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Abstract 
 

This chapter extends the EWA learning model to bilateral call market games (also known as 
the "sealed-bid mechanism" in two-person bargaining). In these games, a buyer and seller 
independently draw private values from commonly-known distributions and submit bids. If the 
buyer's bid is above the seller's, they trade at the midpoint of the two bids; otherwise they don't trade. 
We apply EWA by assuming that  players have value-dependent bidding strategies, and they partially   
generalize experience from one value/cost condition to another in response to the incentives from 
nonlinear optimal bid functions.  The same learning model can be applied to other market 
institutions where subjects economize on learning by taking into consideration similarity between 
past experience and a new environment while still recognizing the difference in market incentives 
between them. 
 

The chapter also presents a new application of EWA to a "continental divide" coordination 
game, and reviews 32 earlier studies comparing EWA, reinforcement, and belief learning. The 
application shows the advantages of a generalized adaptive model of behavior that includes elements 
of reinforcement, belief-based and direction learning as special cases at some cost of complexity for 
the benefit of generality and psychological appeal.  It is a good foundation to build upon to extend 
our understanding of adaptive behavior in more general games and market institutions.  In future 
work, we should investigate the similarity parameters, ψ and ω, to better characterize their magnitude 
and significance in different market institutions. 
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1. Introduction  
 

This paper is about learning in bilateral call markets.  In these markets, buyers and 
sellers are privately informed of their values and submit their bids anonymously. If the 
buyer’s bid is (weakly) more than the seller’s ask, they trade at the midpoint of their bids. 
Understanding learning in bilateral call markets serves as a foundation for studying learning 
in more complex market institutions such as posted offers and double auctions.  It also 
forces a generalization of learning models developed for simpler games to environments in 
which learning contingent on one realized random variable, such as a buyer’s valuation in 
one trial, is generalized to similar valuations.  Similarity-based generalization is a natural way  
to extend what is learned locally, which is undoubtedly important when people learn in very 
complex environments (in which learning has not thoroughly explored experimentally).  
 

Studying learning in games is important because most of game theory revolves 
around the analysis of different equilibria of a wide range of games. The question of how, 
and whether, equilibrium actually arises was not thoroughly explored until recently. Now 
theorists actively study the dynamic properties of various models of evolution and learning, 
with a special focus on which types of equilibria these dynamics converge to (e.g., Weibull, 
1998; Fudenberg and Levine, 1998). However, less attention has been paid to how well these 
dynamic models fit and predict data.  The natural place to start is with data from laboratory 
experiments, where we have good control over the subjects' incentives and perceptions of 
the game they are playing, and the information they receive which helps them learn. 
Eventually, of course, these models should be extended to explain and predict learning in 
field settings (e.g., Ho and Chong, 1999).  
 

Many of these models-- though not all-- have traditionally been classified into two 
groups: reinforcement, and belief learning.  Reinforcement models update some unobserved 
propensity, reinforcement level, or attraction, according to what a chosen strategy actually 
earned (perhaps relative to some reference point, which might adapt).  Belief models form 
beliefs based on some weighted average of previous observations of what other players have 
done.  Beliefs are then used to compute expected payoffs of different strategies, and those 
with the highest expected  payoffs are chosen with higher probability.  Camerer and Ho 
(1999) created a more general model, experience-weighted attraction (EWA) learning, which 
hybridizes the main features of reinforcement and belief learning. In EWA, strategies have 
attractions which are updated by decaying lagged attractions and multiplying them by an 
experience weight (which is also updated), and adding either the payoff received from 
choosing a strategy, or δ times the foregone payoff from unchosen strategies. Attractions are 
then divided by a quasi-normalizing factor which controls whether attractions are averages 
or cumulations of past payoffs. More details of this model are given below.  

 
This paper extends the EWA approach to bilateral call markets. In these markets, a 

single buyer and seller are each privately informed about their own value and cost, denoted 
V and C, respectively. The probability distributions of possible values and costs, f(V) and 
g(C), are commonly known.  They submit bids, denoted v(V) and c(C). If the buyer is willing 
to pay at least as much as the seller demands, v(V) ≥ c(C), they trade at a price which is the 
midpoint of their bids, (v(V)+c(C))/2; otherwise they do not trade.  
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These are bilateral call markets because they are two-agent examples of general call 
markets. In call markets, many traders submit demand and supply schedules, and the market 
is "called" at the price where supply meets demand.  The mechanism used to determine 
prices in the two-agent case is also called the sealed-bid mechanism. 
 

We investigate bilateral call markets for two reasons.  First, there is an enormous 
amount of experimental evidence about the way in which market institutions influence prices 
and quantities, and the speed and nature of convergence, when there are many traders (see 
Holt, 1995, for a review).  Very few of the learning models developed to carefully explore 
learning in simpler strategic games have been applied to market data.  The only exceptions 
we know of are two studies of call markets with many buyers and sellers.  Cason and 
Friedman (1999) applied a form of direction learning to a laboratory call market with four 
buyers and four sellers and random supply and demand each period.  They found that partial 
adjustment toward ex post optimal bids explained a significant portion of the observed 
behavior.  In addition, there is strong asymmetry in the adjustment and significant 
‘observational learning’ taking place.  The result shows that actual received payoffs are not 
the only information traders use to guide their decisions.  Hsia (1999) applied EWA (and 
some models which are extreme special cases of it) to the same data and found that EWA 
did significantly better than both reinforcement and belief based models.   

 
In the call markets studied by Cason, Friedman, and Hsia, Bayesian Nash equilibrium 

strategies require markdowns or markups of valuations (i.e., a buyer should bid some 
fraction of her value) which are approximately constant for all valuations, and small 
compared to the bilateral call markets.  This relatively weak incentive to optimize may have 
contributed to the asymmetry in traders’ adjustment and the inability to get significant 
learning parameters in some cases.  By extending EWA from games to bilateral call markets, 
we hope to learn something about how the model can be applied to more complicated 
market institutions, in which bidding strategies are complex (nonlinear) and there is a torrent 
of information (bids, asks, and acceptances) which influences learning.  
 

Second, it is cognitively plausible to think that when a buyer draws a valuation V, 
bids v(V), and either makes a trade or doesn't, she learns something about how she should 
bid for valuations similar to V.  This effect can be captured in a model which “learns less” 
about events that are far from V and v(V), or less similar to V and v(V), in a sense that we 
make precise later. Similarity-based generalization of learning is well-established in cognitive 
psychology and heuristics like these are used in machine learning in computer science (see 
Kaelbling, Littman, and Moore, 1996, for a summary).  Similarity-based learning is also 
arguably a “cognitively economical” heuristic because scarce attention is allocated where it is 
likely to be most useful-- namely, in the vicinity of the current valuation and bid.  Our 
approach revives the generalization parameter in Roth and Erev (1995) and is also closely 
related to the approach of Sarin and Vahid (1999). The latter showed that “spillover” of 
reinforcement from a chosen strategy to neighboring strategies could explain why players 
actually converge to equilibrium much more rapidly than they are predicted to solely by 
choice reinforcement, in order-statistic experiments conducted by Van Huyck, Battalio and 
Rankin (1996).  
 

