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Abstract

This paper investigates how firms should select their production sites, capacities and quantities under rivalry. There

are assumed to be a finite number of discrete potential location sites and a finite number of discrete markets, which may

or may not coincide. Firms first decide either simultaneously or sequentially whether and where to establish a pro-

duction site. The fixed cost of opening a facility and the marginal cost of production both depend on where the facility is

located. Firms then choose capacity and a production quantity for each market. Prices in each market are determined

by the total quantity available at that location via the Cournot mechanism. This formulation thus addresses multi-

market, oligopolistic spatial competition with heterogeneity in production and logistics costs.

We then analyze the Nash equilibria of the entry game and provide sufficient conditions for the existence of equi-

libria in the simultaneous entry game. At equilibrium, firms may not produce for all markets and may have limited

market areas; however, these areas may overlap, so that there are multiple suppliers in any market. In general, there

may not be a first mover advantage and early entrants may earn lower profits than later entrants.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The role of location

The role of location in competition is pervasive in the manufacturing sector. It is especially important in

sectors where transportation and logistics costs play a large role. An obvious impact of these costs is to limit
the market areas in which a plant can effectively compete, to some geographic region around it. This is, of

course, the central issue addressed in the classic Hotelling (1929) model. For the manufacturing sector, in
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addition to location competition with respect to markets, it is also important to consider both the location
dependent costs that arise due to raw material acquisition and the heterogeneous costs of operation at

different sites. More generally, a location decision is one part of overall supply chain design, and location

competition could be regarded as a core issue in supply chain competition.

Over the last few decades, even seemingly stable and mature manufacturing sectors have seen dramatic

changes in the pattern of location and competition. A very well-known example is that of mini-mills in the

steel industry, which have captured a substantial share of the market from the traditional integrated steel

mills, in some portion of the market. Within the mini-mill environment too, changing technological

capabilities, shifting markets and price movements affect location choices and competitive balance.
Another example is in the cement industry. In many developing economies, with economic growth, the

pattern of market demand for cement in many countries has changed. Historically, the location of cement

plants was often based on proximity to limestone deposits and coal. More recently, the need for proximity

to markets has become more acute and new strategies for location are being devised. For example, when

growth is driven by international trade, the demand for cement is often due to infrastructure development

projects in ports and coastal regions.

Similar issues are surfacing in process industries such as chemicals, fertilizers, food processing, textile

fibers, and aluminum. While location competition is also an important issue in most other manufacturing
sectors, our models are especially appropriate for the kinds of process-oriented, commodity-manufacturing

sectors mentioned above.

Location competition has been studied in different forms (see the comprehensive surveys by Friesz et al.,

1989; Eiselt and Laporte, 1989; Eiselt et al., 1993). Among various competitive location models, network-

based models may be classified by their complexity as captured by two criteria: (1) the number of entrants

in the entry/location game, and (2) the consideration of strategic variables in the post entry/location game.

The number of entrants in the entry/location game can be one or many. In the single entrant model, existing

firms that have already entered the market are not allowed to respond to the decisions of the single entering
firm by changing their entry/location decisions. The total number of entrants in the multiple entrant model

can either be determined exogenously (fixed entry) or endogenously (free entry). In addition to the entry/

location decision, some models consider other strategic decisions such as price, production quantity, and

capacity in the post entry/location game. Table 1 shows the position of prior work using these criteria.

Table 1

A taxonomy of network-based competitive location models

Entry/Location game

(No. of entrants)

Post entry/Location game (strategic variables)

None Price Quantity Quantity &

Capacity

Single entrant ReVelle (1986) Tobin and Friesz (1986);

Friesz et al. (1989);

Miller et al. (1991)

Multiple

entrants

Fixed no. of

entrants (fixed

entry)

Hansen and Thisse (1981);

Wendell and McKelvey (1981);

Hakimi (1983, 1986); Dobson

and Karmarkar (1987); Bauer

et al. (1993); Eiselt (1998)

Lederer and

Thisse (1990)

Labb�ee and Hakimi

(1991); Sarkar et al.

