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Abstract 

We study the finitely repeated Prisoner’s Dilemma game. Our players are modeled as 
finite automata. A population of boundedly rational players compete in a ‘survival of the 
fittest’ evolution contest simulated using Holland’s genetic algorithm. Starting from 
a hostile population which plays defection frequently, our simulation results show that 
players converge to play cooperatively. This emergence of cooperative behavior breaks 
down when we penalize a complex strategy based on the size of the machine. On the other 
hand, a penalty cost that increases with the frequency an automaton switches states will 
not hurt the development of cooperative behavior. 
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1. Introduction 

1.1. Bounded rationality in game theory 

The concept of rational behavior is frequently used in game theory. A player is 
rational if she makes decisions consistently in pursuit of her own objectives. In 
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game theory, each player’s objective is to maximize her expected utility. This 
rationality assumption is an idealization about players and is often needed for 
computing equilibria. The term ‘bounded rationality’ is used to describe human 
choice that takes into account the cognitive limitations of the decision-maker 
(Simon, 1982). Since the beginning of 198Os, the ‘bounded rationality’ problem 
became an important research area in game theory. Now there is a consensus 
that future development of the field relies critically on finding a satisfactory way 
of modeling bounded rationality’ (Binmore, 1987, 1988; Aumann, 1989; Kreps, 
1990; Selten, 1991). 

There are three approaches to modeling bounded rationality in game theory. 
The first approach develops notions of complexity of a strategy by representing 
players’ strategies as finite automata or Turing machines. This approach essen- 
tially turns the traditional unconstrained optimization problem into a con- 
strained one, confining players’ choices of strategies to those that are implemen- 
table by machines. The approach allows us to attach cognitive costs to strategies 
similar to the way we attach costs to physical factors of production in the theory 
of firms (see Neyman, 1985; Radner, 1986; Rubinstein, 1986; Abreu and Rubin- 
stein, 1988; Kalai and Standford, 1988; Zemel, 1988; Gilboa, 1988; Banks and 
Sundaram, 1990). 

The second approach stresses Maynard Smith’s (1982) notion of evolutionary 
stable strategies (ESS).’ Under this notion, players are not required to find 
maxima; they are picked by the evolution process. The advantages of this 
approach are that it rests on the principles of natural selection and it can 
produce results that have strong implications (see Selten, 1983; Binmore, 1987, 
1988; Aumann, 1989; Fudenberg and Maskin, 1990; Binmore and Samuelson, 
1990; Friedman, 199 1). 

The third approach places each individual player in a dynamic context and 
assumes that she is a myopic and adaptive learning agent. At any point in time, 
she is assumed to possess a partial/simplified model of her environment. She 
then chooses an optimal action within the framework of the model. As she 
gathers more information about the environment, she adjusts her model accord- 
ingly so that it becomes closer to the actual environment. Usually, the adjust- 
ment procedure is some reasonable heuristic procedure (see Fudenburg and 
Kreps, 1990; Milgrom and Roberts, 1991). The classical Cournot dynamics and 
Brown’s (1951) fictitious play are two early examples. 

Like the above three approaches, we do not assume the rational hypothesis in 
this paper. Our players are not unconstrained utility maximizers who possess 

’ Some believe that the multiplicity of equilibria problem can only be solved by modeling bounded 

rationality (Kreps, 1990). 

*An ESS is a strategy such that, if all of the members of a population adopt it, then mutant strategy 

could not invade the population and thrive under natural selection. 
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infinite computational resources; they are limited in cognitive ability. Like 
the first approach, we model bounded rationality using finite automata. 
However, our players are myopic; they cannot contemplate all future plays 
from the beginning of play. Our game outcomes are results of iterated play by 
myopic players. In this sense, our approach is similar to the third approach. 
Specifically, it is assumed that players learn according to Holland’s genetic 
algorithm. 

1.2. Related research and contributions 

This research is closely related to Axelrod (1984, 1987) and Miller (1989). 
Axelrod (1984) conducted two computer tournaments for a finitely Repeated 
Prisoner’s Dilemma (RPD). In the first tournament, 14 game theorists each 
contributed a computer program to play the RPD. The 14 programs and 
a totally random strategy were paired together in a round robin tournament and 
200-round RPD games were played. The programs were ranked according to 
the total payoff accumulated. The winning program was also the simplest. It was 
Tit-For-Tat. The results of the first tournament were circulated and entries were 
solicited for a second tournament. Sixty-two contestants from six countries 
submitted their programs. This time the games played were not of exactly 200 
rounds, but were of random length with median 200. Again, Tit-For-Tat was the 
winner. 

Axelrod (1987) later applied Holland’s genetic algorithm to evolve 
RPD strategies against a fixed environment which consisted of eight represen- 
tative programs from the two computer tournaments. From a randomly selec- 
ted population, the algorithm produced a strategy that was as successful as 
Tit-For-Tat, the winner of the two computer tournaments. In addition, 
the algorithm selected a strategy that performed substantially better than 
Tit-For-Tat if it would start from a population whose rules were similar to 
Tit-For-Tat. 

Miller (1989) integrated the notion of finite automata with Holland’s genetic 
algorithm, and investigated the development of cooperation in a self-evolving 
environment. A population of individuals plays the RPD against each other in 
a round robin basis, and the population evolves continuously. Hence, the 
environment used is a variable one. He found that players exhibited cooperative 
behavior and attained payoffs which are close to the pareto optimal payoff. He 
also studied the effect of imperfect information on the development of coopera- 
tion, and found that less accurate information could easily lead to a lower level 
of cooperation. This is because a cooperative play that is misrepresented 
because of imperfect reporting may start a series of retaliation and counter- 
retaliation between the players. 

Both Axelrod and Miller study an environment that is relatively conducive to 
the development of cooperative behavior. Axelrod uses an environment consisting 
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of eight representative programs from the computer tournaments; many of these 
programs were variants of Tit-For-Tat. Thus, the environment mainly 
consists of cooperative individuals. Miller uses an initial environment that 
cooperates and defects randomly. Each individual adopts a 50-50 mixed strat- 
egy. We extend this stream of research by investigating whether cooperation can 
emerge in a ‘tough’ and evolving environment where players are hostile and 
defect frequently. 

In addition, we study complexity of strategy in a dynamic context. We use 
the size of an automaton and the frequency with which it switches states during 
the play of a game to measure complexity of strategy. The size of an automaton 
is the minimum number of accessible states of the machine. Rubinstein (1986), 
Abreu and Rubinstein (1988), and Kalai and Stanford (1988) also use the size of 
an automaton to measure complexity. While the size of a machine is an intrinsic 
parameter, the number of times a machine switches states depends on the 
nature of opponents the machine faces. Banks and Sundaram (1990) use the 
frequency of switching to study complexity. Linster (1992) uses both to measure 
complexity. 

The complexity measures have some simple cognitive interpretations. The size 
of machine can be interpreted as long-term ‘storage’ cost. It is the cost of 
remembering the states that make up a strategy. A more complex strategy takes 
up more storage space. Note that the size of machine is a good measure for the 
cost of monitoring. The frequency of switching can be interpreted as the 
frequency of retrieving information from long-term to short-term memory. Since 
each retrieval of information is costly, strategies that switch more frequently are 
more complex. Under this framework, we can control the degree of bounded 
rationality by varying the amount of fee charged for a complex strategy. In so 
doing, we contribute to the current understanding of bounded rationality by 
providing insights into the role of complexity of strategy in evolution of 
cooperative behavior in RPD. In particular, we show that cooperative behavior 
may break down if players are averse to complexity. 