The long-run goal of the approach we take in this paper is a general theory of 
learning in markets and other complex economic environments.  Such a theory would be a 
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scientific breakthrough if it could connect game-theoretic learning models to approaches in 
psychology and computer science. A theory of market learning would also be useful in 
practice. Theorists are now actively engaged in designing more and more complex incentive 
systems, or "mechanisms", to help societies and firms incentivize agents to act in ways which 
maximize some objective function. Business firms are also designing more ambitious trading 
systems-- e.g., internet auction companies Ebay and Ubid.  These mechanisms are usually 
discovered by trial-and-error learning or managerial hunches, or by theorists searching for 
sets of rules which balance "incentive compatibility" and "individual rationality".  However, 
the definition of rationality in mechanism design ignores the cognitive difficulty of 
computing how to behave under the rules, or the difficulty of learning from experience. In 
practice, every applied mechanism designer has an intuitive sense that some mechanisms 
work beautifully in theory, but will fail in practice because they are too opaque for agents to 
figure out or learn (e.g., Ledyard, 1993). A theory of learning could formalize the designers' 
intuitions by suggesting precise “learnability” constraints. Adding these constraints would 
inform which mechanisms would be easiest to learn, and hence most likely to work well in 
practice (e.,g.,  Friedman, 1998).  
 
 The paper proceeds as follows. The next section (2) describes the EWA approach, 
briefly summarizes earlier results (and alternative theories), and illustrates the application of 
EWA to a “continental divide” coordination game. Section 3 describes previous results on 
bilateral call markets (also called the “sealed-bid mechanism”).  
 
 
2. Previous research on learning in games 

 There have been dozens of studies fitting different learning models to experimental 
data.  Rather than summarize this large and growing literature, we will only mention some 
highlights and dwell on precursors which motivate our analysis of the call market data.  We 
start with notation. We study n-person normal-form games.  Players are indexed by i 
(i=1,…,n), and the strategy space of player i, Si consists  of mi discrete choices, that is, Si = 
{si

1, si
2, …, si

m i -  1, si
mi}.  S = S1 × … × Sn is the  Cartesian product of the individual strategy 

spaces and is the strategy space of the game. si ∈  Si denotes a strategy of player i, and is 
therefore an element of Si.  s = (s1, …, sn) ∈  S is a strategy combination, and it consists of n 
strategies, one for each player.  s-i = (s1, …, si-1, si+1, …, sn) is a strategy combination of all 
players except i. S-i has a cardinality of m-i = ∏ n

j=1, j ≠i mj.  The scalar-valued payoff function of 
player i is πi(si , s-i). Denote the actual strategy chosen by player i in period t by si(t), and the 
strategy (vector) chosen by all other players by s-i(t).  Denote player i's payoff in a period t by 
πi(si(t),s-i(t)).  Many theories assume that each strategy has a numerical attraction, which 
determines the probability of choosing that strategy.  Learning consists of changes in 
attractions based on experience. (In “rule learning” the strategies are rules which map history 
into choices, and players update the attractions of these rules; e.g., Salmon, 199x and Stahl, 
in press). 
  
Learning models of this sort require a specification of initial attractions, how attractions are 
updated by experience, and how choice probabilities depend on attractions. The core of the 
EWA model is two variables which are updated after each round.  The first variable is N(t), 
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which we interpret as the number of “observation-equivalents” of past experience. The 
second variable is Ai

j(t), player i's attraction of strategy j after period t has taken place. 
 
Updating is governed by two rules. The experience weight N(t) is updated according to 
N(t)=φ(1-κ)N(t-1)+1.  Attractions are updated according to  
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Where I(x,y) is an indicator function which is one when x = y and 0 otherwise. Intuitively, 
attractions are equal to decayed (by φ), experience-weighted (N(t-1)) lagged attractions, plus 
reinforcement for the received payoff (if si

j=si(t)) or δ times the reinforcement for a foregone 
payoff.1  This numerator is then quasi-normalized by dividing by φ(1-κ)N(t-1)+1.  The free 
parameters δ, φ, and κ all have intuitive interpretations.    
 
The weight on foregone payoffs δ is a kind of  “imagination” of foregone payoffs, or 
“simulation” of outcomes under alternative competitive scenarios; it might also be 
considered responsiveness to opportunity costs or regret. The decay parameter φ is naturally 
interpreted as the degree to which players realize other players are adapting, so that old 
observations on what others did become less and less useful.  (In current work we are trying 
to endogenize φ so that it need not be estimated from the data, and can change throughout 
an experimental session as players sense that the strategic environment is becoming more or 
less stable.) The parameter κ determines the growth rate of attractions, which reflects how 
quickly players lock in to a strategy or, in machine learning terms, how quickly players shift 
from “exploring” an environment to “exploiting” what they have learned. When κ= 0, 
attractions are weighted averages of lagged attractions and past (δ-weighted) payoffs, where 
the averaging weights are φ N(t-1)/(φ N(t-1)+1) and 1/(φN(t-1)+1). When κ= 1, the 
denominator becomes one and attractions are (decayed) cumulations of past payoffs. When 
attractions are cumulations, a strategy which is chosen frequently and yields positive payoffs 
can build up a large “lead” over unchosen strategies, so that exploration is brief and a player 
quickly turns to exploiting their historical information by locking in to one strategy rapidly.  
 
Note that while we have not subscripted the key parameters δ, κ, and φ, they obviously 
could be different across players or games.  Attractions must determine probabilities of 

choosing strategies in some way.  We generally use the logit form, 
∑ =
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but a power form fits about equally well (Camerer and Ho, 1999a).  
 
Figure 1 shows a cube with axes representing the imagination parameter δ, the change 
parameter φ, and exploration/exploitation parameter κ.  Many existing theories are simply 
extreme cases of EWA learning which are represented by points or edges of the cube.  For 
example, cumulative reinforcement, average reinforcement, weighted fictitious play are edges 
and Cournot and fictitious play are vertices of this cube. 
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When δ=0, ρ=0 (and N(0)=1), then N(t)=1 and the attraction updating equation  
becomes ))(),(())](,()]1([)1,()1(),( tststssItaAtNtaA i

j
iii

j
i

j
i

j
i −••−++−•−•= πδδφ .  This is the 

simplest form of cumulative choice reinforcement (e.g., Roth and Erev, 1995, with some 
features left out). When δ=0, ρ=φ (and N(0)=1/(1-ρ)), the attraction updating equation 
becomes ))(),(())](,()]1()[1()1,()1(),( tststssItaAtNtaA i

j
iii

j
i

j
i

j
i −••−+−+−•−•= πδδφφ . 

This is a form of averaged choice reinforcement (attractions are averages of previous 
attractions and incremental reinforcement).  The most surprising extreme case is weighted 
fictitious play. When δ=1, φ=ρ, then the attractions are updated according to  

 
This updating rule corresponds exactly to updating of expected payoffs according to 
“weighted fictitious play”, in which players' weight the last observation of what others did by 
one, and from t periods ago by φ(t-1), form a belief which is a normalized average of these 
weighted observations, and use those beliefs to calculate expected payoffs. Weighted 
fictitious play includes fictitious play (φ=1) and Cournot best-response dynamics (φ=0) as 
special cases.  
 
Seen as vertices of the EWA parameter cube, it is obvious that reinforcement and belief 
learning models are closely related rather than fundamentally different (as many people have 
suggested).  Belief learning (of the weighted fictitious play sort) is simply a kind of 
generalized reinforcement in which unchosen strategies are reinforced by foregone payoffs, 
as strongly as chosen strategies are, and reinforcements are averages rather than cumulations.  
 
