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 extend the Schmittlein et al. model (1987) of customer lifetime value to include satisfaction. Customer
 purchases are modeled as Poisson events, and their rates of occurrence depend on the satisfaction of the

 most recent purchase encounter. Customers purchase at a higher rate when they are satisfied than when they
 are dissatisfied. A closed-form formula is derived for predicting total expected dollar spending from a customer
 base over a time period (0, T], This formula reveals that approximating the mixture arrival processes by a single
 aggregate Poisson process can systematically underestimate the total number of purchases and revenue.

 Interestingly, the total revenue is increasing and convex in satisfaction. If the cost is sufficiently convex, our
 model reveals that the aggregate model leads to an overinvestment in customer satisfaction. The model is further
 extended to include three other benefits of customer satisfaction: (1) satisfied customers are likely to spend more
 per trip on average than dissatisfied customers, (2) satisfied customers are less likely to leave the customer base
 than dissatisfied customers, and (3) previously satisfied customers can be more (or less) likely to be satisfied
 in the current visit than previously dissatisfied customers. We show that all the main results carry through to
 these general settings.

 Key words: customer satisfaction; customer value analysis; hidden Markov model; nonstationarity; stochastic
 processes

 History: This paper was received October 31, 2003, and was with the authors 11 months for 3 revisions;
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 1. Introduction

 Customers are assets, and their values grow and
 decline (Shugan 2005). Segmenting customers based
 on their lifetime value is a powerful way to target
 them because marketing mix activities can then aim
 at enhancing customer value. In fact, predicting and
 managing customer lifetime value has become central
 to marketing because the health of a firm is intimately
 linked to the health of its customer base. This paper
 develops an analytical framework for forecasting cus-
 tomer lifetime value based on her satisfaction with
 the firm.

 The relevance of this research is evident in

 the burgeoning practitioner literature on customer
 relationship management. Industry observers have
 emphasized the importance of incorporating satisfac-
 tion metrics into customer valuation and exhorted

 firms to balance customer satisfaction and cost control

 (e.g., Forrester Research, Inc. 2003, Jupiter Research,
 Inc. 2000). This paper provides a formal methodology

 to assess investment in customer satisfaction by link-
 ing it to likely future shopping and purchase patterns
 and hence to revenue flow.

 Our analytical modeling framework rests on two
 premises. First, we posit that customer satisfaction is
 a key controllable determinant of customer lifetime
 value. That is, ceteris paribus, a satisfied customer
 has a higher lifetime value than a dissatisfied cus-
 tomer. This premise is both intuitively appealing and
 empirically sound. Several studies have shown that
 customer satisfaction is a good predictor for likeli-
 hood of repeat purchases and revenue growth (e.g.,
 Anderson and Sullivan 1993, Jones and Sasser 1995).
 In addition, prior research has shown that customers
 react negatively to poor service (e.g., stockouts) by
 switching to another firm on subsequent shopping
 trips (Fitzsimons 2000).

 Second, customer satisfaction can be increased by
 investing in costly technology or productive pro-
 cesses. For instance, a call center that increases its
 number of customer representatives will reduce
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 queueing time. Similarly, a catalog firm can improve
 its logistics processes to shorten delivery time and
 reduce the incidence of wrong shipments. The invest-
 ment in these costly productive processes, however,
 requires a formal quantification of their revenue
 implication. A goal of this research is to derive a
 precise relationship between revenue and customer
 satisfaction by developing a microlevel stochastic pur-
 chase model.

 We build on the seminal work of Schmittlein et al.

 (1987) and Schmittlein and Peterson (1994). Their
 model assumes that customer purchase arrivals are
 Poisson events. Customers are allowed to die (i.e.,
 switch to another firm or leave the product category
 entirely) in a Poisson manner, so that the number of
 active customers can decline over time. Customers are

 heterogeneous in their purchase intensity and death
 propensity. The amount spent on each purchase is
 normally distributed and is assumed to be indepen-
 dent of the arrival and death processes. They derive
 an elegant formula to predict the total expected dollar
 spending from a customer base over a time period.

 There are three behavioral mechanisms by which
 customer satisfaction can affect this classical stochas-

 tic purchase model. First, a satisfied customer is likely
 to have a higher purchase arrival rate and make more
 trips to the firm. In other words, the firm can increase
 its market share of the product category by making
 the customer happy. Second, a satisfied customer is
 less likely to switch to another seller or leave the
 product category entirely. That is, a satisfied customer
 has a lower death rate. Third, a satisfied customer
 might increase her average spending in the product
 category on each purchase visit.

 The basic model in §2 extends Schmittlein et al.
 (1987) to capture situations where arrival rate depends
 on satisfaction. We derive a closed-form formula for

 determining the total expected dollar spending and
 characterize the optimal level of customer satisfac-
 tion. Section 3 extends the basic model to capture the
 effects of satisfaction on death rate and average expen-
 diture. Furthermore, we extend the basic model to
 allow satisfaction in the current visit to depend on sat-
 isfaction in the previous visit. We show analytically
 that most qualitative insights remain unchanged with
 these extensions. Section 4 conducts a comprehensive
 numerical analysis to illustrate the main theoretical
 results for the general case. Section 5 concludes and
 suggests future research directions.

 This paper makes three contributions. First, we ex-
 tend the Schmittlein et al. (1987) framework to include
 satisfaction in predicting customer lifetime value. We
 derive a closed-form formula to predict the total
 expected dollar spending from a customer base. This
 formula allows the firm to predict lifetime value based
 on customer satisfaction, a key indicator of customer

 health. Second, we show that the total number of pur-
 chases is convex and increasing in customer satisfac-
 tion. In addition, we find that one will systematically
 underestimate the total expected dollar spending if
 one ignores the nonstationarity in customer arrivals
 and departures because of the variation in customer
 satisfaction. Third, the analytical framework allows
 the firm to actively manage its productive processes
 to increase customer lifetime value. We prove that if
 the cost is sufficiently convex, a firm will overinvest in
 productive processes when it fails to account for the
 variation in customer satisfaction.

 2. The Basic Model
 We consider a firm that offers a homogeneous product
 or service to a group of N customers. The customers
 are ordered such that customer i is a heavier user than

 customer / if 1 <i<j< N. The production process
 is inherently stochastic, so that a customer is satis-
 fied with probability p, and dissatisfied with proba-
 bility (1 - p) at each purchase encounter.1 We assume
 that the production process does not discriminate cus-
 tomers and that it is independent of previous pur-
 chase encounters, so that customer satisfaction can be
 modeled as independently and identically distributed
 Bernoulli trials.

 The interpurchase time of a customer is assumed
 to have an exponential distribution. The exponen-
 tial rate varies with the outcome of each purchase
 encounter and differs across customers.2 For cus-

 tomer i, i e {1, . . . , N}, her next purchase comes with
 arrival rate A/D if she is dissatisfied, and A/s if she is

 1 Our model may be extended to investigate more than two lev-
 els of satisfaction (e.g., three levels such as below expectation, met
 expectation, above expectation). For ease of exposition, we restrict
 ourselves to dichotomous levels such as happy versus unhappy,
 above expectation versus below expectation, satisfied versus dis-
 satisfied, and so on.

 2 Like Schmittlein et al. (1987), we assume exponential interpur-
 chase times for its analytical tractability. The exponential assump-
 tion (i.e., purchase events are Poisson arrivals) has been applied
 extensively in the marketing literature because of its parsimony
 and empirical performance (see, for example, Fader et al. 2003,
 2004; Morrison and Schmittlein 1981; Park and Fader 2004). The
 exponential assumption appears to work well for some product cat-
 egories (e.g., frequently purchased consumer goods) (Schmittlein
 et al. 1987). It should be noted that we do not have a stationary
 Poisson process. We allow purchase and death rates to be depen-
 dent on customer satisfaction. Besides customer satisfaction, other
 marketing mix variables can also influence the rate of purchase
 arrivals. For instance, Ho et al. (1998) show that rational customers
 tend to shop more often with more frequent price promotion. Sim-
 ilarly, Bawa and Shoemaker (2005) show that free sample can sig-
 nificantly increase a customer's future purchase arrival rate. Thus
 the purchase and departure processes are nonstationary. In fact, our
 model shows customer satisfaction can be an important source of
 nonstationarity in customer value analysis.
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 satisfied.3 Customers visit more often when they are
 satisfied such that A/s > AlD for all i. Our model can
 accommodate any parameter values.4
 We assume a Markovian property, so that the

 arrival rate depends only on the most recent purchase
 encounter. This assumption is reasonable if customers
 exhibit a kind of "recency effect" and react strongly
 to the most recent purchase encounter. In §3.3, we
 will extend the basic model to allow a customer's
 current satisfaction to correlate with her satisfaction

 in the previous purchase encounter.5 When a cus-
 tomer defects, she is "dead"; otherwise, the customer
 is "alive." Clearly, a customer's satisfaction can affect
 her propensity to defect. For ease of exposition, we
 assume that each customer i has a defection rate /xf
 that is independent of satisfaction. In §3.2, we relax
 this assumption to allow the defection rate to vary by
 satisfaction level.