1.3. Finite automata and Holland’s genetic algorithm 

In the next few paragraphs, we describe what finite automata and Holland’s 
genetic algorithm are, and discuss their promises as tools for modeling bounded 
rationality in repeated games. 

A finite automaton is a kind of dynamic system that changes its behavior only 
at the discrete moments of time under consideration (see Minsky, 1967, and 
Hopcroft and Ullman, 1979, for an introduction). The system consists of a finite 
set of internal states (one of which is the initial state), an output function, and 
a transition function. The output function determines the output of the system 
as a function of the state. The transition function determines the next state of the 
system as a function of the input and the current state of the system. Thus, the 
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system begins in its initial state and gives the output specified in that state. 
Depending on the input, the system moves to a new internal state. This process 
can continue forever or for a finite number of steps. 

The use of finite automata to model bounded rationality in the context of 
repeated games was first suggested by Aumann (1981). Since then, several 
researchers have employed finite automata to model bounded rationality and 
have produced interesting results. For example, Neyman (1985) and Zemel 
(1988) show that mutual cooperation in every round in a finitely RPD can be 
a Nash equilibrium if players’ strategies are modeled as finite automata. Rubin- 
stein (1986) and Abreu and Rubinstein (1988) show that the set of equilibrium 
payoffs in an infinitely RPD3 is more restrictive if players seek to minimize the 
complexity of their strategies represented as finite automata. 

We simulate players’ myopic learning behavior by Holland’s genetic algo- 
rithm. ‘Genetic algorithms are search algorithms based on the mechanics 
of natural selection and natural genetics. They combine survival of the fittest 
among string structures with a structured yet randomized information exchange 
to form a search algorithm with some of the innovative flair of human search’ 
(Goldberg, 1989). Using a genetic algorithm, one represents strategies (finite 
automata) as string structures. Each string structure serves a dual purpose: 
it provides a representation of what the strategy will become, and it also 
provides parts that can be transformed to yield new strategies for the next 
generation. 

The genetic algorithm is adopted in this research for several reasons. First, it 
has been used successfully to model learning economic agents in complex 
economic settings (Marimon, McGrattan, and Sargent, 1990; Marimon and 
Miller, 1989; Holland and Miller, 1991) and to evolve strategies in games 
(Axelrod, 1987; Miller, 1989). Second, the algorithm is a powerful search algo- 
rithm and has been shown to work in difficult domains. Holland suggests that 
the power of the algorithm comes from the ‘implicit parallelism’ of search 
(Holland, 1975). Third, the algorithm is central to the integrative framework of 
Holland, Holyoak, Nisbelt, and Thagard (1986) which has been used success- 
fully for explaining human adaptive behavior. The framework has been shown 
to be able to treat a variety of empirical evidence from conditioning, concept 
formation, and problem solving to scientific discovery. Fourth, it has a direct 
mapping to evolutionary dynamics which makes the behavior of the algorithm 
easy to interpret. 

‘In an infinitely RPD or a PD that is repeated with a finite but unknown number of times, many 

outcomes can theoretically emerge as equilibrium outcomes. In fact, the Folk Theorem states that 

any indvidually rational payoff vector can be the outcome of a perfect equilibrium if payoffs are 

calculated as ‘the limit of the mean’ and players do not discount the future too much (Fudenberg and 

Maskin, 1986). 
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2. The repeated Prisoner’s Dilemma, finite automata, and genetic algorithm 

2. I. The repeated Prisoner ‘s Dilemma 

The Prisoner’s Dilemma is a well-known 2 x 2 game created by A.W. Tucker. 
The game has been used to model important economic and political problems 
such as oligopolistic collusion, international trade, arms race, and public goods 
provision. The payoff matrix below (Fig. 1) is a typical Prisoner’s Dilemma 
game. If Row and Column cooperate, they each get R; if both defect, they each 
get P. However, if one cooperates but not the other, the cooperator gets S, while 
the defector gets T. 

Three arguments support playing defection in this game: 

0) 

(ii) 

(iii) 

It is the only Nash equilibrium: For any other pair of pure or mixed 
strategies at least one player has an incentive to change his strategy, given 
that the other’s strategy is fixed. 
It is the maximin strategy: Defection guarantees at least P, cooperation 
might give S (S < P). 
Defection strictly dominates cooperation: Regardless of Row’s (Column’s) 
strategy, Column (Row) is always better off if he or she chooses defection 
because (T > R and P > S). 

Note that argument (iii) implies (i) and (ii) weakly. Argument (iii) is very 
compelling because it means that each player’s best response is independent of 
what the other player does (the so-called Sure-thing Principle). Similar results 
hold if the game is iterated a known fixed number of times in a supergame. The 
supergame has defection at every stage as the only perfect equilibrium outcome. 

COLUMN PLAYER 

COOPERATE DEFECT 

/ 

Note: The payoffs to Row Player are listed first. 
T>R>P>S; ZR>T+‘S 

Fig. 1. Prisoner’s Dilemma. 
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An iterated dominance or a backward induction argument also produces 
mutual defection in every round as the only equilibrium outcome. 

The mutual defection solution is unsatisfactory for three reasons. First, there 
are a lot of empirical data that contradict it (e.g., Selten and Stoecker, 1986; 
Rapoport and Chammah, 1965). Second, the solution is Pareto inferior; (R, R) 
strictly payoff dominates (P, P). Third, the solution is very sensitive to any slight 
change in the game form. For example, Kreps et al. (1982) show that if players 
have the slightest doubt in their opponents’ rationality, cooperative behavior 
can emerge. 

As indicated above, cooperative behavior can emerge in the RPD if ‘bounded 
rationality’ is incorporated (Neyman, 1985; Axelrod, 1987; Radner, 1986; Miller, 
1989). We test the robustness of this result with respect to the toughness of the 
initial environment and the manner in which ‘bounded rationality’ is captured. 
‘Bounded rationality’ is captured here by charging a higher fee for using a more 
complex strategy. Thus our paper provides some ‘stress tests’ of the maintained 
hypothesis that cooperative behavior can emerge in RPD if players are bound- 
edly rational. 

2.2 Finite automata 

Finite automata are finite-state machines that do not have external memory. 
Finite-state machines that have an external memory are called Turing machines. 
Turing machines are very powerful and versatile. In fact, the Church-Turing 
thesis asserts that any formal calculation possible for a human mathematician 
can be mimicked by a Turing machine.4 Some economists use Turing machines 
instead of finite automata to model bounded rationality (Binmore, 1987, 1988; 
Anderlini, 1989). Fig. 2 is a schematic of different levels of players’ complexities 
that have been assumed by various economists. 

A finite automaton whose output depends on only the internal state is called 
a Moore machine. Formally, a Moore machine is a quadruple (Q, qo, 1, S), 
where Q is a finite set of internal states, q. E Q is the initial state, 1: Q -+ Si is the 
output function, Si E {C, O} is player i’s move in the current period, and 6 is the 
transition function which maps the current internal state of the machine and the 
reported move of the opponent into the next internal state, i.e., 6: Q x S-i + Q 
(Shim (C, D} is the opponent’s move in the current period.) Thus, a Moore 

41t is called a thesis because there is no mathematical proof for it, but nobody has been able to find 

a counter-example to the thesis. The traditional approach to game theory implicitly assumes that 
each player is better than a Turing machine since a Turing machine always implements a function 

that is effectively computable, but a player in traditional game theory is assumed to be able to 

compute any function. Roughly speaking, an effectively computable function is one which could 

possibly be computed by any imaginable finite device. 
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Increasing complexity 

one-state 
automata 
(e.g., ESS) 

Finite automata Turing Machines Rational Player 
(e.g., Rubinstein, 1986) (e.g., Binmore, 1988) (Traditional game theory) 

Fig. 2. A schematic of different levels of complexity. 

machine begins in its initial state and performs the action specified in that state. 
Based on the reported move of the opponent, the machine moves to a new internal 
state (including the current state). This process continues until the game ends. 