The EWA cube also suggests that there is no good empirical reason to think that players' 
parameter configurations would necessarily cluster on the vertices corresponding to 
reinforcement and belief learning. Indeed, early studies did not consider a wide range of 
parameter values and hence, have never found clustering on particular vertices. (Instead, the 
typical study simply chose an edge or vertex and asked how well that specific learning rule 
matched the data, compared to a benchmark like Nash equilibrium or random choice.) 
Furthermore, the intuition behind reinforcement is compelling-- namely, chosen strategies 
are reinforced more strongly-- and the intuition behind belief learning is compelling too-- 
unchosen strategies should be strongly reinforced too.  There is no scientific reason to 
choose one intuition or the other, when one can respect both intuitions with a value of δ 
between 0 and 1 (i.e., a learning model in the interior of the cube).  
 
Continental divide game 
 
To illustrate how EWA and the other learning models fit, it is useful to look briefly at a 
specific game-- the “continental divide game” (Van Huyck, Cook, and Battalio, 199x).  
In this game, if the median starts at 7 or less and subjects best-respond, they will eventually 
work their way to a pure-strategy equilibrium at 3.  If the median starts at 8 or above, 
however, best-responding will eventually converge to an equilibrium of 12.  Both equilibrium 
payoffs are shown in italics.  The payoff at 3 is about half as much as at 12. 
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Table 1: Payoffs in ‘continental divide’ experiment, VHCB (in press) 
   

      Median Choice       
choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

               
1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142 
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 
3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 
4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 
5 35 44 52 60 69 77 83 46 32 25 19 15 12 10 
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38 
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62 
8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82 
9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98 
10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110 
11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119 
12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123 
13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123 
14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120 

 
This game captures the possibility of extreme sensitivity to initial conditions (or path-
dependence), which has recently begun to fascinate all sorts of scientists interested in chaotic  
dynamics and complex systems.  Path-dependence is often evident in physical systems.  I 
once went mountain climbing in Alaska with a friend. We stood on the continental divide, 
which is the imaginary line (marked on a map) which marks the point at which the direction 
of water flow changes from one direction to the opposite.  We poured water from a canteen 
right at the divide; some water trickled south and some trickled north.  Eventually, the 
north-flowing water made it to the Arctic Ocean, and the south-flowing water to the Pacific.  
Molecules that began imperceptibly close together ended up a thousand miles apart. 
 
What happens in the continental divide game?   Figure 2 shows time series of median 
choices from ten sessions conducted by VHCB. Each line represents the time series of 
medians from a separate group.  An imaginary line between choices 7 and 8 acts precisely 
like the continental divide.  Groups that started with medians of 8 or above are inexorably 
drawn to 12-13; groups that started with low medians converge to 3-6.  Remember that the 
low groups, in equilibrium, earn about half as much as the high groups do.  Tiny historical 
accidents have large, persistent earnings consequences. 
 
We estimated the EWA model on the continental divide data by fixing the initial attractions 
so that predicted choice frequencies in period 1 match the data exactly.  We then used 
maximum-likelihood estimation to find parameters which fit the first 10 periods best, then 
used those parameters to forecast behavior in the last five periods.  The procedure uses the 
actual history each subject faced (i.e., their own choices, the medians in their group) so that 
each person's predicted choice probabilities are different in each period.  Table 2 shows the 
estimated parameters for EWA learning model and for restricted cases that correspond to 
reinforcement (δ=0, ρ=0, N(0)=1) and belief based (δ=1, ρ=φ) models.   
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Table 2: The estimated parameters (standard errors) for various learning models.  
 

 EWA Learning Reinforcement Belief Learning 
a1 0.0000  0.0000  0.0000  
a2 0.0000  0.0000  0.0000  
a3 0.0000  0.0000  0.0000  
a4 0.0000  0.0000  0.0000  
a5 0.6152  0.6240  0.4965  
a6 0.9304  1.2916  0.8478  
a7 0.9292  1.2053  0.8602  
a8 0.7781  0.8186  0.7319  
a9 0.7052  0.7064  0.6907  

a10 0.7230  0.7628  0.7618  
a11 0.6604  0.6677  0.6839  
a12 0.7432  0.7519  0.6963  
a13 0.5016  0.4326  0.5404  
a14 0.7017  0.5873  0.6575  

φ 0.6112  0.5630  0.0008  
δ 0.7495  0.0000  1.0000  
ρ 0.0008  0.0000  0.0008  

N(0) 0.7621  1.0000  0.7722  
λ 4.5210  2.0852  6.5572  

-LL -1189.85  -1438.66  -1369.94  
 
Figure 3 shows the actual frequencies of strategies 1-14, pooled across all 10 cohorts for all 
15 periods.  This plot masks the dramatic path-dependence evident in Figure 2, but shows 
the general tendency toward bifurcation (and also shows that convergence toward the high-
number equilibrium at 12 is sharper than toward the low-number, Pareto-dominated 
equilibrium).   
 
As a comparison, we simulated choices using the estimated EWA parameters.  Starting with 
initial attractions, we generated first period choices stochastically using the probability profile 
from the attractions that are identical across individuals.  As subjects update their attractions 
using actual and hypothetical payoffs, attractions of each individual become different 
depending on the actual choices.  Thus in the subsequent periods, subject will choose 
strategies with different probabilities.  We simulated the continental divide games using all 
three learning models with the estimated parameters in Table 2.  Figure 4 compares the 
distribution of choices across strategies for 1000 simulations pooled across all players and 
periods.  We can see that none of the models can quite match the sharpness of the actual 
frequencies, with the reinforcement learning model doing the worse, completely missing the 
critical features of the game.  Belief learning model did much better but adjusted too quickly 
on the lower equilibrium, resulting in a lower peak in the distribution at 3 compared to 5 
from the data.  EWA learning did a little better still, though missing on the sluggish side with 
the lower peak around 5 and 6. 
 
Figure 5 shows the paths of 10 typical medians from the simulation using EWA learning 
model.  These results show why it is potentially important to hybridize features of learning 
models separately. The best-fitting model combines the responsiveness of belief learning 
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(high δ) with the cumulation of reinforcement models (high κ), because players quickly lock 
in, exploiting their learning from the first few trials. Simply averaging expected payoffs and 
reinforcement levels would not produce this kind of gene-splice or hybridization.  
 
Figure 6 shows similar paths from the belief learning restriction (δ=1, κ=0) and Figure 7 
shows paths from the choice reinforcement restriction (δ=0, κ=1).  Reinforcement fits very 
poorly.  (Reinforcement will generally do poorly when the set of strategies which are chosen 
at the beginning of a game are different than the strategies which are chosen toward the end, 
as in "market games" (proposer competition), see Roth and Erev, 1995, or beauty contest 
games see Camerer and Ho, 1999.) Belief learning fits rather well.  EWA does slightly better 
than belief learning in two small ways, however:  (1) Notice that strategies 1-4 are never 
chosen in early periods, but are frequently chosen in later periods; and (ii) notice that 
strategies 7-9 are frequently chosen in early periods but never chosen in later periods.  A 
good model should be able to capture these second-order effects by “accelerating” low 
choices quickly (going from zero to frequent choices in a few periods) and “braking” 
midrange choices quickly (going from frequent choices to zero).  EWA does so rather well; 
belief learning does not. Thus, in this particular sample, while EWA does not add much 
visually to belief learning, the crucial parameter estimates are significantly different than the 
belief learning restriction, and belief learning is not able to accelerate and brake as quickly as 
EWA.   
 