 On each purchase encounter, a customer spends a
 random dollar amount that is independent of pur-
 chase outcome (i.e., whether she is satisfied or dissat-
 isfied). The dollar spending follows a general random
 distribution with expectation Q. This assumption is
 reasonable for necessity product markets (e.g., hospi-
 tal visits) where spending is mainly driven by needs.
 In §3.1, we relax this assumption to allow it to be con-
 tingent on the purchase outcome to capture some dis-
 cretionary product markets (e.g., restaurants), where
 customers might modify spending based on service
 outcome.

 We are interested in addressing the following three
 managerial questions: (1) What is the expected num-
 ber of customers who remain "alive" at time T?

 (2) What is the expected total dollar spending from
 the customer base during (0, T]? (3) Given a cost of
 providing customer satisfaction, what is the optimal
 customer satisfaction probability p* that maximizes
 total profit from the customer base?

 We will address these questions one by one. (Proofs
 of all of the results can be found in the appendix.) We
 first derive the probability of a customer being alive
 at time T. Because the death rate for customer /, fr, is
 independent of the satisfaction level, the "departure

 time" for the customer has an exponential distribution
 with rate fit. Therefore,

 Pr [Customer i is alive at time T] = e~^T . (1)

 Because customers' departure processes are indepen-
 dent of each other, the expected number of customers
 who remain alive at time T is given by

 N

 E[Number of customers at time T] = ^e"^7. (2)
 i=i

 2.1. Total Expected Dollar Spending During (0, T]
 Because customers purchase more frequently when
 they are satisfied, their total expected dollar spending
 during (0, T] depends on whether they are satisfied
 or dissatisfied at time t = 0.

 Define y{ = p\iD + (1 - p) A/S. If all the customers are
 dissatisfied at time 0, the total expected dollar spend-
 ing from the customer base during (0, T] is

 R = qt r^g a - e-»T) - pAiD,(Ag ~ y
 qt £d m a - e-»T) - r,(r, + M,)

 .(l-g-<*+'">T)l (3)
 If all the customers are satisfied at time 0, the total
 expected dollar spending from the customer base dur-
 ing (0, T] is

 •(l-e-^>)T)\ (4)

 Clearly, Rs > RD, so customers spend more when they
 are initially happy. Let AR = Rs - RD. It can be easily
 shown that AR increases with the difference in arrival

 rates (AlS - A/D). Thus AR is higher if purchase rate is
 more responsive to satisfaction. Because AR decreases
 with the death rate /x,, we infer that the impact of sat-
 isfaction is more pronounced in markets where cus-
 tomers have a longer expected life.

 The total expected dollar spending from the cus-
 tomer base is R = pRs + (1 - p)RD. Proposition 1 pro-
 vides a closed-form expression for predicting the total
 expected dollar spending.

 Proposition 1. The total expected dollar spending
 during (0, T] from the customer base is

 . (1 - «?-(1l'+w)T)l (5)

 3 Anderson et al. (2004) empirically show that the difference in
 arrival rates can be significant in catalog purchases.

 4 We explicitly capture heterogeneity by allowing each customer to
 have a personal set of arrival and departure rates. Allowing het-
 erogeneity is important because Rust and Verhoef (2005) show that
 response to marketing interventions in intermediate-term customer
 relationship management is highly heterogeneous.

 5 We do not consider the related questions of sizing of customer
 segment (i.e., which customers to serve) and optimal contact fre-
 quency (e.g., number of catalogs to send). See Eisner et al. (2004)
 for a nice model and application. We also do not study product
 choice on each visit. See Ho and Chong (2003) for a model of stock-
 keeping unit choice.
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 Because the purchase arrival rate depends on the
 satisfaction outcome of one's previous visit, the inter-
 purchase time is a hyperexponential random variable.
 It is exponential with mean 1/A;D with probability
 (1 - p) and with mean l/AlS with probability p. In the
 rest of this paper, we will use the term SMC-p to refer
 to the model that ignores the nonstationarity in pur-
 chase arrivals and that estimates the dollar spending
 by using the Schmittlein et al. (1987) formula with an
 aggregate arrival rate. The aggregate arrival rate of
 customer i in the SMC-p model, A?, should give an
 average interpurchase time that is identical to that of
 the hyperexponential random variable. Consequently,
 we have

 i =i-p , v

 ^A'->A,D + (l-P)A,,-- • (6)
 Note that the SMC-p model indirectly captures cus-
 tomer satisfaction through the aggregate purchase
 arrival rate, A*. The Schmittlein et al. (1987) formula
 predicts that the expected total dollar spending is

 N r \e "I

 Re = QE M-(l-e-*'T) L (7)

 The importance of the three revenue formulas, Equa-
 tions (3)-(5), can be assessed by a comparison with
 that of the SMC-p model, Equation (7). Equations
 (3)-(5) and (7) imply the following simple revenue
 equalities: RD = Re - tjd, Rs = Re + tjs, and jR = Re + rj,
 where r]D, rjs, and 17 are strictly positive, or equiva-
 lently, RD < Re , Rs > Re ', and R > R6.6 The inequalities
 involving RD and Rs are intuitive. The first suggests
 that when the customer base is initially dissatisfied,
 their dollar spending is less than that given by the
 SMC-p model. The second implies that when the cus-
 tomer base is initially satisfied, their dollar spending
 is more than that given by the SMC-p model. Both
 results simply capture the fact that customers buy
 more when they are satisfied.
 The revenue inequality involving R is surprising.
 It shows that the total expected dollar spending from
 the customer base is higher than that given by the
 SMC-p model. We state this important result formally
 below.

 Proposition 2. The SMC-p model underestimates the
 total dollar spending by an amount rj, where

 Several points are worth noting. First, when p = 0
 (i.e., the customer is always dissatisfied), p = 1 (i.e.,
 the customer is always satisfied), or AlS = AlD (i.e.,
 customer arrival rates are not affected by satisfac-
 tion), the bias vanishes. That is, our model and the
 SMC-p model give the same prediction. To the best
 of our knowledge, this is the first generalization of
 the Schmittlein et al. (1987) model to incorporate cus-
 tomer satisfaction. The formula allows one to quantify
 the marginal value of customer satisfaction so that a
 firm can weigh this value against the incremental cost
 of providing a better service. In addition, the quan-
 tification fills an important gap in operations manage-
 ment literature, where the marginal value of customer
 satisfaction is often assumed exogenously. Second, the
 bias increases in the total number of customers (N)
 and increases linearly in the average dollar spent (Q)
 per trip. Third, the bias increases in a quadratic man-
 ner in the incremental purchase rate from satisfac-
 tion, i.e., A/s - A/D. This result implies that the bias is
 more dramatic in markets where customers are more

 sensitive to service quality. Fourth, the bias is larger
 when customers have a longer expected life (i.e., a
 low death rate, /x,).

 From Proposition 1, one can show that the total
 expected dollar spending as a function of the proba-
 bility of adequate service p is increasing. Proposition 3
 establishes a stronger result that it has an increasing
 return to scale in p.

 Proposition 3. The total expected dollar spending
 during (0, T]from the customer base is convex in the prob-
 ability of adequate service. That is, d2R/dp2 > 0.

 This is an important and surprising result. One
 would have expected customer satisfaction to have a
 diminishing return. The result provides a formal jus-
 tification for why many firms invest relentlessly in
 customer satisfaction. Our result suggests that this is
 optimal as long as the costs are either linear or not
 "too convex" in p. We shall show below (see Propo-
 sition 4) that it can be problematic if the costs are
 sufficiently convex (which can occur in practice).

 2.2. Optimal Investment in Customer Satisfaction
 Proposition 3 suggests that the total expected dollar
 spending as a function of the probability of adequate
 service p is convex. To determine the optimal service,
 one must know the shape of the cost function. In
 general, it is reasonable to expect the total cost to be
 increasing in the probability of adequate service (p)

 6 The expression for 17 is given in Proposition 2, and rjD and tjs are
 given by

 '°=s§[£^r(I-'-
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 and the total expected number of customer visits (A).
 An informal survey of several call center outsourcing
 firms suggests that the following two-part tariff pric-
 ing structure is often employed:

 TC(p) = F{p) + c{p).A.