(1997)

Unrestricted

no. of entrants

(free entry)

Special case of our model Our model
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1.2. The model

In this paper we investigate a three-stage competitive location game in which firms first choose their

facility locations, second, production capacities, and then a production quantity for each market. There are

a finite number of potential facility sites and a finite number of markets, which may or may not be co-

located. These facility sites and markets are treated as nodes of a network. Fixed and variable costs of

production vary with the location of the facility, and transportation costs depend on the distances between

nodes. Each market has its own demand curve which relates the delivered price to the total available
quantity at the market. In multi-product cases, production, transportation costs and demand curves may

vary with the products produced. We analyze pure-strategy Nash equilibria for these games when the entry

of firms is free, i.e., there are no barriers to entry other than the fixed costs.

Table 1 also shows the position of our model vis-�aa-vis the prior literature: First, our model is more

general than models with a single entrant or a fixed number of entrants. For example, our model is an

extension of Labb�ee and Hakimi (1991) and Sarkar et al. (1997). Labb�ee and Hakimi analyze a duopolistic

game with zero fixed cost. Their model consists of two stages: a first stage for location and a second stage

for production quantity decisions. In each stage, firms make decisions simultaneously. They show that if the
quantity shipped by both firms at each market site is strictly positive, then there is at least one pure strategy

Nash equilibrium (PNE) for the location game. An equilibrium may not exist when some market site is

served by only a single firm. Sarkar et al. generalized Labb�ee and Hakimi�s work to the game involving

nðP 2Þ firms. They find a similar condition for the existence of an equilibrium. We build on these works by

considering free entry (simultaneous and sequential) with fixed cost and capacity limitations. These ex-

tensions lead to somewhat different results; for example, we show that under certain conditions an equi-

librium for the simultaneous entry game exists even when market sites are served by a single firm.

Second, our model allows us to explicitly consider strategic variables such as production quantity and
capacity. The market share in the models without these strategic variables is typically determined by simple

allocation rules such as closest distance or probabilistic choice rules. In models with these strategic vari-

ables, demand is allocated by result of an active rivalry, that is, firms compete for the market demand with

decision variables such as price, production quantity, and capacity. Lederer and Thisse (1990) apply

Bertrand price competition for demand allocation, resulting in a natural monopoly in each market, that is,

the firm that has the lowest cost serves the market. In the quantity competition model (so called Cournot

model), multiple firms may serve a common market. 1 Our model belongs to the latter class. Also, the full

version of our model considers production capacity as a strategic decision variable.
Third, our work extends solution concepts developed by Dobson and Karmarkar (1987). They study a

duopolistic game in which two firms enter the industry sequentially. Transportation (or travel) costs are

paid by the customers who choose the closest facility. The firm that enters first (the leader) determines the

number and location of facilities. Thus, the leader will increase the number of facilities as long as each

facility makes a positive profit. Then, the firm that enters later (the follower) is blockaded. The set of fa-

cilities opened by the leader is considered ‘‘stable’’ if each individual facility is profitable (viability condition)

and any additional new facility opened by the follower will result in a loss (survival condition). We relate

their notion of equilibrium, the so-called ‘‘stable set (SS)’’, to Nash equilibria in the game we study.
The overall formulation is a three-stage, multi-market, oligopolistic, spatial competition model on a

network with heterogeneity in production costs. In the current analysis, we essentially model location in one

layer of a supply chain. Plants with very heterogeneous structures can compete and survive in the same

markets, though, of course, low cost plants capture higher market shares. These features qualitatively

1 See Friedman (1977), Miller et al. (1991) for a discussion of the Cournot model.
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match what can be observed in the sectors we mention. We present a single product model first, before
extending to a multi-product case. These models generate the following results:

• In the first stage, we examine the existence of Nash equilibria in a simultaneous entry game. The exis-

tence for the sequential entry game is a classic result of Kuhn (1953). For the simultaneous entry game,

we show that our game is related to so-called ‘‘congestion games’’ (Rosenthal, 1973) and provide suffi-

cient conditions for the existence of Nash equilibria.