The continental divide data illustrate how EWA can improve marginally on belief learning, 
and substantially on reinforcement learning, by hybridizing their features into a novel 
mixture.  More generally, empirical results comparing reinforcement and belief models have 
been mixed. Many direct comparisons of the two favored reinforcement models 
(Mookerjhee and Sopher, 1994, 1997; Erev and Roth, 1998). However, when weighted linear 
combinations of reinforcements and expected payoffs are used to fit data, the weight on 
expected payoffs is about ten times higher than on reinforcements (Erev and Roth, 1998, p. 
867; Battalio, Samuelson and Van Huyck, 1999; Munro, 1999).  The mixed results might be 
due to use of games and techniques which do not have enough power to distinguish between 
models (Salmon, 1999).  
 
Studies which estimate the EWA model provide an easy way to compare the extreme special 
cases to one another, and to EWA, by testing the implied restrictions on parameter values. 
Table 3a summarizes results of model estimation from 32 data sets, including our earlier 
papers, call markets (Hsia, 1998), cost allocation processes (Chen, 1998), extensive-form 
centipede games (Camerer, Ho and Wang, 1999),``unprofitable'' games (Morgan and Sefton, 
1998), signaling games (Anderson and Camerer, 1999), patent race games with iteratively 
dominated strategies (Almadoss and Rapoport, 1999), pricing games (Abramson, 1998), and 
5x5 matrix games (Stahl, 1999).  
 
The goodness-of-fit statistic, summarized in Table 3b, is -1 times log likelihood except in 
Chen (1999). The column ``EWA" reports the -LL of the EWA model. The reinforcement 
and belief models report the difference between the -LL's of those models and the EWA 
statistic. (Positive differences mean that EWA fits better.) 
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Values of δ  tend to be between .5 and 1 in most studies except those in which games have 
only mixed-strategy equilibria, where δ is close to zero. The value of φ is reliably around .9 or 
so, with a couple of exceptions.  
 
What about model comparisons? The fairest comparisons estimate parameters on part of a 
sample of data and forecast choices out-of-sample, so that models with more parameters will 
not necessarily fit better.2 (Indeed, if they succeed in-sample by overfitting, they will do 
particularly badly when predicting out-of-sample.) In those 11 comparisons (denoted 
“OUT” in the third column from the right), EWA predicts better than reinforcement in 
every case, although usually modestly.  EWA predicts better than belief learning in 9 of 11 
cases, by a large margin in some data sets, and does worse in two constant-sum games.   
 
Of course, EWA necessarily fits better in the other 20 in-sample comparisons than 
reinforcement and belief models because the latter are special cases. But it also does better in 
almost all cases when penalizing EWA for extra degrees of freedom using a standard ψ2 test, 
or the Akaike or Bayesian criteria. For example, if the difference in LL is 4 points or more 
then the special-case restriction will be rejected by the ψ2 test. By this criterion, EWA fits 
more accurately than belief learning in all in-sample comparisons, and fits more accurately 
than reinforcement in 16 out of 20 comparisons.  
 
Figure 1 shows estimates of EWA parameters for 20 of the 32 studies in Table 3a.3 Each 
point represents the results of one study. There is no strong tendency for parameter 
estimates to cluster in any particular corner or vertex, although there are quite a few points in 
the lower corner corresponding to averaged-reinforcement learning (δ=0, κ=0) with high φ.  
We are not sure why points are different for different games, although we note that every 
study which has looked for cross-game variation has found statistically significant variation. 
Eventually, of course, it would be good to have a theory which specifies parameter values in 
advance, from empirical regularity or the structural properties of a game, and we are 
currently researching this question. 
 
Given the results from almost two dozen studies shown in Figure 1, and the usefulness of a 
model which combines the intuitions of reinforcement and belief learning, it is hard to think 
of a good empirical reason why attention should continue to be focussed on any extreme 
special case theory rather than on EWA.  
 
 
3. Bilateral call market  experiments 
 
 There have been several experiments on bilateral call markets (see Roth, 1995, p. 
253-348; Camerer, in progress, for reviews.)  The earliest work is by Radner and Schotter 
(1989).  They studied the case in which values and costs are uniformly distributed from 0 to 
100.  In this case, there are equilibrium bid functions for risk-neutral agents which are 
piecewise linear, and require buyers to underbid their values and sellers to overbid their 
costs. For example, the buyer should bid her value (v(V)=V) up to 25, and bid 
v(V)=(25+2V)/3 for higher values.  In some sessions they use nonuniform value 
distributions which predict bid functions with lower slopes. They find that empirical bid 
functions, estimated by regressions of actual bids on values, have slopes and slope 
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differences (reflecting the piecewise linearity) which are rather close to those predicted by 
theory, and which change with the value distribution in the predicted way.  Radner, Schotter 
and Zheng (check cite) extended their study by forcing players to submit reservation prices 
to agents, who bargained on their behalf.   
 
 Radner and Schotter found that when players bargained face-to-face, rather than by 
submitting bids, that efficiency was quite high. In fact, efficiency was higher than predicted 
by any equilibrium bid functions, so the players were violating individual rationality 
constraints for the sake of joint gain.  The variance of prices was also high (compared to the 
sealed-bid control), which suggests that some players were much better bargainers than 
others and were able to put their skill to use when bargaining face-to-face.  Players were able 
to jointly create more surplus than predicted by theory.  Valley et al (1998) unpacked this 
finding by comparing the sealed-bid mechanism with treatments in which players passed 
written bids back and forth, and communicated face-to-face, before submitting sealed bids.  
They found that while subject pairs did not typically reveal both of their values to one during 
the pre-bidding communication, they were frequently able to coordinate on a single price, 
which they both bid.  As in Radner and Schotter, efficiency was higher than predicted by any 
equilibrium in the communication conditions, particularly for face-to-face communication.  
 
  Several studies by Rapoport and colleagues extended the work of Radner and 
Schotter (using no pre-bid communication). Rapoport and Fuller (1995 used the “strategy 
method”, eliciting the entire v(V) function. They used symmetric uniform [0,100] values in 
one experiment. In a second experiment the seller's cost was uniform from [0,100] but the 
buyer's value was uniform from [0,200]. In that case, there is a piecewise linear equilibrium in 
which buyers make a constant bid of 116.7 for values above 150.  From a learning point of 
view, these bid functions with flat portions are interesting because it is an open question 
whether bidders can learn to bid a constant rather than a function which increases 
monotonically with value.  
 
 Rapoport and Fuller found reasonable conformity with the piecewise-linear 
functions, except that subjects tended toward more full revelation of values over time (i.e., in 
the opposite direction of equilibrium).   

 
Daniel, Seale, and Rapoport replicated the asymmetric-value experiment with similar 

results.1  They also ran two experiments in which the seller's costs are uniforms from [0,100] 
and [0,20] respectively, and the buyer's value is uniform from [0,200].  We analyze their data 
in experiment 2 because the equilibrium bid functions are farthest from fully-revealing 
bidding, so there is more room to observe learning. The extreme asymmetry in values 
produces a (piecewise) linear equilibrium solution (LES) of   
 

                                                           
1 Rapoport, Daniel and Seale (1999) replicated the DSR experiment 1. They also ran an experiment in 
which the buyer's values are uniform [100,200] and seller costs are uniform from [0,200]. These parameters 
flip around the bid functions so they are the opposite of those (i.e., buyer and seller bid functions switch) 
from experiment 1.  
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where V and B are the buyers’ values and bids and C and A are the sellers’ costs and asks.   
 