 For analytical tractability, we assume a constant
 marginal cost per purchase encounter and set c(p) = c.
 From Proposition 1, we have R = QA. Thus the profit
 function can be written as follows:

 7r = R-TC = (Q-c).A-F(p) = Rm-F(p). (9)

 It is clear that the modified revenue function, Rm,
 is convex in p (just as R is). We consider two sep-
 arate cases of F(p). First, F(p) is concave (possibly
 linear) in p. As the company invests more in cus-
 tomer satisfaction, it receives an increasing marginal
 revenue but incurs a constant or decreasing marginal
 cost. Therefore the better the service, the higher the
 profit. It is optimal for companies to seek to achieve
 a perfect customer satisfaction of 100%. Second, F(p)
 is strictly convex in p. Here, it costs more to improve
 each additional incremental level of customer satis-

 faction. More often than not, this is the case we face
 in reality. It is not immediately clear what the shape
 of the profit function looks like as a function of p.
 Intuitively, when the cost function is "less convex"
 than the revenue function (i.e., both marginal revenue
 and marginal cost are increasing in p, but the former
 outpaces the latter), it again makes sense to pursue
 a perfect customer satisfaction. If the cost function
 is "more convex" than the revenue function, how-
 ever, the profit will eventually decrease as p becomes
 higher and higher. This means that an interior opti-
 mal point exists for p. That is, it is optimal to invest
 in customer satisfaction up to a level less than 100%.

 We now analyze the latter case in detail. Examples
 of service delivery systems that have a convex cost
 function are common. They include the following:

 • M/M/m queueing systems. If the cost is directly
 proportional to either the service rate of the indi-
 vidual servers or the number of servers, m, the cost
 function is convex as long as customer satisfaction is
 measured by the probability of not having to wait in
 the queue at all or by the average waiting time in the
 system (for details, see Kleinrock 1975).

 • M/M/m/K finite waiting space queueing systems.
 If the cost is directly proportional to either the ser-
 vice rate of the individual servers or the number of

 servers, m, the cost function is convex as long as cus-
 tomer satisfaction is measured by the proportion of
 lost customers because of finite waiting space.

 • The classical single-period newsvendor inventory
 setup. Under this setup, customer satisfaction is
 defined by the probability that the demand is being

 fully met. Thus, if the uncertain demand is dis-
 tributed with a cumulative distribution G(-) and the
 newsvendor carries x units of inventory, customer
 satisfaction, p, is given by G(x). To achieve this
 level of customer satisfaction, the newsvendor must
 incur an inventory holding cost of h • x, where h is
 the unit inventory holding cost per unit time. Con-
 sequently, the inventory holding cost necessary to
 achieve a customer satisfaction of p is h • G~l(p). As
 long as G"1 is convex in p (or equivalently, G is
 concave in x), the cost function is convex. Any distri-
 bution that has a monotonically nonincreasing prob-
 ability density function satisfies such a condition. For
 example, exponential distribution, some Weibull and
 Gamma distributions, and uniform distribution all
 have a monotonically nonincreasing probability den-
 sity function.

 To obtain managerial insights, we use a simple con-
 vex cost function that is quadratic: F(p) = a + bp2.
 Here, parameter a represents the cost necessary to
 achieve the lowest customer satisfaction, and b repre-
 sents how fast the cost increases in p. As we stated
 before, when b is small such that the cost function is
 less convex than the revenue function, the profit is
 convex, and the optimal service level is achieved at
 either p = 0 or p = 1. The interesting case is when the
 cost function is more convex than the revenue func-

 tion. Again, we compare our optimal investment in
 customer satisfaction with that of the SMC-p model.
 Similar to Equation (9), we define the SMC-p profit to
 be ire = Re- TC(p) = Rem - F(p), where

 K = (Q-c)E\-Q-*-'iiT)\ (10)
 z=i LM/ J

 From Proposition 2, we have it = tt6 + rjm, where

 One can show that there exists a threshold value

 of customer satisfaction, p e (0, 1), such that rjm is
 decreasing in p for p > p (i.e., v[m < 0 for p > p).

 The following proposition states that the firm may
 overinvest in customer satisfaction when they do not
 explicitly account for the nonstationarity in customer
 arrivals because of variation in customer satisfaction.

 Proposition 4. Let p* be the maximizer of ir, and
 pe* be the maximizer of ire. If

 f/A,-s(AfS-A,-D)\/l-g-*T\]
 £A 2A,D A /*/ )\
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 and pe* > p, then pe* > p*7

 Proposition 4 states that when the firm pursues a
 high customer satisfaction strategy, it tends to over-
 invest if it uses the SMC-p model to determine the
 optimal customer satisfaction (i.e., if it ignores non-
 stationarity in purchase arrivals because of variation
 in customer satisfaction).
 This result appears counterintuitive. Because the

 SMC-p model underestimates the total profit by 17 m,
 one would expect it to prescribe a lower optimal
 customer satisfaction level. However, it is the first
 derivative of r\m, v[m, not r\m itself, that matters in
 determining the optimal customer satisfaction. To see
 this, we note that marginal cost equals marginal rev-
 enue at the optimal customer satisfaction. Both mod-
 els have the same identical marginal cost; they differ
 only in their marginal revenue. Because t]m = tt - tt6,
 the derivative of 77 m plays an important role. As
 indicated above, there exists a threshold p such that
 r\'m < 0 for p > p. Therefore, when pe* > p, the addi-
 tional negative marginal revenue v[m makes the total
 marginal revenue of our model smaller than that of
 SMC-p. Consequently, our model prescribes a lower
 optimal customer satisfaction.
 We can show that as the departure rate [xx gets

 smaller, the threshold p also gets smaller (see the
 Proof of Proposition 4 in the appendix). This yields
 an interesting implication: If the firm has a more loyal
 customer base, it is more likely to overinvest in cus-
 tomer satisfaction if it uses the SMC-p model. There-
 fore the importance of capturing nonstationarity in
 purchase arrivals is even more critical when the firm
 enjoys a high customer loyalty.

 3. Model Extensions
 Section 2 presents a model that explicitly captures the
 impact of customer satisfaction on the rate of pur-
 chase arrival. In this section, we extend the model in

 three important ways. First, we allow customer satis-
 faction to influence the average expenditure on each
 visit, so that customers spend more on the current
 visit if they were satisfied with their previous visit.
 Second, we let customers' departure processes to be
 contingent on satisfaction. This extension captures the
 intuition that unhappy customers are more likely to
 switch to another firm or leave the product category
 entirely. Third, we allow customer satisfaction to cor-
 relate over time, so that customers' past satisfaction
 may influence their current satisfaction.

 3.1. Contingent Spending Amount
 We let the average expenditure on each visit to
 depend on whether the customer was previously sat-
 isfied with the firm. If a customer is satisfied, she
 spends a random amount with an average of Qs; and
 when a customer is dissatisfied, she spends a ran-
 dom amount with an average of QD. Clearly, we have
 Qs > Qd-

 Recall that the death rate of customer i remains

 at fi ,. Hence the probability of customer i being alive
 at time T is still e~^iT. Similarly, the expected number
 of active customers at time T is 5ZJ=i ^~/1/T.

 Because customer satisfaction at each visit is inde-

 pendently and identically distributed, p fraction of the
 visits will be satisfactory and (1 - p) fraction of the
 visits dissatisfactory. Therefore the average amount a
 customer spends is simply Qs times the number of
 satisfactory visits, plus QD times the number of dis-
 satisfactory visits. Proposition 5 provides the revised
 formula for the total expected dollar spending during
 (0, T] from the customer base.

 Proposition 5. The total expected dollar spending
 during (0, T] from the customer base is

 k = [pQs + (i-p)Qd]-e[- (i-e-*'T)
 ,=iL 7/Mi

 I P(l-P)(Ag-A<p)2(1 c-<yl+u,)T)] (n)

 Similarly, we show that the SMC-p model underes-
 timates the above expression by an amount given by

 V = \pQs + (1-P)Qd\

 •^(1w!t")'D)2(i-g"to')r)1' /=lL fi\n ; 1 /*// J (i2) /=lL fi\n ; 1 /*// J

 Again, the revised revenue function is convex in p.
 Also, the SMC-p model still leads to an overinvest-
 ment in customer satisfaction. Hence we conclude

 that all the main results presented in §2 generalize to
 this more realistic setting.

 3.2. Contingent Death Rate
 We allow the departure process to be contingent on
 whether customers are satisfied. Customer i defects

 with a rate of /x,/D if she is dissatisfied and with a rate
 of iiiS if she is satisfied. As we shall see below, this
 extension has significantly increased the complexity
 of the analysis.

 Let PA{ be the probability that customer i is alive
 at time T. Let /3n and /3l2 be the two roots of the
 quadratic equation

 P2 + \pKd + (1 " P)Ks + M/d + MisliS

 + [VisViD + (1 " P) AfsM/o + pAlDM/s] = 0.

 7 Similarly, we can show that there exists a N such that if pe* < N,
 then pe* < p*. This case is less important because customer satisfac-
 tion is often high in practice. We choose to leave this out.
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 The probability that customer i is alive at time T is
 given in Lemma 1.

 Lemma 1. !

 PAI. = AI-^lT + BI.^nT/ (13)

 where

 Af = (p(Pn + AlD + fiiD)[(l - p)hiS(v<is ~ Mid)

 + Patos + /4l) * (P(l " V)KdKsPh

 -iSnliBn+M/D+pA/DlIiSa+Mfs + a-p)*,^])"1/

 B,- = ((l-p)[i8,-iM,-D + M?D + pA,-D(M«D-M,-s)]

 • 08a + A« + /%)) ' (P(l " V)KuKsPi2

 -A^IiS/i+M/D+pAiDl^a+Mis + a-pJAfs])"1-

 It is clear that the expected number of customers
 remaining at the end of T is Y^Li PA{.