The concepts of Moore machines and how they represent strategies are best 
illustrated by their transition diagrams. Fig. 3 shows some typical RPD strat- 
egies and how they are represented by the Moore machines. The nodes of the 
transition diagrams represent the internal states, and the letter in parentheses 
indicates the move of the machine when it enters that state. The node q0 is the 
starting state and has an arc labeled S pointing to it. The output function is 

captured in the correspondences between the internal states and the associated 
moves. The transition function is represented by arcs between the nodes. The 
letter labeling the arc is the reported move of the opponent, i.e., the transition is 
dependent on the opponent’s move. 

In Fig. 3, the first machine cooperates constantly. The second machine defects 
constantly, i.e., a Nash equilibrium strategy. The third machine is the Trigger 
strategy: it starts with cooperation, and switches to and continues with defection 
once the opponent is reported to defect. The fourth machine is the Tit-For-Tat 
strategy. The strategy starts by cooperating in the first period and thereafter 
follows whatever the opponent does. The fifth machine is the Punish-Twice 
strategy. It punishes every defection by the opponent with two consecutive 
defections in a row. The last machine is the Forgive-Once, Punish-Once strat- 
egy. It punishes the opponent once when it defects two rounds in a row. These 
machines can be characterized by the following intrinsic parameters (Miller, 1989): 

n = size of a minimal machine,5 
cr = cooperation reciprocity, 

’ This is to be distinguished from the size of a nonminimized Moore machine and the cardinality of 

Q (Harrison, 1965). The size of a minimal machine is equivalent to the cardinality of the induced 

strategy set (Kalai and Stanford, 1988), i.e., the numbr of distinct strategies induced by the original 

strategy in all subgames. Kalai and Stanford define the complexity of a strategy in a given repeated 

game to be the cardinality of the induced strategy set. For example, in Fig. 3, trigger strategy induces 

itself if the opponent cooperates and induces an always defect strategy if the opponent defects. Hence 

it has a complexity of 2, which is the same as the size of the minimal Moore machine. 
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dr = defection reciprocity, 

ts = proportion of terminal states. 

In addition, we define the following two variables which depend on the oppo- 
nent the machine is playing against during the play: 

fs = frequency of switching during the play of the game, 
fc = frequency of playing cooperation during the play of the game. 

In Fig. 3, n is computed by counting the number of accessible states (since they 
are all minimal machines); cr is the proportion of cooperations in response to 
cooperations by the opponent in the preceding rounds; dr is the proportion of 
defections in response to defections by the opponent in the preceding rounds; ts 
is the ratio of the number of terminal states to the size of machine where 
terminal states are absorbing states that do not switch to other states regardless 
of the opponent’s move. The values of cr and dr are calculated based on the 
assumption that all states are equally likely to occur. The values offs and f;. 
shown are computed based on a ten-round repeated game and each of the 
machines is playing against an opponent whose strategy is [C, C, C, C, C, D, D, 
D, D, D] i.e., who cooperates in the first five rounds, but defects in the last five 
rounds. For example, consider the Punish-Twice strategy. As represented, the 
machine is a minimal machine and hence n is 3. cr is 0.66 because the machine 
reciprocates two of three Cs (the three arcs that are labeled C) played by the 
opponent. Similarly, dr is 0.66 because the machine reciprocates two of the three 
Ds played by the opponent. There is no terminal state, and therefore ts is O/3 = 0. 
In response to a strategy which cooperates in the first five rounds and defects in 
the last five rounds in a ten-round repeated game, the machine makes the 

following transitions Cq,,, qo, qo, qo, qo, qo, q,, q2, qo, yl, q21 and the following 
moves [C, C, C, C, C, C, D, D, D, D]. Hence,fs is 5/10 = 50% andfc is 6/10 = 60%. 

The above discussion suggests that Moore machines provide a parsimonious 
representation of a wide range of strategies. However, there is a number of 
strategies that Moore machines do not capture depending on their size. For 
example, consider a sixteen-state Moore machine. All the strategies discussed 
above can be individually represented by the machine. The sixteen-state ma- 
chine however cannot represent a strategy that counts the number of coopera- 
tions during the course of the game if the number of rounds of the repeated game 
is more than sixteen rounds. Such a strategy will outperform either Trigger or 
Tit-For-Tat strategy because the strategy can count the number of cooperations 
up to the round before the last round, and defect in the last round to obtain 

a higher payoff. It has been shown that if the size of machine is exogenously 
fixed, then Tit-For-Tat can arise as optimal play for a finitely RPD as long as the 
number of rounds of the RPD is larger than the size of machine used to play the 
game (Neyman, 1985). 
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All C 

S 

Parametera and variables 

n =l Is =O% 
cr zl.0 fc =lOO% 

dr = 0.0 
rs = 1.0 

All Defect 

C 

S 

D 

Trigger 

Tit-For-Tat 

Punish-Twice 

Forgive-Once, Punish-Once 

n q l Is =O% 
cr = 0.0 fc =O% 
Ur = 1.0 
ts = 1.0 

n =2 fs =lO% 
cr = 0.5 fc = 60% 
dr = 1.0 
is = 0.5 

n =2 fs =lO% 
cr = 1.0 fc =60% 

dr = 1.0 
ts =o 

n =3 fs = 
cr = 0.66 ic = 
dr = 0.66 
ts =o 

50% 
60% 

n =3 
cr = 1.0 
dr = 0.33 
ts =o 

fs = 50% 
fc = 60% 

Fig. 3. Six different Moore machines. 
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A compact way to represent a Moore machine in the computer is to encode it 
as a string of binary bits. We illustrate our coding scheme with a Moore machine 
that can take up a maximum of sixteen states. Such a Moore machine can 
represent all strategies that base their moves on the full history of the previous 
two rounds (since each round of the game has four possible outcomes and two 
rounds of the game have sixteen possible outcomes). The string structure has 
a length of 144 bits consisting of sixteen nine-bit packets. In Fig. 4a, # is either 
0 or 1. Note that the machine always start at state 0. 

Each nine-bit packet represents an internal state of the machine. The first bit 
in a packet indicates the move of the machine whenever it enters that state, the 
next four bits give the next state if the opponent is observed to cooperate, and 
the last four bits give the next state if the opponent is observed to defect (see 
Fig. 4b).6 For example, the Tit-For-Tat strategy is coded as follows: 

000000001 100000001 # #### #### ..’ # #### #### 

This machine starts at state 0 and plays cooperation (bit 1). It does not switch 
the state if the opponent is observed to cooperate (bits 2-5). However, if the 
opponent defects, it switches to state 1 (bits 69). When the machine is in state 1, 
it plays defection (bit 10). If the opponent is observed to cooperate, it switches 
back to state 0 (bits 11-14). The machine does not switch the state if the 
opponent is observed to defect (bits 15-18). It is clear that the values of the 
remaining bits (19-144) are immaterial and would not affect the behavior of the 
machine. Any machine which has a size ranging from 1 to 16 can be represented 
in a similar manner. 