Most call market experiments have been done with symmetric uniform distributions, 
which produce linear equilibrium bid functions as Bayesian Nash equilibrium bidding 
strategies. (There usually are other nonlinear equilibria, such as “one-price” equilibria and 
others.)  When we usually observe approximately linear bid functions in these markets, it is 
not clear whether traders “learned” to bid linearly or just happen to use a constant 
markdown ratio as a convenient strategy.  The extreme asymmetry of the linear equilibrium 
in this case provides the buyers with the opportunity and incentive to learn a more 
complicated strategic behavior, since the optimal markdown ratios vary from 0% to almost 
70% over the range of possible values. 
 
 In their experiment, there were 10 pairs of randomly matched buyers and sellers each 
period.  They were rematched each period but did not change roles as buyers or sellers.  The 
same sets of 50 values and costs were used in different order for each of the 10 pairs.  Figure 
8 shows all the bids in experiment 2 compared to the linear equilibrium and Figure 9 shows 
the same bids over time as bidders modify their behavior.  There is clearly a change in 
bidding behavior over time as buyers learn the optimal bid function.  Next we will look at 
buyers’ learning behavior in this market. 
 
4.  Similarity-based generalization of EWA learning  
 

We are interested in using EWA learning as a more general alternative to adaptive 
behavior in this market.  In contrast to DSR’s direction learning model to be discussed later, 
EWA learning does not a priori assume a direction of adjustment for each outcome, nor an 
identical adjustment for all values.  Rather it considers the foregone payoffs for all possible 
value/strategy combinations and updates the propensities for each strategy individually 
depending on the local impact of a choice.  As we will see later, EWA model does a 
comparable job in fitting the data at a cost of complexity for the sake of generality. 
 

To use EWA learning model, we first discretize the values into 10 equal increments 
from 0 to 200.  Corresponding to the middle of each value increment, there are 16 strategies 
of evenly spaced markdown ratios from 0% to 75%.  Thus we have 10 values with 16 
possible strategies each, making a total of 160 value dependent strategies.  Assuming that the 
value dependent initial attractions for a bidder i are given by normal distributions of given 
means and variances, they can be written as, )|,|),0((max)0(/ vvbNvA iii

vb
i σµν ∗∗= , 

where ν is the random value draw, µi|ν = α i + βi ν + γi ν2, the mean absolute markdown 
conditional on realized values, and σi|ν = η i ν, the variance of absolute markdowns 
conditional on realized values, or 
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  In this particular specification, the distribution of average markdown (in 
absolute price rather than in percentage) is assumed to be a quadratic (which includes linear 
bid function as a special case) function of values.  The initial attractions are assumed to be 
normally distributed around this mean at each of the 10 value with the standard deviation 
proportional to the private values for that distribution.  Thus we scale the normal probability 
density function by private value, ν, to put initial attraction for different values on similar 
absolute levels.  The parameter vmax scales initial attractions to maximize the likelihood 
function in a way similar to setting an initial attraction to zero to achieve identification in 
earlier models.  
 

Given the initial attractions, attractions are updated according to, 
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for subject i = 1 to n, strategy Sb/v and value draw v. 
 
where )|(|)|(| tbbtvv iie −−−−= ωψτ         
 
Parameters φ, Ni

b/v(t) and κ have the same interpretations as in Camerer and Ho, denoting 
discount in attractions, experience equivalent count and whether the experience weight 
depreciates faster than the attractions respectively.  In Eqn. 3, the experience weight for each 
value dependent strategy is increased by τ each period, rather than by 1 in Camerer and Ho 
to reflect the partial generalization of experience to neighboring values and strategies.  The 
parameter τ takes on values between 0 and 1 and indicates the “similarity” between 
strategies. The variables ψ and ω decay the spillover of experience from values and bids 
using the distances between realized and hypothetical values and bids, v-vi(t) and b-bi(t), 
respectively.  The distance between bids measures the “closeness” in strategies and the 
distance between values measures the “similarity” in experience.  In bilateral call markets, 
they both take the form of difference in prices.  The two parameters allow us to separate the 
effect of the two distances qualitatively.  For example, τ for a chosen value/strategy 
combination will be 1 since both v-vi(t) and b-bi(t) are equal to zero.  On the other hand, if 
there is little generalization in values or strategies for a particular game, both ψ and ω will be 
relatively large, causing τ to fall very quickly away from the chosen value/strategy pair, 
resulting in little increase in the experience count. 
 
 Foregone payoffs, πi

b/v, are easily calculated by profits from hypothetical bids since a 
buyer knows the opposing seller’s ask from the price after the market closes.  Finally we use 
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the logit model to convert the attractions for each strategy to probabilities of choosing one, 
given by, 
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Seller’s Adaptive Behavior 

 
The sellers in DSR’s experiment also appear to modify their asks over time as shown 

in Figure 10, although the change is not as dramatic as in buyers’ case.  We use the same 
EWA learning developed for the buyers to study sellers’ adaptive behavior to further 
generalizes the application of EWA learning model to different learning environments.  The 
sellers' cost are drawn from a uniform (0,20) and observed asks are in the range of (9, 100) 
with one ask at 150.  The discrete costs in the models are (2, 6, 10, 14, 18) and the strategies 
are (5, 10, 15, 20,..., 85, 90, 95, 100).  This evenly spaced 5 by 20 grid covers all the 
value/strategy combinations in the data except one at 150, which is approximated in the 
estimation by the closest strategy at 100.  The sellers’ strategies are simply prices, rather than 
absolute markups as in the case of buyers for simplicity.  An absolute markup over cost 
should produced very similar results since the range of costs is from 0 to 20 and the optimal 
ask function is A = 50 + 2/3 * (cost), resulting in a maximum difference of 13.3 in strategy 
space based on the optimal bid function.  On the other hand, a model of markup ratios will 
miss many asks unless a very large number of strategies are used in the model because the 
intercept of the optimal ask function and the limited range.  In addition, players did not 
appear to use markup ratio as strategies in the experiment.   
 

The initial attraction profile is modeled as normal distributions centered around a 
linear function defined by (α + β * cost).  A linear function rather than a quadratic is used 
for simplicity since the optimal bid function is linear and there is little evidence of quadratic 
bid function by the sellers in the experiment.  Vmax scales the initial attraction from 
standard normal distributions with standard deviations estimated by the optimization 
procedure as noted before.  
 

Given the initial attractions, attractions for a strategy, Sa/c, are updated just like the 

buyers before according to, 1,
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where subject i = 1 to n, with strategy Sa/c for an ask, a, given a cost draw c, and 

 )|(|)|(| taatcc iie −−−−= ωψτ   

The parameter ψ is the decay for cost distance and ω is the decay for ask distance.  Together 
they measure the spillover or generalization of learning from one ask/cost combination to 
another similar to the buyers’ model.  All the other parameters have similar interpretations as 
corresponding ones in the buyers’ model. 
 