 Equation (13) is more complex than the one given
 in Equation (1), where the death rate is independent
 of customer satisfaction. Note that the probability of
 being alive for each customer is a superposition of
 two exponential terms. It can be shown that when
 fxs =jad, Equation (13) reduces to Equation (1).

 Proposition 6. The total expected dollar spending
 from the customer base during (0, T] is

 R = Q DQ(1 - e*1*) + D/(l - e"aT)]' (14)
 i=i

 where

 Q = (pA,s08,1 + A,-D+/t/D)[j8a+/*,-s + (l-p)(A/s-AI-D)])

 • (p(l - p)AlDA,s)3,1 - pn]frn + nn + pA,D]

 •[/3,2 + ^s + (1-P)A,s])-1,

 D, = ((l-p)A,D(A2+A,s+/i,s)[/3,1+JLt,D+p(A,D-A,s)])

 • (P(l - P)A,DA,s/3,-2 " Palfin + M,d + pA,-D]

 •D8i2 + /t« + (l-p)A/s])"1-

 Even though the revenue expression is much more
 complex, we can again show that it is convex in p.
 We cannot, however, analytically prove that the cor-
 responding SMC-p model still leads to a systematic
 downward bias in revenue forecast and an overinvest-
 ment in customer satisfaction. An extensive numeri-

 cal analysis in §4 suggests that both results do carry
 through to this more realistic setting as well.

 3.3. Serial Correlation in Customer Satisfaction

 The basic model assumes that the satisfaction out-

 comes of successive purchase encounters are inde-
 pendent of each other. This is reasonable if customer
 satisfaction is primarily driven by factors determined

 by the service provider, such as the inventory level
 at a store and the number of servers at a counter.
 There exist scenarios in which customer satisfaction

 may correlate over time, so that current satisfaction
 may depend on past satisfaction. This serial correla-
 tion could either be negative or positive. For example,
 if a customer was dissatisfied last time, her service
 expectation for the forthcoming visit may be lower as
 a consequence, and hence she is more likely to feel
 satisfied. On the other hand, one can also argue that
 if the customer was satisfied last time, she is likely
 to be more positive in assessing the current visit, and
 hence more likely to be satisfied.

 We use a hidden Markov model to model this serial
 correlation of customer satisfaction. Our extension is

 similar to a model developed by Netzer et al. (2005).
 Specifically, we use a two-state Markov chain to cap-
 ture the transition of customer satisfaction over time.

 Let px be the probability of satisfaction if the customer
 was dissatisfied last time and p2 be the probability
 of satisfaction if the customer was satisfied last time.

 Then, the transition probability of satisfaction is

 /!-Pi Pi\

 \l-p2 p2)
 Given the transition probability matrix, the steady-
 state (or long-run average) probabilities of a customer
 being dissatisfied and satisfied are (1 - p2)/(l - P2+P1)
 and Pi/(1 - P2 + Pi)/ respectively. If one focuses on the
 "steady-state" behavior, one can use p = p1/(l - p2 +
 px) in our basic model to revise the total expected dol-
 lar spending formula.

 Proposition 7. Let p = p1/(l - p2 + Pi). Then, the
 total expected dollar spending during (0, T] from the cus-
 tomer base is

 R = (i-fc+Pi)-Q-E[- fl-*-"1") i=l L JiPi

 + p(l-p)(A/s-A;D)^ _ 1
 71(71+/*;) J

 The revised revenue function differs from the orig-
 inal revenue function given in (5) only by a mul-
 tiplicative factor, (1 - P2 + Pi)- That is, ignoring the
 time dependency of satisfaction will cause the rev-
 enue forecast to be off by a factor of (1 - p2 +Pi). If cus-
 tomer satisfaction is positively correlated over time,
 we have p1 < p2 and the basic model overstates the
 revenue. If satisfaction is negatively correlated over
 time, we have px > p2 and the basic model under-
 states the revenue. Clearly, both models give the same
 prediction when there is no time dependence (i.e.,
 px = p2). All the main results carry to this more general
 setting as we vary the steady-state customer satisfac-
 tion, p = Pi/(l -P2 + P1)/ as long as we keep 1 -p2 + Pi
 fixed.
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 4. Numerical Study
 The general model allows two distinct arrival and
 death rates for a customer: one when the customer
 is satisfied and the other when she is not. As dis-

 cussed in §§2 and 3, ignoring the nonstationarity in
 customer arrivals or departures because of variation
 in customer satisfaction (i.e., using the SMC-p model)
 can lead to a systematic downward bias in estimating
 the total expected dollar spending. In addition, we
 show that the SMC-p model leads to an overinvest-
 ment in customer satisfaction and suboptimal profits.

 To illustrate the above points, we present a sys-
 tematic numerical analysis using a two-segment mar-
 ket (heavy versus light users). We use Equation (6)
 to determine the "equivalent" arrival rates for the
 SMC-p model. We derive the "equivalent" death rates
 by equating (1) and (13). The numerical study also
 allows us to quantify the nature and magnitude of the
 potential biases of the SMC-p model.

 We choose the model parameters such that satisfied
 customers are twice as quickly to return and half as
 quickly to defect. The light user segment has ALS = 1.2,
 ALD = 0.6, /jlls = 0.3, and fiLD = 0.6 and the heavy-
 user segment has AHS = 2.0, AHD = 1.0, /xHS = 0.5, and
 jjiHD = 1.0. These values are consistent with previous
 empirical estimates (see, for example, Morrison and
 Schmittlein 1981, Schmittlein et al. 1987). Without loss
 of generality, we normalize T to 1.0. The size of the
 customer base (N) is set to 1,000 and the average
 expenditure Q is set to 1.0.

 Based on the above parameters, we simulate hypo-
 thetical purchases for each of the 1,000 customers.
 The probability of adequate service p and the size
 of the heavy-user segment 8 are varied systemati-
 cally. We assess the predictive performance of our
 model and the SMC-p model in forecasting the total
 expected dollar spending. For each model, we mea-
 sure prediction error by the mean absolute deviation.
 The relative performance of the two models is evalu-
 ated by the relative difference in their mean absolute
 deviations, i.e., (MAD' - MAD) /MAD, where MAD'
 and MAD are the prediction error of the SMC-p and
 our models, respectively. If our model is better, we
 will see a positive value in the relative error measure
 (i.e., MADe > MAD). Table 1 shows the relative error

 Table 1 Relative Difference in the Mean Absolute
 Deviations

 (MAD* - MAD)/MAD(%)

 p-> 0.2 0.5 0.8

 8

 0.2 14.11 30.78 25.73
 0.5 9.15 19.25 14.46
 0.8 7.29 12.33 8.98

 measure across three levels of p (0.2, 0.5, 0.8) and 8
 (0.2, 0.5, 0.8) values. Clearly, our model dominates the
 SMC-p model. It also shows that the relative error
 measure can be as high as 31% and appears to be
 highest when p = 0.5.
 We investigate the relative magnitude of the total

 expected dollar spending between the SMC-p model
 and our model, i.e., (R - Re)/R = t)/R. If this differ-
 ence is small, we have evidence that the SMC-p model
 is robust to mis-specification involving nonstationar-
 ity in purchase arrivals and departures because of
 variation in customer satisfaction. Figure 1 shows the
 importance of accounting for nonstationarity in pur-
 chase arrivals because of variation in customer sat-

 isfaction. As shown, the relative difference in total
 expected dollar spending varies from 4% to 8% as we
 change the probability of adequate service. Similar to
 the relative error measure reported above, the differ-
 ence appears to be highest when p = 0.5. This finding
 reinforces the analytical result that the SMC-p model
 leads to a downward bias in predicting total expected
 dollar spending.

 We observe a smaller variation in the relative differ-

 ence in revenue when we vary the size of the heavy
 segment (8). For instance, when p = 0.8, the relative
 revenue difference r)/R is 5.54%, 5.09%, and 5.59% for
 8 = 0.2, 0.5, 0.8, respectively. We conclude that the rel-
 ative revenue difference is more sensitive to the prob-
 ability of adequate service p than the segment size 8.

 We now examine the degree of overinvestment in
 customer satisfaction and its impact on profit for
 the SMC-p model. To this end, we set the constant
 marginal cost per purchase encounter (c) to 0.3 and
 the cost necessary to achieve the lowest customer sat-
 isfaction (a) to 100. We choose the cost parameter b to
 ensure that F(p) is sufficiently convex to capture real-
 istic scenarios. Consequently, we set b to 400, 425, 450.