Under the above coding scheme, any machine i that has a maximum of nmax 
states (we restrict it to be power of 2, i.e., nmax = 2k where k is a positive integer) 
can be represented by a string of binary bits denoted by Bf Bf...... Bf- ’ Bf, where 
L is equal to 2k (2k + 1) (cf. Miller, 1989). See Holland (1975) for a detailed 
discussion on the advantages of the coding scheme. 

For a sixteen-state machine, there are 2144 different possible structures under 
the above representation scheme. To find effective strategies in such a huge set, 
we need a very powerful technique. Holland’s genetic algorithm is one such 
technique. 

2.3. Genetic algorithm 

The genetic algorithm works in five steps (see also Appendix I): 

(1) An initial population of N players is chosen. Here, the individuals are 
16-state Moore machines that are represented by 144-bit string structures. We 

c,A string of four bits can represent 24 = 16 values. 
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#I###$# 

,-,I”“““- 
. . . . . . . 

State 0 State 1 State 2 State 15 

Fig. 4a. The coding scheme for a sixteen-state machine 

State i 

f######### 1 

0 = Cooperate 
1 = Defect 

observed to cooperate 
E {OJ, 2, . . . . . . . . 14, 15) 

Next state if opponent is 
observed to defect 
E {O,l, 2, . . . . . . . . 14, 15) 

Fig. 4b. The coding of each nine-bit packet. 

initialize all of the bits of the string structure except the bits that are allocated to 
moves (bits whose locations are 9xj + 1, j = 0,1,2, . . . ,15) by the outcomes from 
independent tosses of a fair coin. The bits that are allocated to moves (16 of them 
altogether) are initialized by the outcomes from tosses of a biased coin. Denote 
PH as the probability of Head. Then, this initialization process has the effect of 
producing individuals that play a mixed strategy of (1 - PH) cooperation and PH 
defection.’ Thus, if we initialize all action bits by the outcome of a fair coin, the 
population is a group of individuals that will play cooperation and defection 
evenly in every round of the repeated game. The ‘toughness’ of the environment 

can be varied by changing the value of P “. A population with individuals 
playing defection randomly 90% in every round of the repeated game can be 
initialized by the outcomes of a biased coin which has a PH of 0.9. Initialize also 

the generation counter, g. 

(2) Each individual (structure) is tested in the current environment to deter- 
mine its fitness. Here this means that each individual plays a K-round RPD 
against all other individuals and a clone of himself/herself on a round robin 
basis. Individual i accumulates his/her payoff, o(i,g), at generation g from 
playing the Prisoner’s Dilemma N x K times. In games that incorporate imple- 
mentation costs, we have two ways of charging our players. The first way is to 
charge an amount based on the size of machine. In every game that is played, 

’ Recall that the move of each Moore machine at state j is determined by the value of the bit at the 

location 9xj + 1. We use the convention that a ‘1’ (or Head) indicates a defection play and a ‘0’ (or 

Tail) indicates a cooperation play. 



T.-H. Ho/Journal of Economic D_vnamics and Control 20 (1996) 173-207 185 

a machine is charged an amount depending on its size, n, by one of the following 
equations? 

L(fi,n)=JxnxR/16, (1) 

Q(fi, n) = /I x n2 x R/16’, (2) 

where B is the ‘unit cognitive cost’ that ranges from 0 to 1 and R is the reward 
(payoff) from mutual cooperation. For example, a ten-state machine has to pay 
a linear fee of /I x 10 x R/16 or a quadratic fee of b x 100 x R/256 per game. 

A linear cost function assumes that each machine state imposes a fixed 
memory burden on the player. It is reasonable if the total number of states to 
remember is small. If the total number of states to remember is large, each 
additional state might add to the effort of memorizing more than proportionate- 
ly. A convex cost function may thus be more appropriate. We use a quadratic 
cost function to capture this ‘increasing marginal effort’ of remembering. The 
quadratic cost function charges a higher fee for each additional machine state in 
order to capture the increasing effort involved in memorizing each additional 
machine state. 

Thus, the net accumulated payoff for individual i, m(i,g), is given by 

m(i,~~) = o(i,g) - N x K x {Cost per period}. (3) 

The second way is to charge an amount based on the frequency of switching 
during the play of the repeated game. Denote the frequency of switching of 
machine i when it plays against j as&(&j). The switching cost charged when 
i plays against j is given by the following equations: 

L(/J,fi(i,j)) = fl x K xji((i,j) x R, (4) 

Q (B,.fi (i, j)) = B x K xfi (CA2 x R. (5) 

Thus, a machine that switches more frequently pays a higher fee. The linear 
cost function means that each switching (or each retrieval of information 
from long-term to short-term memory) is equally expensive. The quadratic 
cost function penalizes more than proportionately on machines that switch 
states more frequently. 

s The maximum size is 16. But a simple strategy (e.g., Tit-For-Tat) has a size (2) that is less than 16. 

A more complicated strategy will have a bigger size. 
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Here the net accumulated payoff for individual i, m(i,g), is given by 

m(i, g) = o(i,g) - i (Switching cost against j}. 
j=l 

We study how the introduction of a cognitive cost might impact the emergence 
of cooperative behavior. By varying /I, we can study the impact of degree of 
‘bounded rationality’ on emergence of cooperative behavior. 

(3) Each individual’s net accumulated payoff is normalized using the follow- 
ing transformation: 

where p(g) is the population average and a(g) is the standard deviation of the net 
accumulated payoffs. The z(i,g) is the fitness score of individual i at generation g. 
The .z values which are below zero are truncated to zero. Notice that the 
transformation procedure is invariant to affine transformation. The parameter 
a determines the importance of relative performance.’ 

(4) Form a new population of N structures (for convenience, a constant 
population size is maintained): 

(a) Reproduce N structures with P(i) = z(i, g)/Cj z(j,g) and put them in the 
mating pool. An individual who has a higher fitness will have a larger repre- 
sentation in the mating pool. 

(b) Randomly select two structures from the mating pool without replace- 
ment and form two children by using crossover operator with probability PC to 
the structures. The crossover operator proceeds as follows: a single crossover 
point, c E (1,2, . . . , 142, 143) (1 means crossover between 1 and 2, 2 means 
crossover between 2 and 3, etc.), is randomly selected on the bit string. The first 
child is formed by taking the first c bits from the first parent and attaching them 
to all of the bits after c + 1 of the second parent. The second child is formed in 
a similar way using the remaining portions of the two parental strings. If we 
represent the parents by B,’ Bz . . . . . B,‘43Bi44 and Bk Bt . . . . Bi43 Bk44 then the 
new children are: 

B,’ B,2 . . . . . . B; B;+ ’ ..,... B;43 B;44 
2 

B; B; . . . . . B; B;+ 1 . . . . . . B,‘43B;44. 

‘When G( is infinity, the fitness scores are independent of net accumulated payoffs and every 

individual has an equal chance to mate. The choice of a = 2 implies that individuals which are two 

standard deviations below the average are not allowed to mate (Miller, 1989). 
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(c) Mutate the newly formed children with probability P&)= 
P,JO)e-0~693g/r where c is the half life of the exponential decay.” We choose an 
exponentially decaying mutation rate because we expect players to experiment 
less frequently as they ‘progress through’ the generations (see below for dis- 
cussions on the psychological interpretations of the genetic operators). The 
mutation operator is performed on a bit-by-bit basis. Mutation occurs when 
a bit changes states. A natural way to represent the mutation rate is by the 
average number of mutations per string structure. Here, an initial mutation rate 
of two bits per string structure (P,,,(O)) is equivalent to a mutation rate of 
2/144 = 1.4%. 

