysis Using Individual-level Estimates

 Mean Parameter Estimates (Std. Dev.)

 Odd Players Even Players

 Number of subjects pP K Number of subjects P 6 K

 20 0.96 0.40 0.07 21 0.96 0.48 0.02

 (0.07) (0.35) (0.10) (0.08) (0.36) (0.03)
 10 0.82 0.51 0.99 9 0.76 0.44 0.98

 (0.20) (0.33) (0.01) (0.17) (0.27) (0.02)

 agent model uses a kind of 'majority rule' and chooses one extreme value or the
 other, rather than choosing the sample mean. Future research can investigate why
 this pattern of results occurs.

 5. Conclusions

 In this article, we extend our experience-weighted attraction (EWA) learning model to
 games in which players know the set of possible foregone payoffs from unchosen
 strategies, but do not precisely which payoff they would have gotten. This extension is
 crucial for applying the model to naturally-occurring situations in which the modeller
 (and even the players) do not know much about the foregone payoffs.
 To model how players respond to unknown foregone payoffs, we allowed players to

 learn about them by substituting the last payoffs received when those strategies were
 actually played, by averaging the set of possible foregone payoffs conditional on the
 actual outcomes, or by clairvoyantly guessing the actual foregone payoffs. Our results
 show that these EWA variants fit and predict somewhat better than reinforcement and
 belief learning. The clairvoyant-guessing model fits slightly better than the other two
 variants.

 We also estimated parameters separately for each individual player. The individual
 estimates showed there is substantial heterogeneity but individuals could not be sharply
 clustered into either reinforcement or belief-based models (though many did have
 fictitious play learning parameters). They could, however, be clustered into two distinct
 subgroups, corresponding to averaging and cumulating of attraction. Compared to the
 means of individual level estimates, the parameter estimates from the representative-
 agent model have a tendency to modestly underestimate 6 and take on extreme values
 for cK.

 Future research should apply these payoff-learning specifications, and others, to
 environments in which foregone payoffs are unknown (Anderson, 1998; Chen, 1999).
 If we can find a payoff-learning specification which fits reasonably well across different
 games, then EWA with payoff learning can be used on naturally-occurring data sets -
 see Ho and Chong (2003) for a recent application - taking the study of learning
 outside the laboratory and providing new challenges.
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