 Figure 1 Relative Revenue Difference Between the General and the
 SMC-p Models
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 Figure 2 Difference Between Optimal Levels of Customer Satisfaction
 of the SMC-p and the General Models

 Figure 2 shows the difference between the optimal
 levels of customer satisfaction between the SMC-p
 model and our model, i.e., (pe* - p*). As expected,
 the optimal customer satisfaction of the SMC-p model
 (p6*) is always greater than that of our model (p*). In
 particular, when 8 is 0.5, this difference is 22%, 30%,
 37% for the three different levels of cost parameters
 used. Clearly, the cost parameter b plays an impor-
 tant role in deciding the degree of bias in the optimal
 investment in customer satisfaction.

 Figure 3 translates the investment bias in customer
 satisfaction associated with the SMC-p model into the
 impact on profit. The figure reports the relative profit
 loss of the SMC-p model and shows that when S is
 0.5, the firm can increase its profit by 2.12%, 4.88%,
 and 8.40% if it optimally provides a lower level of
 customer satisfaction under the three cost scenarios.

 When S is close to 1.0, similar to Figure 2, the bias van-
 ishes and the two models give the same prediction.

 We also vary the relative magnitudes of arrival and
 death rates and study their impact on the three mea-
 sures of interest: rj/R, (pe* - p*), and (tt(p*) - 7r(pe*))/
 7r(p*). In the simulation described below, S and b are
 set to 0.5 and 400, respectively.

 We vary the ratio in arrival rates between satisfied
 and dissatisfied customers, AyD/AyS, for y = H,L from
 0.4 to 0.6 (note that this ratio is set to 0.5 for the base

 Figure 3 Relative Profit Loss of the SMC-p Model

 case shown in Figures 1-3). Table 2 shows the sensi-
 tivity analysis results. As expected, we find that as the
 ratio increases (i.e., the arrival rates between satisfied
 and dissatisfied customers are closer in magnitude),
 the relative revenue difference rj/R becomes smaller.
 However, the relative difference between the opti-
 mal levels of customer satisfaction (pe* - p*) increases,
 which results in a significant relative profit loss for
 the SMC-p model. For example, when AHD/AHS =
 ALD/ALS = 0.6, the relative profit loss, i.e., (tt(p*) -
 ir(P'*))/ir(P*), is 9.37%.

 We also vary the ratio in arrival rates between
 heavy and light users, ALx/AHx, where x = S,D from
 0.5 to 0.7 (note that this ratio is set to 0.6 for the base
 case shown in Figures 1-3). Table 3 shows the sensi-
 tivity analysis results. The highest relative profit loss
 is as high as 11.00% and occurs when ALS/AHS = 0.5
 and ALD/AHD = 0.7.

 Similarly, we conduct a sensitive analysis involving
 the ratio in death rates between satisfied and dissat-

 isfied customers, Pys/pyD' for y = H, L from 0.4 to 0.6
 in Table 4 and the ratio in death rates between heavy
 and light users, Plx/Phx f°r x = S,D from 0.4 to 0.6 in
 Table 5. Tables 4 and 5 show the simulation results.

 The impact on the relative profit loss is smaller when
 compared with the above sensitivity analysis involv-
 ing ratios in arrival rates. For instance, the highest
 relative profit loss is 5.24% in Table 4 and is 3.26% in
 Table 5.

 Table 2 The Impact of Changes in \D/ks on Revenue Bias, Overinvestment in Satisfaction, and
 Profit Loss

 T?//? (%) Pe*~P*(%) (ir(p*)-7r(pe*))/7r(p*)(%)

 A«o/Aws-+ 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

 ^ld/^ls
 0.4 13.72 9.73 6.90 0 11 27 0.00 0.35 3.44
 0.5 11.48 7.73 5.07 0 22 34 0.00 2.12 6.31
 0.6 9.91 6.33 3.81 15 31 41 0.65 4.61 9.37
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 Table 3 The Impact of Changes in \L/\H on Revenue Bias, Overinvestment in Satisfaction, and
 Profit Loss

 T?/fl (%) P"-Pm(%) (TT(p*)-Tr(pe*))/n(p*)(%)

 ks/^Hs^ 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

 0.5 7.31 9.35 11.31 19 13 0 5.45 0.57 0.00
 0.6 6.01 7.73 9.47 37 22 0 8.18 2.12 0.00
 0.7 5.12 6.53 8.04 43 30 11 11.00 4.16 0.32

 Taken together, the significant differences in rev-
 enue and profit between the SMC-p model and our
 model highlight the importance of accounting for
 nonstationarity in purchase arrivals because of vari-
 ation in customer satisfaction. Our results show that

 firms must not use an aggregate approach in analyz-
 ing customer satisfaction. Also, they must weigh the
 benefits of customer satisfaction against its costs. It
 is not always optimal to pursue customer satisfaction
 relentlessly.

 5. Discussion
 In this paper, we present a model that incorporates
 satisfaction into customer value analysis. By doing so,
 we incorporate the behavioral customer satisfaction
 research into the quantitative customer value analy-
 sis literature. This is significant because customer sat-
 isfaction is an important, if not the most important,
 contributor of customer lifetime value. Also, customer
 lifetime value is inherently tied to repeat purchases
 and it seems odd to ignore customer satisfaction in
 estimating lifetime value.
 We develop our model by building on the semi-

 nal work of Schmittlein et al. (1987) and Schmittlein
 and Peterson (1994). This generalized model allows
 the purchase rate to vary with satisfaction outcome,
 so that a better service leads to a higher purchase rate.
 We also explicitly capture heterogeneity by allowing
 customers to have different purchase rates. Conse-
 quently, the purchase rate changes both across cus-
 tomer population and over time in our model.

 We derive a formula for determining the total dol-
 lar spending from a customer base over a time period.
 This formula reveals a surprising result: Customer

 lifetime value has an increasing return to scale in the
 probability of receiving adequate service. This might
 explain why many firms pursue customer satisfaction
 relentlessly. Our formula also suggests a downward
 bias in revenue prediction if one approximates the
 mixture Poisson processes by a single aggregate
 Poisson process (i.e., using the SMC-p model). Finally,
 we examine how the firm should optimally invest in
 customer satisfaction when the latter can be achieved

 only via costly productive processes. We show that
 the SMC-p model leads to an overinvestment in cus-
 tomer satisfaction.

 To improve the applicability of our results, we
 extend our model to allow for satisfaction-dependent
 expenditure and death rate and to allow customer
 satisfaction to be temporally correlated. While these
 extensions make the formula for the total expected
 dollar spending more complex, they do not change
 the qualitative predictions of the formula.

 Our model has several managerial implications.
 First, our model implies that it is crucial to account for
 nonstationarity in purchase and departure processes
 because of variation in customer satisfaction into the

 prediction of total expected dollar spending from a
 customer base. This finding suggests a natural exten-
 sion of the classical recency, frequency, and monetary
 value (RFM) model to the recency, frequency, mone-
 tary value, and satisfaction (RFMS) model of predict-
 ing total revenue. Second, our model yields a formula
 for quantifying the incremental benefits of increasing
 customer satisfaction. Firms can now use our formula

 to weigh the potential benefits against the costs of
 increasing customer satisfaction. Researchers in oper-
 ations management now have a formal way to quan-
 tify the benefits of service quality. Third, we believe

 Table 4 The Impact of Changes in fis/nD on Revenue Bias, Overinvestment in Satisfaction, and
 Profit Loss

 1/R (%) Pe*-P*(%) (7T(p-)-7T(^))/7r(iP-)(%)

 Hhs/Phd-* 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

 Uls/Pld
 0.4 8.21 7.70 7.19 9 19 26 0.25 1.47 3.34
 0.5 8.24 7.73 7.22 13 22 29 0.58 2.12 4.26
 0.6 8.27 7.75 7.24 17 25 32 1.02 2.86 5.24
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 Table 5 The Impact of Changes in \lJ\lh on Revenue Bias, Overinvestment in Satisfaction, and
 Profit Loss

 V/R (%) Pe*-P*(%) (7r(p-)-7r(^))/7r(r)(%)

 Vhs/Vhd^ 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

 Hs/Hd
 0.5 7.20 7.21 7.22 22 24 27 2.00 2.61 3.26
 0.6 7.70 7.73 7.75 20 22 25 1.57 2.12 2.73
 0.7 8.18 8.21 8.24 18 20 23 1.20 1.70 2.26

 our model can serve as a useful backend engine for
 customer relationship management system because
 every purchase encounter outcome can be captured
 and used to modify the expected lifetime value of a
 customer. In this way, customer lifetime value can be
 updated dynamically and continuously to provide an
 accurate estimate of the value of a customer base.