(d) Repeat (b) to (c) until N new structures are formed. 

(5) The new population will exhibit patterns of behavior that are more like 
those of the successful individuals of the previous generation, and less like those 
of the unsuccessful ones. With each new generation, the individuals with rela- 
tively high fitness will be more likely to pass on parts of their strategies, while the 
relatively unsuccessful individuals will be less likely to have any parts of their 
strategies pass on. Increment g by 1 and go to step 2 (next generation). 

The reproduction, crossover, and mutation operators have appealing psycho- 
logical interpretations. We can interpret the reproduction operator as either 
intelligent learning by imitation, or simply blind imitation of the successful 
players. The crossover operator introduces innovation into the evolutionary 
process. The operator combines or mixes two successful strategies (parents in 
the mating pool) into two possibly even more successful strategies (the newly 
formed children). The mutation operator is similar to ‘trial and error’ learning. It 
represents a random experimentation process. Both the crossover and mutation 
operators introduce variety into the evolutionary process. However, there is 
a difference between the two: the crossover operator represents a discovery 
mechanism that entails the juxtaposition of different strategies, and the muta- 
tion operator represents a random walk that avoids ‘trapping’ into suboptimal 
solution. Thus, a new strategy is either constructed from the successful strategies 
of previous generations, or it is a random variant of an old strategy. 

3. Simulation results 

3.1. Design of experiments 

We ran three simulation experiments. The first experiment was designed to 
test the robustness of the evolution of cooperation in hostile environments. The 

lo For example, if [ is 10, P,(g) drops by half after every ten generations. 
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degree of hostility of the environment was controlled by varying PH. Six values 
of PH were used: 0.5 to 1.0, with an incremental step of 0.1. When P, is 1.0, we 
have an environment in which all players play defect in every around of the 
repeated game. 

The second and third experiments were designed to study the effects of 
implementation costs on the emergence of cooperative behavior. Each experi- 
ment had two sets of simulation runs: one set used a linear cost function and the 
other used a quadratic cost function. In the second experiment, players were 
charged a fee based on the size of machine; in the third experiment, they were 
charged a fee based on the frequency of switching. In all four sets of simulation 
runs, the proportional factor, p, was varied from 0.05 to 0.25, with an incremen- 
tal step of 0.05. A /? of 0.05 would mean that a sixteen-state machine is charged 
a fee of 5% of the Pareto-optimal payoff (i.e., R) per game. 

All simulation runs had 100 generations. Simulation results show that doubling 
the number of generation would only increase the payoff marginally with the 
choice of parameters given below. The settings of the parameters are summarized 
in Table 1. A few remarks about the choices of parameters are appropriate here. 

Table 1 

The settings of parameters in the simulation experiments 

Prisoner’s Dilemma game 

T=5 R=3 P=l s=o 

Game is repeated 150 rounds, i.e., K = 150 

Automata (strategy) 

A maximum of 16 states, i.e., nmax = 16 

Length of the string, L, is 144 

Population 

Population size N = 30 

PH is a variable in Experiment I and is set to 0.5 in Experiments II and III 

Genetic algorithm 

P, = 0.6 P,(O) = 4 bits per string structure <= 10 

Normalization parameter CC = 2 

costs 

p is set to 0 in Experiment I and is a variable in Experiments II and III 
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First, the parameters of the Prisoner’s Dilemma game were standard (i.e., 
same as the parameters used in Axelrod, 1984, 1987; Miller, 1989). These 
parameters were chosen such that they would provide a sufficient level of 
conflict of interest (see Rapoport, 1966, for a measure of conflict of interest). 
Simulation results show that the patterns of results reported below are not 
sensitive to changes in these parameters. The game was chosen to repeat 150 
rounds so that each individual could differentiate one from another. A lower 
number of rounds, e.g., 50-100, would slow down the evolution process but 

would not affect the patterns of results. 
Second, we limit the size of machine to 16 states because it could capture 

relatively complex RPD strategies without placing too much burden on the 
computing resources. Simulation results show that this constraint on the size of 
machine is not binding, i.e., successful automata have sizes less than 16 states. 

Third, the size of the population was chosen to be 30. Simulation results show 
that a larger population would not affect the emergence of behaviors, but would 
increase the time of simulation substantially. On the other hand, a smaller 
population would not provide enough diversity in strategies for the genetic 
algorithm to perform well. The value of Pn was a variable in Experiment I. In the 
second and third experiments, it was fixed at 0.5. 

Last, we chose P,, P,(O), fl, [, and x as follows. The values for P, and P,,,(O) 
were set to 0.6 and 4 bits per string structure, respectively. Similar values were 
also used in previous studies (see Axelrod, 1987; Miller, 1989). j? was set to zero 
in Experiment I. In Experiments II and III, it varied from 0.05 to 0.25. [ was 
chosen to be 10 by trial and error. x was set to 2 in all three experiments because 
we did not want individuals who were two standard deviations below average to 
mate. Interestingly, simulation results show that there are large equivalent 
classes of parameters that would yield cooperative behavior (see Appendix II). 
In Section 3.5, we conduct sensitivity analysis of the results with respect to x, [j, 
and <. 

In all the results presented below, all variables are averages over 100 simula- 
tion runs and thirty members of each population conditional on the generation. 

3.2. Experiment I: Varying the toughness qf‘the initial environment 

In Experiment I, P,, P,(O), and < were fixed at 0.6,3 bits per string structure, 
and 10 respectively. Pn varied from 0.5 to 1 .O. The simulation results for the case 
where PH = 0.5 replicate Miller’s (1989) results. The simulation results for other 
Pk, values suggest that emergence of cooperative behavior is not sensitive to 
changes in the nature of the initial environment. In addition, they show that 

cooperation can be started by a small number of individuals or mutants who are 
prepared to cooperate, even in a world where no one else will do so. 

Figs. 5a-g plot the variations of the variables over 100 generations for 
PH = 0.5, 0.7, 1.0. The average frequencies of cooperation are 86%, 88%. and 
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Fig. 5a. Payoff versus number of generation. 

83%, respectively. The variances of the frequencies of cooperation are 0.0006, 
0.0005, and 0.0006.’ 1 

Figs. 5a-b show that the emergence of cooperative behavior is not sensitive to 
changes in the nature of the initial environment. Making the initial environment 
tougher does not stop individuals in the population from developing 
cooperative behavior. I2 This finding implies that as long as individuals are 
willing to experiment and employ learning rules that have evolutionary proper- 
ties, cooperative behavior in a finitely RPD can emerge. Notice that for Pu = 0.5 
and 0.7, the population tends to defect in the early generations (this pattern also 
occurs when Pu = 0.6 and 0.8). This phenomenon does not, however, continue; 
the population begins to cooperate after about 10 generations. Notice that the 
initial environment has strategies that are randomly generated. These random 
strategies do not have predictable patterns, and a good strategy in such an 
environment is to defect more frequently. As the strategies become more predict- 
able, players quickly learn that it is not in everyone’s interest to defect, and they 
begin to cooperate. 