Estimation Results 
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The nonlinear optimization was done with SAS Proc NLP using a large number of 
starting points to ensure a global maximum was achieved.  Table 4 shows estimated 
parameters for experiment 2 using a one-segment and a two-segment EWA learning model.  
We focus on the results for experiment2 because of the greater asymmetry in value 
distributions produce stronger incentive for a nonlinear bid function and more dramatic 
adaptive behaviors.  Estimated parameters for ψ andω are quite small, indicating significant 
spillover of reinforcement to other values and strategies.  A typical distribution of the 
generalization parameter, τ, is shown in Figure 11 for a value draw of 100 and a markdown 
ratio of 30%.  The value of τ falls off from τ=1 quickly as we move away from the realized 
value/choice combination but there is still substantial learning for some strategies with 
values as low as 50.  There is no discounting of attractions (φ=1) and a small κ means that 
choices are based more on average attractions rather than cumulative ones.  The two-
segment model seems to fit the data better but does not produce noticeably different initial 
attractions between the two segments.  Table 5 gives the bootstrapped standard errors of 
estimated parameters.  They are generally smaller than the ones calculated using the 
covariance matrix in SAS. 
 

Figure 12 shows simulated bids using estimated parameters and Figure 13 shows the 
average bids for 30 such simulations.  The individual simulation displays similar transition of 
bids over time compared to the actual bids in the experiment.  The most prominent feature 
is the reduction in bid variance away from the LES bid function.  The average of 30 
simulations did a relatively poor job of capturing the magnitude of reduction in dispersion in 
asks. 
 

Table 6 summarizes the estimated EWA learning parameters for sellers from 
experiment 2 using both the one- and two-segment models.  The one-segment estimates 
indicate that initial attraction profile is approximately normal around a constant ask of $20, 
with a standard deviation of 6.48.  In contrast to the estimates for buyers, the decay 
parameters for cost and ask are similar in magnitude with more generalization for different 
strategies than for different costs.  This is expected because the optimal bid function is very 
nonlinear for the buyers, resulting in little benefit to generalize the experience from different 
values.  On the other hand, the bidding strategies for sellers are quite constant across costs, 
allowing for more useful generalization.  The estimated value for φ is approximately one.  
The standard deviations of the one-segment model parameters are calculated from a 
bootstrap of 500 iterations with the results summarized in Table 7.  Standard deviations 
obtained from this method are generally larger than the ones from the covariance matrix but 
of similar magnitude.  A two segment model shows significant heterogeneity in the 
distribution of initial attractions as evidenced by the values of the log likelihood function, 
with a χ2 = 39.17 (p<.005).  The two segments differ mostly in the level of the linear ask 
function.  Figure 14 shows the simulation of sellers’ asks using estimated parameters from 
the one-segment model.  We see tightening of asks over the periods similar to the observed 
pattern in the experiment. 
 
Direction Learning in Call Markets 
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 Daniel et. al. looked at learning in this experiment using an adaptive model where a 
buyer increases or lower her bid in the form a one parameter family of exponential 
functions, 
 

Min[V, h*(1-exp(-V/h-1))]. 
 

We can see from Figure 15 that this bid function is approximated by two linear segments, a 
full revelation strategy followed by an almost flat exponential function with the point of 
transition determined by the parameter of choice, h.  Higher h produces bidding closer to 
values and a longer range of fully revealing bids.   The right choice of parameter h fits the 
linear equilibrium quite well.  In their adaptive model, successful trades lead buyers to lower 
their bids in the form of lower h and potentially profitable but unsuccessful bids lead to 
higher bids next period.  This is in the same spirit as Selten and Buchta’s learning direction 
theory, which only explains the direction of learning.  In DSR’s model, the strength of 
adjustment is proportional to either actual payoff when trade takes place or potential profit 
when a buyer misses a trade.  Their learning model is described by, 
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The strength of adjustment, wt

+ and wt
− are discounted by wt

+ = (1-d) w+
t-1 and wt

− = (1-d) w−
t-1, 

where d is a discount factor that depreciates the impact of outcomes. 
 

They used a direction learning model similar to the one used for the buyers to 
explain the observed behavior of sellers in this market, 
 

at = max[Ct, ct-1+mt-1Ct],  t = 1, 2, … 
 
 

where mt = max(0, ct/k –1) is the slope of the (linear) ask function.  The constant, k is chosen 
to minimize the RMSE of the model relative to observed choices and ct is the parameter that 
determines the aggressiveness of the ask function by controlling both its intercept and slope.  
The principle of adjustment is analogous to the buyers’ case, given by, 
  
 ct = ct-1 [1 + ws,t

+ (pt-Ct)], when there is a trade and 
 
 ct = ct-1 min(1, 1-ws,t

− (bt-Ct)), when there is no trade, 
 
where ws, t

+ = (1-d) w+
s, t-1 and ws, t

− = (1-d) w−
s, t-1 are the incremental adjustment parameters that 

produce the optimal magnitude of adjustment with a constant discount of d.  Thus after s a 
trade, a seller will bid more aggressively by increasing both the intercept and slope of the 
linear function in direct proportion to her trading profit.  When she missed a potentially 
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profitable trade, she will bid less aggressively next period by adjusting the linear function 
down using the difference between buyer’s bid and her own cost.   
 

They estimated individual parameters for each subject using the first 30 periods, then 
predicted the last 20 periods based on the estimated parameters.  The average RMSEs for 
the first 30 and the last 20 periods are 9.31 and 8.73, respectively for the buyers and 13.39 
and 7.54, respectively for the sellers in experiment 2.  If we estimate the one-segment EWA 
learning model using the first 30 periods only, we get the following parameters for buyers 
and sellers, 
 
 
 
Table 8: Estimated EWA learning parameters for bilateral call market using period 1-30. 
 
Parameters N(0) vmax α β γ std κ ψ ω φ 
Buyers  6.328 1.346 -.318 .393 .026 .191 .158 .012 .064 1.0 
Sellers  3.418 36.761 15.515 2.107  12.941 .293 .036 .088 1.0 
 

The RMSE of predicted choices for the first 30 and last 20 periods based on the 
estimates are 12.66 and 10.27 for the buyers and 17.24 and 12.03 for the sellers.  The 
numbers are based on average choices from 30 simulations of the model since EWA is a 
stochastic choice model, whereas DSR’s is a deterministic model.  Clearly these numbers are 
not directly comparable because the EWA learning model was estimated for an “average” 
buyer and seller, but DSR’s learning model is optimized for individual subjects.  Using the 
averages of the individually estimated parameters given in DSR’s paper produced RMSEs of 
18.38 and 20.91 for the buyers and 19.24 and 10.86 for the sellers.  There is not a clear 
preference for one model vs. another based on numerical comparison of predicted choices 
alone. 
 

Now we look at the learning mechanisms driving both models.  In bilateral call 
market, a good learning model needs to predict the direction and strength of adjustment 
each period.  The direction learning model of DSR is particularly well suited to fit the 
bidding behavior of individual buyers in this institution because of the optimal two-segment 
bid function and the simple ordered strategy space. If a buyer makes a trade, the foregone 
payoffs will be less than the profit for all higher bids and higher than the realized profit for 
all lower bids down to the point of the actual ask.  Thus the direction of modification, if any, 
should be to lower bids next period.  On the other hand, if a buyer misses a trade but has a 
value higher than the seller’s asking price, the direction is clearly to bid higher next period.  