 Our model opens up several research opportuni-
 ties. First, it will be useful to estimate our model on a
 field data set. Such estimation will allow us to study
 how purchase arrival rates differ across the satisfac-
 tion categories and provide a direct way to assess
 the usefulness of our model in field settings. The
 recent model by Fader et al. (2005) would serve as
 a benchmark in such applications. Second, the firm
 can offer distinct service classes (e.g., premium versus
 regular) based on lifetime value, so that a premium
 customer receives a better service than a regular cus-
 tomer. It will be fruitful to examine how this kind of

 discriminating production processes will affect opti-
 mal investment in customer value. Third, it will be
 worthwhile to investigate how referrals by happy cus-
 tomers might affect the level of service to offer and
 the design of referral reward (e.g., Biyalogorsky et al.
 2001). Finally, our model ignores active competition.
 It will be interesting to explore how optimal invest-
 ment in lifetime value changes with active rivalry
 (e.g., Chen and Iyer 2002, Villas-Boas 2004).
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 Appendix
 A. Revenue Function

 In this section, we derive the revenue function. Specifically,
 we prove Propositions 1, 2, and 3. To simplify analysis, we
 first derive the expected revenue from a generic customer
 and ignore his or her subscript /. We then aggregate the
 revenue function over all customers.

 The main technique we use to study the embedded Markov
 chain of the continuous time Markov chain (CTMC) is the so-
 called "uniformization" (see Ross 1996, pp. 282-284).

 Because As > AD, the uniformized rate is As. Once uni-
 formized, the CTMC spends an exponential(As) amount of
 time in each state. Moreover, the transition probabilities in
 the uniformized chain are as follows (the rows and columns
 are ordered as state D for dissatisfied and state S for satis-

 fied):

 p _/(l-p)(AD/As) + (l-AD/As) = l-p(AD/As) p(AD/As)\
 \ i-p v y

 (16)

 Note that of all of the transitions from state D into state D,

 only ((1 - p)(AD/As))/(l - /?(AD/AS)) fraction are real tran-
 sitions corresponding to customer purchases; the other
 (1 - AD/AS)/(1 - p(AD/As)) fraction are fictitious transitions
 due to uniformization.

 A.I. Proof of Proposition 1
 Suppose the customer starts in state i and has had n arrivals
 in the uniformized Markov chain. Because each real transi-

 tion corresponds to a purchase by the customer, we would
 like to know how many of the n arrivals correspond to real
 transitions. Let Nj (n) be the random number of real transi-
 tions into state ; in the first n transitions of the uniformized
 embedded Markov chain, where i,j e{D,S). Moreover, let
 Nj(n) be its expected value.

 As an example, let us examine N£(n). If the customer
 starts in state D, then with probability (1 - p)(AD/As),
 he/she makes a real transition into state D, in which
 case Ng(n) = 1 + N°(n - 1); with probability (1 - AD/AS),
 the customer makes a fictitious transition into state D, in

 which case Ng(n) = 0 + Ng(n - 1); and with probability
 pAD/As, he/she makes a real transition into state S, in which
 case Ng(n) = 0 + Nj(w - 1). Overall, we have Ng(n) =
 (1 - p)(A0/As)(l + N°(n - 1)) + (1 - AD/As)N£(n - 1) +
 p(AD/As)N*(n_- 1) = (1 - p)(AD/As) + (1 - pAD/As)N£(w -
 1) +p(AD/As)Np(« - 1). Repeating this analysis, we arrive at
 the following equation,

 (N°(n)Nf(n)\
 \N*(n) N§(n))

 /(l-p)(AD/As) (pAD/As)\
 V 1-P V )
 /l-(pAD/As) (pAD/As)\/Ng(n-l) N?(n-1)\
 V 1-P P )\N&n-l) Nss(n-l)J-

 If we use matrix notation N(n) to denote

 (Ng(n) N?(n)\
 \N&(n) N$(n))'
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 and let

 then the above equation becomes N(n) = PW + FN(n - 1).
 Noting that N(0) = 0, or N(l) = PW, we conclude:

 N(w)=f£p*W (17)
 We need to diagonalize P to calculate Pk. We first calcu-

 late its eigenvalues:

 0=|a7-P| = (or-l)[a-p(l-^)].
 The two eigenvalues are ax = 1 and a2 = p{\ - (AD/AS)). It is
 straightforward to calculate their corresponding eigenvec-
 tors: X1 = (!) and

 respectively. Therefore,

 I' P-r\ As (X,,X2) = As
 \1 p-l)

 and . . .

 (p-i. . -p-^\ . . I

 ^--L (p-i. -p-^\ ;s)/4- I
 where A = p - 1 - (pAD)/As. It is clear that 1 4- A = a2 and
 1 - a2 = -A.

 Now that

 p = (x,,x2)(ai a^(xux2y\
 we have

 / n \

 I ^>> I
 N(n) = (X1,X2) *-' „ (X^X^-'W

 \ *=i /

 /-«(l-p)AD (l-p)AD/a2-a2"+'\ \
 As As V l-«2 /'

 -npkD pAD /g2-a;+1\

 As As ^ ^^ ^ /A. (18)
 As p V l-«2 /'

 I ^^-»(^) )
 A.1.1. Customer Starts "Dissatisfied." We first condi-

 tion on n, the number of transitions in the uniformized
 Markov chain. If a customer starts in state D, then the

 expected number of purchases (among the n transitions) is:

 |_ AS AS \ i - a2 /

 np\D p\D /tt2-a;+1\l /A
 As As \ l-a2 ;J/

 = -K1n + V2-V2"+1' (19)

 Where A ~AD A A X !~ - A p _ ~AD A _ AD A !~ ASA~(1-^7)AS+^AD" y
 and

 X - ad _ ~ApA5 _ ADAS
 2-AsA(l-a2)"[(l-p)As+pADp- ^ ■

 Recall that y is defined as y - (1 - p)ks+pkD.
 Next, we calculate the unconditioned expected number

 of purchases:

 fTt\(-Kln+K2a2-K2arY'"S'{jstr]^e^dt 0 0 «=oL "• J

 + rt\(-^n+K2a2-K2arY'"ST^sTr]^e^dt

 = jT[-KlXst + K1a1-K1a1e~{l-a^t]lxe-fXtdt

 + l°°[-Kl\sT + K2a2-K2a2e-il-a^T]fie-fltdt

 = ^As v (1 _ ^T) ; _ PAD(AS-AD) (1 v _ (r+M)T) ; y^ v ; y(y+M) v ;

 Note that the purchase amount is independent of the num-
 ber of purchases. Thus, the total expected purchase amount
 is a simple product of the two averages. Activating the sub-
 script i, we see that the overall expected revenue from cus-
 tomer / becomes:

 riD = Q [^ii (1 - e~»T) - PA'P(A*-A'p) (1 _ g-<r,-+*)T)l . L %-Mi r,-(y,-+M,-) ;J

 A.1.2. Customer Starts "Satisfied." Similarly, we first
 condition on n, the number of transitions in the uniformized

 Markov chain. If a customer starts in state S, the expected
 number of purchase visits (among the n transitions) is:

 ^^-■)(^)]A
 = -K1n + K3a2-K3a2"+1, (21)

 where

 K p-l (l-p)AJ
 3 pA(l-a2) py2 •

 Next, we calculate the unconditioned expected number
 of purchase during (0, T]:

 + ri\(-K1n+K3a2-K3a"2+Y'"ST^sTr}(Jie-^dt 7 "- 7 m=oL "- J

 = | [-lC1AsfH-K3a2-l<C3a2e-(1-a2)As']/Lte-'A'df

 + y°°[-K1AsT + iC3a2-iiC3Q:2e-(1-a2)AsT]^-^^

 = APAg v h _ e-^7-\ ; , (1-P)as(As-Ad) v , _ _(y+M)T\ ;' /22) y/i v _ ; y(y+M) v _ ;'
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 Similarly, the overall expected revenue from customer i
 becomes:

 (l-p)A,s(A,s-A,D) , _ <r,.+/ti)r\l
 r,(r, + M,) ( _ ']■

 Finally, RD = £f f/D anc* Rs = E/ r/s give us (3) anc* (4),
 respectively. The total expected revenue from the whole cus-
 tomer base is calculated as:

 =oi:r- (i-'-wT)

 y,(r, + M,) l T
 A.2. Proof of Proposition 2
 Equation (7) gives the expected revenue in the SMC-/?
 model. Taking difference between Re and RD = J^Li riD>
 Rs = E/li rist an^ K, we obtain:

 ^-°l"t^Al°'(1-t"'mir)
 ..pfKl-pHAa-A,,)' „„.„

 It is easy to see that all three are nonnegative.

 A.3. Proof of Proposition 3
 Because R = EtilP ' ris + (1 - V) ' rio\> we have R" =
 TlM + 2 (riS - riDy + p(riS - riD)"}. To show that R" > 0,
 the following lemma suffices:

 Lemma 2.

 (i) The first two derivatives of riD are nonnegative.
 (ii) The first two derivatives of (riS - riD) are nonnegative.

 Part (i). We will suppress the subscript i to simplify expo-
 sition. To show that rD has nonnegative first and second
 derivatives, it suffices to show that the Ng(n) + N£(h) has
 nonnegative first and second derivatives. From the Proof of
 Proposition 1, we have:

 Ng(H) + N°(n) = ^(xX-»)

 Because any derivative of a'2 = pl (l - ^ j is nonnegative
 with respect to p as long as / > 0, the sum clearly has non-
 negative first and second derivatives with respect to p.