An analysis of the evolved machines indicates that they tend to exhibit 
behavior that is quite similar to Tit-For-Tat. A typical successful strategy starts 

“The variance increases and peaks at around 28th generation. It then decreases steadily when 

emergence of behavior occurs. This pattern occurs in all three cases. 

I2 Bear in mind that the parameters of the genetic algorithm were fixed at values that were ‘tuned’ for 
the case where PH = 0.5. 
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by cooperating and continues to do so as long as the opponent cooperates. The 
strategy differs from Tit-For-Tat in the way it punishes defection. It tends to 
enter into a ‘sophisticated way of defending’. For example, immediately after 
a defection by the opponent, an evolved machine may monitor the moves by the 
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Fig. 5d. n versus number of generation. 

opponent and only return to the initial cooperative state if the opponent defects 
not more than once in three periods. 

Fig. 5c shows that individuals learn not to switch their internal states too 
frequently in later generations (the average frequency of switching starts from 
0.8 and drops to 0.32 at the 100th generation). A high level of switching can 
jeopardize the coordination of moves and hence lower the frequency of coopera- 
tion. In addition, it makes players’ moves less predictable. This result suggests that 
it is harmful for individuals to switch states too frequently in playing an RPD. 

Fig. 5d shows that the size of a machine is not a binding constraint in playing 
an RPD game. Successful strategies in a finitely RPD in a costless environment 
need not be too complex. When P, = 1.0, the size of a machine starts from 
1 because we use the size of minimal machine. Notice that all machines which 
have more than one accessible state, but always defect, are equivalent in 
behavior to a one-state machine (minimal machine) that always defects, regard- 
less of the opponents’ moves. Overall, the results suggest that thriving strategies 
have a size of 11.r3 

I3 The averages are 11.12 (PH = 0.5), 11.44 (PH = 0.7), and 11.38 (PH = 1.0). The variances are 0.037, 

0.016, and 0.014. 
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In Figs. 5e-f, we see that evolved strategies have much higher defection than 
cooperation reciprocities.14 Note that Tit-For-Tat has equal defection and 

cooperation reciprocities. Thus the thriving strategies are more ‘punishing’ than 
Tit-For-Tat and can better exploit ‘nice’ strategies. It is worthwhile noting that 
the defection reciprocity increases and the cooperation reciprocity decreases 
with the hostility of the environment (Pn). 

Fig. 5g shows that successful strategies have very few terminal states (ts has an 
average of 0.030 and a variance of 0.0001 at the 100th generation). Since most 
terminal states exhibit defection, this finding suggests that successful strategies 
in a costless environment are not simple trigger strategies. 

3.3. Experiment II: Implementation costs measured by size qf machine 

In Experiment II, PH, P,, P,,,(O), and [ were fixed at 0.5, 0.6, 4 bits per string 

structure, and 10, respectively. Figs. 6ac and 6d-f graph the variations of,fc, n, 
and ts for j = 0.05, 0.15, and 0.25 for the linear and quadratic cost functions, 

respectively. Overall, the simulation results show that introducing a small 
implementation cost measured by the size of the machine destroys development 
of cooperative behavior. 

Figs. 6a and 6d show that the level of cooperation drops substantially. For 
instance, the level of cooperation for the case L(0.25,n) drops to as low as 15%. 

14The average defection and cooperation reciprocities are 0.70 and 0.37 (PH = 0.5). 0.74 and 0.32 

(PH = 0.70), and 0.76 and 0.27 (PH = 1.0). The variances are all below 0.0001. 
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The variances of the frequency of cooperation in all cases are below 0.0023. 
Thus, the simulation results suggest that cooperative behavior can be destroyed 
when one moves into a costly world.” 

Figs. 6b and 6e suggest that the sizes of the thriving strategies range from 
1.3 to 3.1 depending on the value of fi. When fi is large (e.g., 0.20 
and 0.25), the evolved strategies have sizes ranging from 1 to 2. An analysis of 
the string structures over the simulation runs suggest that a majority of 
these strategies are ‘All D'. When /? is small (0.05 and 0.10) the sizes of the 
machines range from 1 to 4 and the type of strategies is more diverse. It includes 
‘All D', Trigger, and some hostile strategies that begin the game by playing 
defection. Figs. 6c and 6f indicate that the evolved strategies have a high 
proportion of terminal states. Since most machines play defection in their 
terminal states, there is a high percentage of individuals who use the rule 
‘never trust your opponent again’. The use of this kind of rule reduces the size of 
the machine, but at the expense of obtaining a higher payoff from mutual 
cooperation. 

“The frequencies of cooperation are significantly different from the frequency of cooperation for 

p = 0. When a linear cost is charged, the t-statistics are 5.2 (/I = 0.05) 8.5 (fi = 0.15) and 12.8 

(fi = 0.25). When a quadratic cost is charged, the f-statistics are 4.6 (/? = 0.05), 8.3 (p = 0.15). and 9.3 

(p = 0.25). All are significant at the 1% level. 
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3.4. Experiment III: Implementation costs measured by frequency of switching 

In Experiment III, Pn PC, P,(O), and [ were fixed at 0.5,0.6,4 bits per string 
structure, and 10, respedively. Figs. 7a-b and 7c-d graph the variations offc,fi, 
ts for /3 = 0.05,0.15,0.25 for the linear and quadratic cost functions, respectively. 
Overall, the results suggest that penalizing a complex strategy based on fre- 
quency of switching will not hurt the development of cooperative behavior. 

Fig. 7a shows that charging a fee which varies linearly with the frequency of 
switching will not affect the development of cooperation. The levels of coopera- 
tion at the 100th generation are 90%, 91%, and 85%. The variances of the 
frequency of cooperation over the 100 simulation runs are below 0.0012. 

Charging a fee that varies in a quadratic manner with the frequency of 
switching may help cooperation if it is charged at an optimal level (see Fig. 7d). 
When /I is 0.25, the level of cooperation achieved is as high as 96%.16 In other 
cases, it is at least 90%. The variance of the frequency of cooperation in all cases 
is below 0.0005. 

Figs. 7b and 7e show that the ideal level of switching is quite low in an RPD 
game. Thriving strategies do not switch their states too frequently because if 

“When p was increased to 0.30, the level of cooperation dropped to about 92%. A r-test shows that 
the improvement in frequency of cooperation is significant (r-statistic = 2.8, p < 0.01). 
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they do they run the risk of losing coordination in their moves. They switch 
states only if their opponents change their ‘intentions’. An analysis of the string 
structures reveals that most individuals switch to play defection after detecting 
a defection from their opponents. 

3.5. Sensitivity analyses 

The simulation results we obtain might be sensitive to the values of some of 
the parameters we chose. We test the sensitivity of our findings with respect to: 
the importance of relative performance, a, the unit cognitive cost, p, and the 
half-life of mutation, 5. We repeat all three experiments for p from 0.005 to 0.04 
in steps of 0.005, for three values of a(l.0, 1.5,2.5) and for two values of 5 (25,50). 
For /I < 0.035, cooperation can still emerge in Experiment II. Thus, our finding 
from Experiment II is robust to changes in B only if it is above 0.035. The 
findings are robust to changes in cc In all three experiments, the level of 
cooperation changes less than 5% when c( was varied. A large 4 appears to slow 
down the emergence of behavior but does not change its pattern. For instance, 
a slower decay of mutation slows down but never prevents the emergence of 
cooperative behavior in Experiments I and III. In Experiment II, cooperative 
behavior stills breaks down with a slower rate of mutation.’ ’ 

4. Discussion 

In summary, our simulation results show: 

(i) The evolution of cooperation is not sensitive to the hostility of the initial 
environment. This finding implies that as long as individuals are willing to 
experiment and employ learning rules that have evolutionary properties, 
cooperative behavior in a finitely RPD can emerge. Cooperation can be started 
by a small number of individuals or mutants who are prepared to cooperate, 
even in a world where no one else will do so. These mutants thrive by obtaining 
a higher payoff when they play cooperation against each other. The defectors die 
off because they ‘kill’ each other and have performance worse than that of the 
cooperators. 