• We establish certain relationships between the Nash equilibrium sets of the first stage games and the SS

of Dobson and Karmarkar (1987). We show that the Nash equilibrium sets of the sequential and simul-
taneous entry games are subsets of this SS.

• We show that capacity and production level decisions are collapsed into a single stage decision. We pro-

vide a polynomial time algorithm to find a unique Nash equilibrium in the capacity choice and produc-

tion quantities. In the equilibrium, not all opened facilities supply to all markets. They select markets

based on demand and variable costs incurred by capacity acquisition, production, and transportation.

• In the sequential entry game, we study whether first movers may enjoy a higher profit compared to later

entrants. We show a condition where first movers may not always enjoy an advantage. This condition

relates to a topological network structure where a ‘‘dancing phenomenon’’ occurs. 2 First mover advan-
tage is guaranteed only when the Nash equilibrium set of the sequential entry game is a subset of the

Nash equilibrium set of the simultaneous entry game.

This paper is organized as follows. In Section 2, we formulate the model. The capacity choice and

production problems are analyzed first followed by the location problem. We then address the issue of first

mover advantage. Section 3 concludes.

2. Problem formulation

The problem is formulated as a three-stage non-cooperative game. A three-stage model is appropriate

here because location, capacity, and production decisions have different time horizons and flexibility. We

suppose that each player has perfect information on the decisions made in the previous stage. That is, in the

second (and third) stage, location (and capacity) decisions are given. While, this assumption is made for

simplicity, it is not unreasonable, considering the time horizon of each decision. In each stage, firms make a

decision to maximize their own profit.
In the first stage of the model, we consider two location games: in one game, firms enter simultaneously;

in the other, firms enter sequentially. In the simultaneous game (GT), each firm chooses a strategy without

knowledge of its opponents� action. In the sequential game (GS), later entrants have perfect information

about their predecessors� decisions, so that the predecessors and later entrants have a Stackelberg leader

and follower relationship.

In the second stage of the model, entering firms decide on their production capacities. Acquiring capacity

may incur both fixed and variable costs. (Similar cost structure has been used by Karmarkar and Pitbladdo,

1993, 1994.) However, there is no reason that firms, as long as they decided to enter, would have zero
capacity. Thus, any fixed costs of capacity acquisition are absorbed into the fixed costs of the previous

stage, and only variable costs of capacity acquisition affect the capacity decision. Variable capacity costs are

assumed to be site-specific rather than firm-specific.

2 Teitz (1968) called it ‘‘dancing equilibrium’’. To avoid confusion with the game theoretic notion of equilibrium, we prefer not to

use the word equilibrium. ‘‘Dancing’’ occurs when firms find it profitable to hop back and forth between locations so that no stable

configuration exists (see Section 3.2).
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In the third stage of the model, firms choose quantities to be produced and shipped to each market site.
The total quantity available at each market site determines a market price via the given demand curve.

Variable production and transportation costs, which are again assumed to be site-specific, are incurred at

this stage.

In each stage, Nash equilibrium is used as a solution concept. We start from a single-product model, and

later extend it to a multi-product case. In the latter case, demand and cost parameters also depend on the

products. We first define the following notation for the single product model:

2.1. Second and third stages: Capacitated Cournot quantity competition

We model capacity and production decisions of the entrants as a two-stage capacitated Cournot quantity

game. Since location decisions are made in the first stage, x�s and Zi�s are given in these stages. We first

identify an equilibrium in a reduced problem of capacity and production level choices and show that this

equilibrium is also a solution to the original problem. Thus, we will identify the capacity choices of entrants

located at each production site i, the amounts shipped from production site i to market j, and the total

quantity available at market j. The last will also determine the delivered price at market j.