 Part (ii).

 *-rD = Q(^)(l -*-™').
 Now define f(x) = (1 - e~Tx)/x.

 • f'(x) = (Te-Txx-(l-e-Tx))/x2. If we let g(x) =
 Te~Txx - (1 - e~Tx), then g(0) = 0 and g'{x) = -T2xe~Tx < 0.
 So g(x) < 0, and f'(x) < 0 for x > 0. Therefore, f(y + /x)
 has a nonnegative first derivative with respect to p because
 /(P) = -(AS-AD)<O.

 • ^(x) = ^Wtm+2)^ ifweletg(x) = 2-^rMTV +
 2Tx + 2), then g(0) = 0. Moreover, g'(x) = T3x2e~Tx > 0. So
 g(x) > 0 and, hence, /"(*) > 0, for x > 0. It follows that
 /"(y + M) has a nonnegative second derivative with respect
 to p.

 B. Profit Function

 In this section, we prove Proposition 4. We need the follow-
 ing lemma first.

 Lemma 3. Let g(y) = (Ag;g!^Ap) (1 - e~^T). Then g(y)
 is unimodal in y.

 Proof. Let / = ^'J^'^ , then (all derivatives are with
 respect to y)

 £=(ln(/))' v" = --J- + -L- -I--!-. (23) / v" As-y r-AD y y + fi

 Let«=^>0, p=^>0, W=I>0/y=^>0/
 and x = - u + v - w - y. Then by Equation (23), we have
 4 = x (i.e., /' = /x). Note also that v > w > y.

 Because x' = - u2 - v2 + w1 + y2,

 x2 - x' = 2(u2 + v2-vu-vw-vy + uw + uy + ivy). (24)

 There are two cases:

 (1) v > u + w + y. In this case, Equation (24) becomes:

 x2 - x' = 2(u2 + v(v-u-w-y) + uw + uy + wy) > 0.

 (2) v < u + w 4- y. In this case, Equation (24) becomes:

 x2 - *' = 2(u(u + w + y-v) + (v-w)(v-y))>0.

 So in either case, we have shown that x2 > x' .

 Next, g' = (f(\-e-^T))' =f- (/' - fT)e~^T.
 Whenever g' = 0, we must have e~^+fl)T = (/'/(/WO) =
 (x/(x - T). Because 0 < e"(y+/l)r < 1, we must have x < 0.
 Moreover,

 g" = /" + [2/'T-/T2-/V^T
 [2f'T-fT*-f']x

 ~J ^ x-T

 _ -f"T + 2/Tx - /T2x -(fx)'T + 2/Tx - /T2x
 x-T " x-T

 Because x2 > x' and x < 0, we know x(x - T) > x' and x <
 (x7(x - T)). So by now we have shown that whenever g' =
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 0, g" < 0. This means that g has local maxima. Moreover,
 there would be one (because g is a continuous function on
 a compact set) and only one (because there is a local mini-
 mum between any two local maxima) local maximum. This
 maximum is the unique solution to e~^y+^T = -^j, which
 can be further simplified to

 _I_ = _J
 e{y+n)T-\ = As_y

 Because y = (1 - p)\s + p\D, g as a function of p has
 exactly one local maximum and no local minimum. More-
 over, because g(p)\p=0 = g(p)\p=i = 0 and g(p)\0<p<l > 0, it
 must be true that the maximum is interior. To the left of

 local maximum, g(p) is increasing in p and to the right of
 it, g(p) is decreasing. □

 Recall that because y, = p\iD + (1 - p)A/S, r\m can be
 expressed as

 rim = (Q-c)Jt\ (A'S - y'-)(tt - X>d) (1 - g-<*+tt>T)1 .(26)

 Lemma 3 shows that each summand in (26) is unimodal.
 Let the modes be p{ and let p = maxt-{p{-}. It is clear that
 when p > p, 7]' < 0.

 When the cost increases slowly, i.e., when b is small, the
 company would optimally invest to achieve the maximum
 possible service quality. This is intuitive because revenue
 is convex and increases quickly. So when b is small, the
 optimal p should be 1. To avoid such trivial conclusions,
 here we focus only on large b. Specifically, we assume that

 f /A,s(A,s-A,D)\/l-e-^\]
 tA 2A,D )\ M, )y '

 Recall that

 N /1 - f"WT\

 K = &-c)Y.k(-Z-) /1 V - Ml f"WT\ / ; = 1 V Ml /

 £i V 7i / V m, /

 Because y[{p) = XiD - A/s,

 Kwr = (6-o|(A^-^)(l^).
 Kwr-2(Q-,)i:(^F^)(^), 1=1 \ Ti / \ Mi / 1=1 \ Ti / \ Mi /

 KWr^o-t)£('-w;-'°'')(~) /=i V 7/ / V Mi / /=i V 7/ / V Mi /

 Note that [Remip)T > 0, and when p = \, y( = \iD. There-
 fore,

 [Kip)}" < [^(i)]"

 < 2b = F"(p),Vp.

 Thus, we have shown that 7re(/?) = K^(^) - F(p) is con-
 cave. We note that [7re(0)]' > 0, so 0 is not a maximum. Also,
 because

 i=l \ AiD / \ Mi /

 <2fe = F'(l)/

 we have [tt-^I)]' < 0 so the maximizer pe* is interior. More-
 over, it is the only p that satisfies [^(p)]' = 0.

 Next, we study ir(p). It is clear that 0 will not be the
 maximizer of 7r(p) because R'm{0) > 0, F'(0) = 0 => 7r'(0) =
 R'm(0) - F'(0) > 0. Moreover, because [7re(l)]f < 0 and
 ^(1) < 0, we also have tt'(1) = [7re(l)]' + ^(l) < 0, so 1 will
 not be the maximizer of ir(p) either. So now we study the
 interior p*, which must satisfy tt'(p*) = 0.

 Finally, we show that pe* >p=> pe* > p*. We use contra-
 diction. Suppose pe* > p and pe* < p*. Because ire(p) is con-
 cave in p and [7Te(p*)]f = 0, we must also have [tt6 (/?*)]' <
 0. Moreover, p* > pe* >p =>• rjrm(p*) < 0. Therefore, we have
 7Tf(p*) = [7Te(p*)]f + t4(/?*) < 0, which is a contradiction.

 Equation (25) helps us to get more insights into the prop-
 erty of p. For example, we can rearrange it to be:

 T

 e{y+»)T_i r + /x As_y y{y-\D)'

 We know exT - 1 increases in x much faster than xT, so as
 fi decreases the left-hand side of this equation increases. We
 also know that the right-hand side is increasing in y. So as
 /i gets smaller, y should change in such a way as to balance
 the left-hand side or make the right-hand side increase as
 well. Either way, y should increase, and the corresponding
 p should decrease. This implies that when the customers in
 general are more loyal, this threshold p is lower, and the
 companies are more likely to overinvest in service quality.

 C. Extension: Contingent Death Rate
 Again, in this section we will suppress the customer sub-
 script i whenever there is no possibility of confusion. Now
 that the death rates also vary by which state the customer
 is in, we need to modify the Markov chain we devel-
 oped in Appendix A accordingly. First of all, we introduce
 a new state 0 to indicate that a customer has departed,
 thus increasing the state space by one dimension. Second,
 because fiD > i±s, the uniformization rate becomes a) = fiD +
 As. Then the original CTMC is equivalent to a Markov pro-
 cess that spends an i.i.d. exponential co) time in each state
 and has the following transition probabilities among states:

 /I 0 0 \

 ^d (l-p)AD + (A5-AD)^As-pAD p\D
 (OOJ 0) (O

 /xs (1-P)AS pAs + (/ip-Ms)
 \ 0) 0) 0) f

 (27)

 C.I. Proof of Lemma 1

 Denote by Jfy(w) the probability that if a customer starts in
 state i she will end up in state ; after n transitions. Note that
 the one-step transition probabilities, fy(l), are the probabili-
 ties in (27). The quantities of interest to us are 1 - qooin) and
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 1 - qso(n). They are the probabilities that if the customer is
 alive and dissatisfied (satisfied, respectively) currently, the
 probability that she will still be alive after n transitions.
 It is straightforward to derive the following:

 ,„(„) = ^ + ^^W" - 1) + P-1so(n - 1) , (28)
 (l) (l) ft)

 +^ + 0iD-Ms)fa(B_1). (29)
 If we let

 and

 (~\ " Y=\ " ,
 \ ft) '

 ' then Equations (28) and (29) are equivalent to

 Q(n) = Y + PQ(n - 1) = ( £ PM Y , (30)
 V=o /

 where
 / As-pAD pAD \

 P= " "
 I (1-P)AS ^As + (/iD-/xs) I
 \ ft) ft) /

 is a submatrix of the transition matrix (27).
 To calculate ££=o P*, we need to diagonalize P. We rede-
 fine «! > a2 to be the two eigenvalues of P. They satisfy

 0 = a2 + pAD-(l+p)As-(/AD-/AS)a
 ft)

 t ^As(As-AD) + (As-^AD)(AcD-/tg)
 + t ft,2 ' W

 Let Xj, X2 be the eigenvectors; then we have

 p = (x1/x2)(aiaJ(x1/x2r1,
 and

 Q(«) = (x1/x2) \zl\ (x^x^y.
 \T^i )

 Note that Q(n) is the probability of a customer being "dead"
 conditioning on n events in the uniformized Markov chain.
 We now uncondition it.