Our successful strategies are neither Tit-For-Tat nor Trigger. They are more 
complex and have more than ten states. These strategies tend to reciprocate 
cooperation less frequently. This behavior has been observed by some psychol- 
ogists. For example, Ross and Sicoly (1979) observed that people tend to 
remember their own ‘niceness’ more than others’ ‘niceness’ because of egocentric 
bias. Consequently, they may not reciprocate others ‘niceness’ as readily as they 
expect others to reciprocate their own ‘niceness’. 

17The details of the simulation results can be obtained from the author. 
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The evolved strategies also punish defection differently. Tit-For-Tat forgives 
their opponents immediately after a cooperative move and Trigger never 
forgives their opponents. Our successful strategies are more ‘suspicious’ than 
Tit-For-Tat as they monitor the opponents’ moves immediately after a defection 
for a few rounds. If the opponents are nice, they reciprocate by playing coopera- 
tion. Unlike Trigger, these strategies will return to cooperative behavior as long 
as the opponents are subsequently ‘detected to be ‘nice’. Such a feature can be 
very useful in a noisy environment where moves of opponents may be misrepre- 
sented. Thus the evolved strategies are neither as ‘naive‘ as Tit-For-Tat nor as 
‘rigid’ as Trigger. 

The evolved strategies have higher defection than cooperation reciprocities 
(Tit-For-Tat has equal defection and cooperation reciprocities). In addition, the 
defection reciprocity increases and cooperation reciprocity decreases with PH. 

This is interesting. It implies that evolved strategies from a more hostile environ- 
ment are more ready to punish than forgive. Cultures that tend to exhibit such 
‘reciprocity bias’ might be due to hostility in their historical environments. 

(ii) Penalizing a complex strategy based on the size of the machine can destroy 
players’ cooperative behavior. Our simulation results show that if a sixteen-state 
machine is charged a fee of 5% of the Pareto-optimal payoff (i.e., R) per game, 
the level of cooperation can drop substantially (from 86% to 5S”/,). While it is 
clear that penalizing a complex strategy will favor a simple strategy, it is not 
obvious that it will destroy the emergence of cooperative behavior. This finding 
suggests that we may not observe cooperative behavior in those real-life settings 
where the costs of monitoring are high or the process of monitoring is impos- 
sible. Examples include arms race and trade conflicts. 

Combined with the results from Experiment I, these results suggest that, if it is 
costly to monitor the opponents’ moves, it is better playing a simple and unfor- 
giving strategy. An unforgiving strategy can better exploit irrational strategies 
introduced by the mutation process than a forgiving one (Linster, 1992). Linster 
shows that the ability of a strategy to exploit poor strategies may determine its 
degree of success in an evolutionary contest. A forgiving strategy like Tit-For- 
Tat, while simple, is not as good in exploiting irrational strategies. This may 
explain why our successful strategies are unforgiving. In real life, unforgiving 
strategies seem pragmatic because they tend to require less monitoring. 

Linster (1992) shows that if the complexity cost is not too large, the propor- 
tions of the population can enter a cycle. We did not observe such a cyclic 
pattern of behavior in our simulation runs. This may be due to three reasons. 
First, we allow a much larger strategy space (a maximum of sixteen-state instead 
of two-state machines). Second, our evolutionary process includes the crossover 
operation and Linster’s does not. Third, we use a decaying mutation rate and 
Linster uses a constant mutation rate over time. Thus Linster’s populations are 
repeatedly perturbed over generations while players in our populations experi- 
ment less frequently as they ‘progress through’ the generations. 
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Our sensitivity analysis shows that cooperative behavior can still emerge if 
fi < 0.0035. This finding suggests that one way to promote cooperative behavior 
is to make the monitoring of strategies as simple as possible. This can be 
accomplished by chunking of information or applying invariant game trans- 
formations (see Ho and Weigelt, 1993). Thus, as the need for functional integra- 
tion heightens in organizations, the costs of monitoring should become an 
important factor in organizational design. 

(iii) A linear cost measured by frequency of switching will not hurt coopera- 
tion. Simulation results from Experiment I show that successful strategies in 
a costless environment switch states in about 30% of the moves (see Fig. 5~). 
When we charge a fee that increases linearly with the frequency of switching, it 
drops to about 10%. Since the evolved strategies have similar number of states 
(about 10-l 1 states), this implies that the evolved strategies are less sophisti- 
cated than those picked in the costless environment. An analysis of the string 
structures shows that these strategies tend to have more terminal states and they 
reciprocate both defection and cooperation more readily than the evolved 
machines in the costless environment. 

A quadratic cost measured by frequency of switching can help cooperation if 
the fee is charged at a suitable level. This result is interesting. Upon examining 
the evolved strategies, we find that the successful strategies are different from 
those of the linear case; they have fewer terminal states (see Figs. 7c and 7f). Thus 
the evolved strategies are more flexible and forgiving. While Banks and 
Sudaram (1990) show that costs of switching can destroy cooperation, our 
results reveal that this finding may depend on the way the switching cost is 
charged. 

In all three experiments, the number of terminal states and the level of 
cooperation correlate well. A lower number of terminal states is always accom- 
panied by a higher level of cooperation. This is because 95% of the terminal 
states play defection. This finding suggests that maintaining ‘flexibility’ is impor- 
tant for cooperative behavior. A machine that has a lot of terminal states is rigid 
because it cannot react to changes in opponents’ behaviors. 

Appendix I: Genetic algorithm software 

The genetic algorithm software is written in Pascal by the author. The 
software runs on the VAX 6400 super minicomputer. In addition to what has 
been described in Section 2, we make the following modifications to make the 
algorithm more robust: 

(i) Use a stochastic remainder selection scheme rather than a basic selection 
scheme to select individuals into the mating pool. For a constant population of 
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N individuals, the basic scheme performs N Bernoulli trials, and selects indi- 
vidual i with a probability P(i) = p(i,g)/&&,g) in each trial. The stochastic 
remainder selection scheme works in a slightly different manner. First we 
compute the expected number of individual i as ei = N x p(i, g)/Cj p (j, g). Then, 
each individual i is allocated samples according to the integer part of the ei 
values. Finally, the fractional parts of the expected number values are treated as 
probabilities and are used to fill the remaining population slots until the whole 
population is filled. Notice that the new scheme yields the same expected 
number of individuals, but with a smaller variance. It has been shown that the 
stochastic remainder selection scheme tends to improve the performance of the 
genetic algorithm (Goldberg, 1989). 

(ii) Use two crossover points instead of one. If we treat a string structure as 
a ring with no beginning or end, i.e., with the first bit immediately following the 
last bit, then it becomes clear that there are in fact two crossover points: one 
fixed at position 0 and the other randomly selected. An immediate generaliz- 
ation to this basic crossover operator is to allow both crossover points to be 
randomly selected. It has been shown that a two-point crossover operator tends 
to lead to better performance compared to a one-point crossover operator. 