 
Once the direction of change is determined, DSR’s model uses the data to determine 

the optimal discount rate to fit the observed speed of adjustment.  The discount rate makes 
sure that the rate of adjustment diminishes continuously until it becomes negligible.  We can 
see that DSR’s learning model is a very parsimoniously way of fitting the observed adaptive 
behavior in this institution.  However, it does miss some important qualitative characteristics 
that we observe in the data.  In addition, it makes more sense to use foregone profit rather 
than actual profit to fit the strength of the adjustment when there is a trade because 
foregone profit was used when one misses a potentially profitable trade. 
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 The same concern regarding buyers’ adaptive behavior can be said about sellers in 
DSR’s direction learning model.  Namely, it is inconsistent to use actual payoff to motivate 
adaptive behavior when there is a trade but foregone payoff when there is no trade.  EWA 
learning considers both actual and foregone payoffs for all choice adjustments.  In addition, 
DSR’s functional form is rather specific to the institution involved and the deterministic 
model does not allow for any stochastic property in subjects’ choices.  The convergence of 
choices is primarily driven by the discount parameter even as the actual payoffs increase with 
experience. 
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Conclusion 
 

The application of EWA learning model to bilateral call markets extends a general 
learning model to market-like institutions with more complex strategies.  Subjects in this 
market learn to partially generalize experience from one value/cost condition to another in 
response to the incentives from nonlinear optimal bid functions.  The same learning model 
can be applied to other market institutions where subjects economize on learning by taking 
into consideration similarity between past experience and a new environment while still 
recognizing the difference in market incentives between them. 
 

This application also demonstrated that “direction learning” is captured by EWA 
learning in a general way by taking into account foregone payoffs, without specifying a priori 
the direction of change.  Direction learning was first proposed by Selten in the context of 
first price auctions, where the strategy space has a simple ordinal structure.  When we use 
EWA learning in markets institutions with simple price strategies, the foregone payoffs from 
each choice produce the correct direction of adjustment without the ad hoc assumption on 
the direction of optimal strategies.  In addition, EWA learning will also produce the strength 
of adjustment from foregone payoffs while direction learning model says nothing to that 
effect.  The generality of EWA learning can further capture the confidence and extent with 
which subjects utilize the foregone payoffs to adjust their choices from period to period 
when the payoff information may be too complex or not fully realized. 
 

Overall, EWA learning produces a generalized adaptive model of behavior that 
includes elements of reinforcement, belief-based and direction learning as special cases at 
some cost of complexity for the benefit of generality and logical consistency.  It is a good 
foundation to build upon to extend our understanding of adaptive behaviors in more general 
games and market institutions.  In future works, we should investigate the similarity 
parameters, ψ and ω, to better characterize their magnitude and significance in different 
market institutions 
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Figure 1: EWA cube  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Time series of median choices in VCB’s continental divide games. 
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Figure 3: Distribution of choices in continental divide games. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Comparison of simulated choices in continental divide games with learning models. 
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Figure 5: Sample time series of median choices in simulated continental divide games using EWA 
  learning model. 

 
Figure 6: Sample time series of median choices in simulated continental divide games using  

  reinforcement learning model. 
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Figure 7: Sample time series of median choices in simulated continental divide games using belief 
  learning model. 

 
 
 
 
Figure 8.  Comparison of actual bids vs. LES bid function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30 80 130 180
value

0

50

100

150

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

period

m
ed

ia
n



 24 

Figure 9 Distribution of buyers’ bids over time for experiment 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Distribution of sellers’ asks over time for experiment 2 
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Figure 11.  Distribution of generalization parameter, τ, for buyers with v=100, s=30% in 
experiment 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Simulated bids using EWA learning parameters for buyers in experiment 2. 
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 Figure 13: Average bids of 30 simulations using EWA learning parameters for experiment 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Simulated sellers’ asks using estimated EWA learning parameters for experiment 2. 
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Figure 15.  Comparison of LES bid function with DSR’s one parameter exponential bid 
function with different values for parameter h. 
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Table 1a: A summary of EWA parameter estimates in various games. 
 
  EWA estimates (standard error) Comments 
CITATION GAME δ φ ρ N(0)  
Camerer, Hsia and Ho (working) Sealed bid mechanism n.a. 1.00 0.91 11.2 ψ, ω & κ 

replace δ, ρ  
Camerer, Ho and Weigelt (unpub’d) “Continental divide”  0.750 0.611 0.001 0.762  
Hsia (unpublished) Call markets 0.47 

(0.32) 
0.97 
(0.01) 

0.74 
(0.06) 

3.80 
(0.88) 

 

0.000 0.952 0.889 3.732 High reward 
0.000 0.985 0.986 1.773 Med. 

Reward 

Same function alliance – 
equal profit sharing 

0.070 0.892 0.867 0.110 Low reward 
0.000 0.988 0.996 15.176 High reward 
0.000 0.923 0.959 6.401 Med. 

Reward 

Same function alliance – 
proportional sharing 

0.000 0.969 0.959 3.438 Low reward 
0.000 0.911 0.585 0.406 High reward 
0.168 0.903 0.934 4.910 Med. 

Reward 

Rapoport and Amaldoss (unpub’d) 

Parallel development of  
product – equal sharing 

0.2112 0.883 0.645 0.236 Low reward 
0.000 0.940 0.929 4.613 Low reward Patent race game –  

symmetric players 0.000 0.970 0.984 15.747 High reward 
0.475 0.901 0.857 1.418 Strong 

player 

Rapoport and Amaldoss (2000) 

Patent race game –  
asymmetric players 

0.137 0.959 0.973 12.454 Weak player 
Signaling games (game 3) 
 (95% confidence interval) 

0.69 
(.47,1.00) 

1.02 
(.99,1.04) 

1.00 
(.98,1.00) 

32.9 
32.8,32.9 

 Camerer and Anderson (1999) 

Signaling games (game 5) 
(95% confidence interval) 

0.54  
(.45, .63) 

0.65 
(.59, .71) 

0.46 
(.39, .54) 

3.37 
(3.4.3.4) 

 

Median-action 
coordination 

0.853 
(0.005) 

0.800 
(0.018) 

0.000 
(0.000) 

0.647 
(0.059) 

 

4x4 Mixed-strategy games 
 payoff  = 5 rupees 

0.000 
(0.035) 

1.04 
(0.010) 

0.961 
(0.014) 

19.63 
(0.065) 

 

4x4 Mixed-strategy games 
 payoff = 10 rupees 

0.73 
(0.103) 

1.005 
(0.009) 

0.946 
(0.011) 

18.391 
(0.713) 

 

6x6 Mixed-strategy games 
 payoff = 5 rupees 

0.413 
(0.082) 

0.986 
(0.005) 

0.935 
(0.006) 

15.276 
(0.009) 

 

6x6 Mixed-strategy games 
 payoff = 10 rupees 

0.547 
(0.054) 

0.991 
(0.011) 

0.926 
(0.024) 

9.937 
(0.017) 

 

Camerer and Ho (1999) 

p-beauty contest 0.232 
(0.013) 

1.330 
(0.004) 

0.941 
(0.000) 

16.815 
(0.000) 

 

Normal form centipede 
(odd player) 

0.3190 
(0.3157) 

0.9092 
(0.1414) 

.0010 1.001 
(2.2278) 

Clairvoyance 
full update, κ 

Camerer, Ho and Wang (1999) 

Normal form centipede 
(even player) 

0.239 
(0.3218) 

0.902 
(0.1370) 

.946 12.744 
(4.9620) 

Clairvoyance 
full update, κ 

Chen (1999) Cost allocation .80~1.0 1 (fixed) .1~.3 0 (fixed)  
“Unprofitable” games 
(baseline games) 

0.084 
(0.074) 

0.925 
(0.014) 

0.916 
(0.026) 

3.632 
(1.255) 

 Morgan and Sefton (1999) 

“Unprofitable” games 
(upside games) 

0.142 
(0.064) 

0.893 
(0.012) 

0.000 
(0.004) 

0.374 
(0.343) 

 

Stahl (1999) 5x5 matrix games .663 
(.0211) 

.337 
(.0439) 

.085 
(.0821) 

0.000 
(0.000) 

 

Camerer and Ho (1998) Weak-link coordination 0.652 0.582 0.198 2.187  
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Table 1b: A summary of EWA forecast accuracy in various games. 
 