 We know that the uniformized Markov chain has

 exponential(ft)) time between two events so during (0,T] the
 number of events in the uniformized Markov chain is Pois-
 son with rate ft). So

 = £ (X!,x2) \ a\ \(xux2rlY
 \l-a2 I

 e-wT(ft>T)"
 n\

 / I _ e-{\-a\)a>T \

 = (Xl'X2) X_e-V-«2)<*T
 \ 1 - a2 /

 •(XuX2ylY.

 Then, the probability of a customer (who may be satisfied
 or dissatisfied at time 0) being alive at time T is:

 ,, ,/l-PAD\

 / \ - e-(l-<*l)uT \

 =(i-,,,)(x1,x2) '^ x_e_{l_a^T

 .(X1/X2)-1Y. (32)

 To simplify the expression, we will make the following sub-
 stitutions: j3a = - (1 - aa)ft) and j82 = - (1 - a2)a>. Then, after
 some simple manipulation of (31), jSj and /32 are the two
 roots of:

 0 = j82 + (p\D + (1 - p) As + fiD + /xs)j3

 + [Ms/^d + (1 ~ P) asMd + pAD/is].

 With this substitution and some more arithmetic manipula-
 tion, (32) can be simplified to Ae^T -\-Be^Tf where

 = p(j3i + AD+/LtD)[(l-p)As(/xs-/iD)+i32Ms+Ml]
 p(l-p)ADAsj31-j81[i81+iLiD+pAD][i82+/is + (l-p)As] '

 B= " (l-p)[j31/xD+M2J+pAD(/xD-/is)](/32 + As+/is)
 " p(l-p)ADAsi32-i32[i31+/iD+pAD][i32+Ms + (l-p)As] '

 C.2. Proof of Proposition 6
 Let ND(;t) be the expected number of purchases in the next
 n uniformized transitions when the customer is dissatisfied

 at time 0 and Ns(n) be the expected number of purchases
 in the next n uniformized transitions when the customer is

 satisfied at time 0. We then have the following:

 ND(n) = ^ + ^Ns(n-l)+^^£ND(n-l) (33)
 ft) ft) ft)

 Ns(«) = ^ + ^^ND(n-l)
 ft) ft)

 + pas+Md-^ (34)
 ft)

 If we let

 *">-(£5)
 and

 z=\ Ul w , Ul
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 Equations (33) and (34) are equivalent to:

 N(n) = Z + PN(w-1)=(£pMz.
 V=o /

 We have already diagonalized P, so

 /!-«? \

 N(n) = (X, , X2) 1 ~ a' j _ a; (X, , X2)-! Z.

 Again, we need to uncondition N(n) on n:

 ~ /N1(n)\e-'T(a>7T

 -f (x x)\ l~ax \(x xrlz - e'°'T{0lT)n - ~h -f (x \zA xrlz - «* -
 L V l-a2/

 \ r^ /

 We again make the substitution jSj = - (1 - a^co and /32 =
 -(1 - a:2)a>. For a random customer, she is satisfied at time 0
 with probability p and dissatisfied with probability (1 - p),
 so the expected revenue from her is

 \

 -j32/oi /

 After some straightforward arithmetic manipulation,

 r = ^f ^As(j81 + AD+AtD)(i62+/is + (l-^)(As-AD))
 ^l^l-p)ADAsft-ft[i81+MD+^AD][i82+/xs + (l-rtAs]

 •(l-^iT)

 t (l-^)AD(/32 + As+Ats)(ft+/xD+^(AD-As))
 p(l-p)XDXsp2-p2lp1+tiD+pkD\lP2+tis + (l-p)Xs]

 •(l-^r)j.

 D. Extension: Hidden Markov Model of Customer
 Satisfaction

 D.I. Proof of Proposition 7
 The proof is a straightforward extension of the derivation
 in Appendix A. For ease of exposition, we will first sup-
 press the customer subscript i. Due to the dependency of
 customer satisfaction over time, the transition probability
 matrix in the uniformized chain, (16), now becomes:

 p=f(l-pi)fe)+(1--)=1-pite) *fe)V \ 1-P2 Vl )
 As in Appendix A, we will let Nj(n) be the random number
 of real transitions into state / in the first n transitions of the

 uniformized embedded Markov chain if the system starts
 in state i. Moreover, let Nj (n) be its expected value.
 If we use matrix- vector notation N(n) to denote

 (Nj{n) Nj(n)\
 \N*(n) N§(n))'

 then the solution is:

 N(«)=fEPMv/ (35)

 where

 (1-/72)(AS-AD) I-
 V2Xs-pxXD /

 Again, as in Appendix A, we first diagonalize P. The two
 eigenvalues are found to be ax = 1 and a2 =p2 - Pi(AD/As),
 and their corresponding eigenvectors are

 Ml)
 and

 / PiAp \

 u-i/
 respectively. Therefore,

 (X,,X2)= As
 \1 P2-V

 and

 where A = p2 - 1 - (pl AD/AS). Therefore,

 N(») = fel*jv
 Ei^d\ /« \

 As «2-<'
 1 ft-l/V l-a2 /
 / v A \ / (P2-Pi)AD \

 I _! ! I (l-ff2)(As-AD) a /
 V ^As-^iAD a /

 / -n(l-p2)\D frAp/ AD-AS \a2-a2'+1 \
 As As V PAd-Pi^s) l-a2
 "PiAp | PiADa2-a2w+1
 As As l-a2 /

 We will again proceed in two separate cases.
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 1. When a customer starts "dissatisfied/7 then the
 expected number of purchases (among the first n transi-
 tions) is:

 Ng(n) + N£(n) = -Kxn + K2a2 - K2an2+l , (36)

 where
 AD(l-p2 + Pl)

 and

 K 2 _ Pi(AD-As)ADAs 2 (^AD-^2As)72'
 Recall that y is defined as

 7 = (1 - Vi)h + Pi AD = (1 - a2)As = -ASA.

 Next, we calculate the unconditioned expected number
 of purchases:

 m=0 L. * J

 +/°OE[(Ng(»)+NsD(n))e"ASr^:r)"lMe^^ ^r "• J ^r «=oL "• J

 7M ^ '
 _^iAD(As-AD) _(

 7(7+/*) v ;

 Because the purchase amount is independent of the num-
 ber of purchases, the total expected purchase amount is a
 simple product of the two averages. We find the overall
 expected revenue from customer i to be:

 riD = 0rA,DA,s(i-P2+,1)(1_e-),T)
 L 7/M/

 _ PlA,D(AtS-A/D) v ^ _ -(yi+lli)T\\ 7,(7/ +aO v _ \T
 2. When a customer starts "satisfied/' similarly, the

 expected number of purchases (among the first n transi-
 tions) is:

 NsD(n) + Nss(n) = -K1n + K3a2-K3an2+1, (38)

 where

 = (l-p2)A2s(As-AD)
 3 = (PiK-Moh2 '

 Next, we calculate the unconditioned expected number
 of purchase during (0, T]:

 ££ [(*$<»> + Nss(n)) f^!^] »e-« dt

 + /T°° t [(NSd(«) + Nf(«)) e"AST^sT)"] /«-"' df

 = ADAs(l-p2 + Pl) _ e_^T
 yix '

 (1-P2)AS(AS-AP) (1 _ e_(r+M)T)

 Similarly, the overall expected revenue from customer i is:

 ris = QrAjgAgo-ft+pj) (1_e^T)
 L 7/ Mi

 + (1~?72)A/s(A/S-A/d) V ^ _ g-(r,-+Ai,-)T\"| 7/(7/ + M,-) V _ ;J*
 Finally, the total expected revenue from the whole cus-

 tomer base becomes

 R = Zlp-ris + a-p)rlD],

 where p is the long-run fraction of time a customer is satis-
 fied, p = (pi/(l -P2 + P1).

 R ff Pl r 1 ^fe r 1
 SLt^^tk-^+i^tk ff Pl r 1 r 'DJ 1

 = QE[A-DA's(1~P2+Pl)(i-e-^)

 , Pi(l-P2)(A,s-A,p)2 (1 _ e-(ri+w,Tx]
 (i-p2+p1)r,(r,+M,)v _ ;J

 1=1 L 7i/*i

 ^(l-^)(AlS-AlD)2 V _ 6_(7|.+Ml.)Tx] 7/(7/ + /*,-) V _ ;J'
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