Appendix II 

Table 2 shows twelve different sets of parameters and their associated payoffs 
and frequencies of cooperation at the 100th generation. (Pu is set to 0.5 in all 
these simulations.) The table illustrates that there are large equivalent classes of 
parameters that would yield emergence of cooperation behavior. 

Table 2 

Payoffs and frequencies of cooperation at 100th generation produced by different sets of genetic 

algorithm parameters 

PC pm (0) i Payoff( 100) .fi( 100) 

0.54 2 25 2.15 0.87 

0.45 2 20 2.72 0.84 

0.45 4 10 2.80 0.89 

0.50 2 25 2.79 0.88 

0.50 2 20 2.76 0.87 

0.50 4 IO 2.80 0.89 

0.55 2 25 2.67 0.82 

0.55 2 20 2.15 0.87 

0.55 4 10 2.78 0.88 
0.60 2 25 2.76 0.87 

0.60 2 20 2.65 0.81 

0.60 4 10 2.71 0.86 



206 T.-H. Ho/Journal of Economic Dynamics and Control 20 (1996) 173-207 

References 

Abreu, D. and A. Rubinstein, 1988, The structure of Nash equilibrium in repeated games with finite 

automata, Econometrica 56, 1259-1281. 

Anderlini, L., 1989, Communication, computability, and common interest games, Working paper 

(Santa Fe Institute, Santa Fe, NM). 
Aumann, R., 1981, Survey of repeated games, in: R.J. Aumann et al., eds., Essays in game theory and 

mathematical economics in honor of Oscar Morgenstern, 1142. 
Aumann, R., 1989, Perspectives on bounded rationality, Working paper (Stanford Graduate School 

of Business, Stanford, CA). 

Axelrod, R., 1984, The evolution of cooperation (Basic Books, New York, NY). 
Axelrod, R., 1987, The evolution of strategies in the iterated prisoner’s dilemma, in: Lawrence Davis, 

ed., Genetic algorithms and simulated annealing (Morgan Kaufman, Los Altos, CA). 

Banks, J. and R. Sundaram, 1990, Repeated games, finite automata, and complexity, Games and 

Economic Behavior, 977 117. 

Binmore, K., 1987, Modeling rational players: Part I, Economics and Philosophy 3, 179-214. 

Binmore, K., 1988, Modeling rational players: Part II, Economics and Philosophy 4, 9-55. 

Binmore, K. and L. Samuelson, 1990, Evolutionary stability in repeated games played by finite 

automata, Working paper (University of Wisconsin, Madison, WI). 

Brown, G.W., 1951, Iterative solution of games by fictitious play, in: Activity analysis of production 

and allocation (Wiley, New York, NY). 

Friedman, D., 1991, Evolutionary games in economics, Econometrica 59, 637-666. 

Fudenberg, D. and D. Kreps, 1988, A theory of learning, experimentation, and equilibrium in games, 
Memo (Stanford Graduate School of Business, Stanford, CA). 

Fudenberg, D. and E. Maskin, 1986, The Folk theorem in repeated games with discounting or with 

incomplete information, Econometrica 54, 5333554. 

Fudenberg, D. and E. Maskin, 1990, Evolution and cooperation in noisy repeated games, American 

Economic Review 80, 274279. 

Gilboa, I., 1988, The complexity of computing best-response automata in repeated games, Journal of 

Economic Theory 45, 3422352. 

Goldberg, D., 1989, Genetic algorithms in search, optimization and machine learning (Addison- 

Wesley, New York, NY). 

Harrison, M., 1965, Introduction to switching and automata theory (McGraw-Hill, New York, NY). 

Ho, T.-H. and K. Weigelt, 1993, Task complexity, equilibrium selection, and learning: An 

experimental study, Management Science, forthcoming. 

Holland, J.H., 1975, Adaptation in natural and artificial systems (University of Michigan Press. Ann 

Arbor, Ml). 

Holland, J.H. and J. Miller, 1991, Artificially adaptive agents in economic theory, American 
Economic Review 81, 365-370. 

Holland, J.H., K.J. Holyoak, R.E. Nisbett, and P.R. Thagard, 1986, Induction: Processes of 

inference, learning, and discovery (MIT Press, Cambridge, MA). 

Hopcroft, J. and J. Ullman, 1979, Introduction to automata theory, languages, and computation 
(Addison-Wesley, Reading, MA). 

Kalai, E. and W. Stanford, 1988, Finite rationality and interpersonal complexity in repeated games, 
Econometrica 56, 397410. 

Kreps, D., 1990, Game theory and economic modeling (Oxford University Press, Oxford). 
Kreps, D., P. Milgrom, J. Roberts, and R. Wilson, 1982, Rational cooperation in the finitely repeated 

prisoner’s dilemma, Journal of Economic Theory 27, 2455252. 

Linster, B., 1992, Evolutionary stability in the infinitely repeated prisoners’ dilemma played by two- 

state Moore machines, Southern Economic Journal, 880-903. 



T.-H. Ho/Journal of Economic Dynamics and Control 20 (1996) 173-207 207 

Marimon, R. and J. Miller, 1989, Money as a medium of exchange in an economy with genetically 

reproduced decision rules, Working paper (Santa Fi Institute, Santa Fe, NM). 

Marimon, R., E. McGrattan, and T. Sargent, 1990, Money as a medium of exchange in an economy 

with artificial intelligent agents, Journal of Economic Dynamics and Control 14, 329-374. 

Milgrom, P. and J. Roberts, 1991, Adaptive and sophisticated learning in repeated normal form 
games, Games and Economic Behavior 3, 82-100. 

Miller, J., 1989, The coevolution of automata in the repeated prisoner’s dilemma, Working paper 
(Santa F& Institute, Santa F&, NM). 

Minsky, M., 1967, Computation: Finite and infinite machines (Prentice-Hall, Englewood Cliffs, NJ). 

Neyman, A., 1985, Bounded rationality justifies cooperation in the finitely repeated prisoner’s 
dilemma, Economics Letters 19, 227-229. 

Radner, R., 1986, Can bounded rationality resolve the prisoner’s dilemma?, in: Essays in honor of 

Gerard Debreu (North-Holland, Amsterdam). 
Rapoport, A., 1966, A note on the index of cooperation for prisoner’s dilemma, Journal of Conflict 

Resolution, 100-103. 

Rapoport, A. and A.M. Chammah, 1965, Prisoner’s dilemma (University of Michigan Press. Ann 
Arbor, Ml). 

Ross, M. and F. Sicoly, 1979, Egocentric biases in availability and attribution, Journal of Personality 

and Social Psychology 37, 322-336. 

Rubinstein, A., 1986, Finite automata play the repeated prisoner’s dilemma, Journal of Economic 

Theory 39, 83-96. 

Selten, R., 1983, Evolutionary stability in extensive two-person games, Mathematical Social Sciences 
5. 269--363. 

Selten, R., 1991, Evolution, learning and economic behavior, Games and Economic Behavior 3, 

3-24. 

Selten, R. and R. Stoecker, 1986, End behavior in sequences of finitely repeated prisoner’s dilemma 

supergames A learning theory approach, Journal of Economic Behavior and Organization 7, 

47m- 70. 

Simon, H., 1982, Models of bounded rationality, 2 vols. (MIT Press, Cambridge, MA). 

Smith, J., 1982, Evolution and the theory of games (Cambridge University Press, Cambridge). 

Zemel, E., 1989, Small talk and cooperation: A note on bounded rationality, Journal of Economic 
Theory 49, l-9. 