  Model accuracy Comments 
CITATION GAME EWA Choice 

reinforce 
- EWA 

Belief - 
EWA 

In / 
Out of 
sample 

Fit 
tech-
nique 

 

Camerer, Hsia and Ho (working) Sealed bid mechanism 1102 30.84 65.46 IN -LL ψ, ω & κ 
replace δ & ρ  

Camerer, Ho and Weigelt (unpub’d) “Continental divide”  1189.85 248.81 180.09 IN -LL  
Hsia (unpublished) Call markets 1915 0 403 IN -LL  

886.314 1.545 529.616 IN -LL High reward 
767.491 30.065 390.379 IN -LL Med. Reward 

Same function alliance –  
equal profit sharing 

1399.71 9.44 541.47 IN -LL Low reward 
910.777 36.432 812.953 IN -LL High reward 
1054.99 18.33 615.9 IN -LL Med. Reward 

Same function alliance – 
proportional sharing 

1013.73 13.33 1095.61 IN -LL Low reward 
1194.15 0.11 566.31 IN -LL High reward 
1321.45 9.49 497.19 IN -LL Med. Reward 

Rapoport and Amaldoss (unpub’d) 

Parallel development of  
product – equal sharing 

1297.71 4.51 484.08 IN -LL Low reward 
3551.70 12.06 1097.69 IN -LL Low reward Patent race game –  

symmetric players 2908.08 20.21 725.94 IN -LL High reward 
3031.54 89.06 706.77 IN -LL Strong player 

Rapoport and Amaldoss (2000) 

Patent race game –  
asymmetric players 2835.51 15.65 610.98 IN -LL Weak player 
Signaling games (game 3) 
 (95% confidence interval) 

72.16 6.48 10.08 OUT -LL  Camerer and Anderson (in press) 

Signaling games (game 5) 
(95% confidence interval) 

139.52 14.08 23.68 OUT -LL  

Median-action coordination 41.05 39.22 72.85 OUT -LL  
4x4 Mixed-strategy games 
 payoff  = 5 rupees 

326.38 9.12 -40.78 OUT -LL  

4x4 Mixed-strategy games 
 payoff = 10 rupees 

341.71 18.03 8.38 OUT -LL  

6x6 Mixed-strategy games 
 payoff = 5 rupees 

301.70 6.77 -5.42 OUT -LL  

6x6 Mixed-strategy games 
 payoff = 10 rupees 

362.26 13.68 8.92 OUT -LL  

Camerer and Ho (1999) 

p-beauty contest 2381.28 213.09 172.93 OUT -LL  
Normal form centipede 
(odd player) 

1016.84 57.61 536.25 OUT -LL Clairvoyancef
ull update, κ 

Camerer, Ho and Wang (1999) 

Normal form centipede 
(even player) 

951.30 46.42 604.7 OUT -LL Clairvoyancef
ull update, κ 

Chen (1999) Cost allocation .73~.88 -.01~.07 n.a. IN MSD  
“Unprofitable” games 
(baseline games) 

1729.47 0.59 n.a. IN -LL  Morgan and Sefton (1999) 

“Unprofitable” games 
(upside games) 

1906.45 16.15 n.a. IN -LL  

Stahl (1999) 5x5 matrix games 4803.73 64.68 n.a. OUT -LL  
Camerer and Ho (1998) Weak-link coordination 358.058 29.105 438.546 IN -LL  
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Table 4: Summary of EWA learning parameter estimates for buyers in experiment 2 
 

Parameters Parameter estimates (standard errors from SAS) 
 One-segment model (SE) Two-segment model 

N(0) 11.2 (67.4) 13.7 (6.8) 
Vmax 1.46 (14.2) 1.79 (1.4) 
α 0.04 (1.10) 0.09 (0.053) -0.26 (0.106) 
β 0.126 (0.73) 0.238 (0.125) 0.256 (0.065) 
γ 0.072 (0.12) 0.048 (0.027) 0.052 (0.012) 

Std. Dev. 0.219 (1.21) 0.210 (0.084) 0.208 (0.104) 
Proportion  39.8% 60.2% 

κ 0.09 (0.27) 0.07 (0.03) 
ψ 0.02 (0.05) 0.01 (0.01) 
ω 0.08 (0.12) 0.10 (0.03) 
φ 1.00 (constrained) 1.00 

-LL 1102.2 1071.1 (χ2 = 62.2, p<.005) 
 
 
Table 5: Summary of bootstrap parameter distribution for buyers in experiment 2 with λ and φ fixed 
at 1.0. (500 iterations) 
 

 N(0) VMAX α β γ STD κ ψ ω 
Average 3.987 1.101 -0.028 0.152 0.081 0.168 0.156 0.046 0.099 
std dev. 0.104 0.473 0.194 0.134 0.106 0.062 0.066 0.040 0.056 
          
Table 6: Summary of EWA learning parameters for sellers in experiment 2 
 

Parameters Parameter estimates (standard errors from SAS) 
 One-segment model Two-segment model 

N(0) 3.29 (0.69) 3.27 (1.72) 
Vmax 19.24 (3.18) 14.43 (42.90) 
α 20.09 (2.59) 15.52 (34.90) 23.55 (8.66) 
β 0.04 (0.19) 0.31 (2.20) 0.42 (0.22) 

Std. Dev. 6.48 (1.12) 3.75 (17.85) 3.56 (7.39) 
Proportion  78.3% 21.7% 

κ 0.312 (0.022) 0.315 (0.071) 
ψ 0.091 (0.026) 0.089 (0.034) 
ω 0.059 (0.009) 0.048 (0.028) 
φ 1.011 (0.012) 1.014 (0.038) 

-LL 942.754 923.167 
  χ2 = 39.17 (p<.005) 

 
 
Table 7: Summary of bootstrap parameter distribution for sellers in experiment 2 with α=20 and 
β=0. (500 iterations) 
 

  N(0) VMAX STD κ ψ ω φ LL 
Avgerage 3.155 19.348 7.575 0.313 0.087 0.061 1.013 -943.08 
Std. Dev. 0.973 4.256 5.196 0.046 0.046 0.024 0.025 308.62 
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1 Note well that while we assume players are reinforced by their monetary payoffs, the 
reinforcement function could easily be altered to account for loss-aversion, concave or 
convex utility for payoffs, or fairness. 
2  More precisely, if the special-case restriction is true, then the more general model will necessarily fit 
better in-sample, but will generally fit worse out-of-sample. Furthermore, criteria like the Bayesian 
information criterion, which penalizes a more complex theory for extra degrees of freedom, are carefully 
constructed so that even when sample sizes grow large, so that conventional test statistics appear to favor 
more complex theories, the extra-parameter penalty grows and there is no such bias.  
3 Chen 's results are excluded because she did not estimate all parameters precisely. 
Results from the same game played at different stakes levels are collapsed together, and 
estimates are averaged across stakes levels. This reduces the 32 observations in Table 1 
to 20 in Figure 1. 
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