Each of the facilities can ship the product to each of the market locations through the cheapest path. 3

The variable production cost vi, transportation cost tij, and capacity acquiring cost ci depend only on the

N � number of entrants,

N potential number of firms in an industry, N is large enough such that N PN �,
i index for production sites, i 2 I ¼ f1; 2; . . . ; Lg,
j index for markets, j 2 J ¼ f1; 2; . . . ;Mg,
r, s indices for entrants, r; s 2 f1; 2; . . .N �g,
xr location decision variable for firm r: i if the firm r opens its facility at site i; 0 if the firm does not

enter the industry,

x location decision vector, x ¼ ðx1; . . . ; xNÞ,
Zi set of indices of entrants who open facilities at site i, Zi ¼ frjxr ¼ ig, Zi may be empty,

Z set of indices of entrants who open facilities, Z ¼
SL

i¼1 Zi ¼ f1; 2; . . . ;N �g, jZj ¼ N �,
Kr production capacity of an entrant r,

K capacity decision vector, K ¼ ðK1; . . . ;KN� Þ,
qijr quantity produced by the entrant r at site i and shipped to market j,

qij	 quantity produced at site i and shipped to market j ¼
P

r2Zi qijr,
qi		 total quantity produced at site i ¼

PM
j¼1 qij	,

q	j	 total quantity available at market j ¼
PL

i¼1 qij	,
Q (L
M 
 N ) matrix of qijr,
pjðq	j	Þ price at market j, a function of q	j	,
p price vector, p ¼ ðp1; . . . ; pMÞ,
vi variable cost of production at site i,
ci unit variable cost of acquiring capacity Ki at site i,

fi fixed cost of opening a facility at site i,

tij variable cost of shipping product from production site i to market j,

prðx;K;QÞ net profit of the supplier r; prðx;K;QÞ ¼
PM

j¼1½pjðq	j	Þ � vi � tijqijr � ciKr � fi, if xr 6¼ 0 and

r 2 Zi for some i; else, prðx;QÞ ¼ 0.

3 The cheapest path, which is analogous to shortest path, can be obtained by the Floyd and Warshall algorithm within OððLþMÞ3Þ
(see Lawler, 1976).
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site so that firms at the same site have the same cost structure. The inverse demand function pj is assumed to
be linear so that pjðq	j	Þ ¼ aj � bjq	j	 where aj and bj are parameters representing the maximum demand

level and price sensitivity at market j, respectively. Then net profit for the entrant r 2 Zi is expressed as:

prðx;K;QÞ ¼
XM
j¼1

pjðq	j	Þ
�

� vi � tij
�
qijr � ciKr � fi; ð1Þ

subject to:
XM
j¼1

qijr 6Kr:

Suppose that there exists an entrant with excess capacity. Then, the entrant can improve profit simply by

reducing capacity. Thus, there is no reason to have excess capacity in equilibrium. That is,
PM

j¼1 qijr ¼ Kr,

and Eq. (1) is reduced to:

prðx;QÞ ¼
XM
j¼1

pjðq	j	Þ
�

� vi � tij
�
qijr � ci

XM
j¼1

qijr � fi: ð2Þ

This function is strictly concave in each supply quantity qijr. Since x is given at this stage, entrants

maximize their profit by choosing their supply quantities. A Nash equilibrium for the reduced problem is
then given by a set of qijr for each r 2 Zi and each j such that @prðx;QÞ=@qijr ¼ 0, or

bjqijr ¼ dij � bjq	j	: ð3Þ
where dij ¼ aj � vi � ci � tij. In Eq. (3), qijr does not depend on the parameters and variables for the other

markets. Thus, the firm�s supply quantity decisions for the M markets can be made independently of each

other. In other words, we can analyze each market separately. By adding equations of Eq. (3) for all en-

trants at a given market j, bjq	j	 ¼
PL

k¼1 jZkjdkj � bj
PL

k¼1 jZkjq	j	, or

q	j	 ¼
PL

k¼1 jZkjdkj
bjðjZj þ 1Þ : ð4Þ

From Eqs. (3) and (4),

qijr ¼
ðjZj þ 1Þdij �

PL
k¼1 jZkjdkj

bjðjZj þ 1Þ : ð5Þ

In deriving Eq. (5), we neglected the condition that supply quantities must be non-negative. The non-

negativity of supply quantities is violated when there exists r 2 Zi such that dij <
PL

k¼1 jZkjdkj
� �

=ðjZj þ 1Þ.
Lemma 1 states the existence of a set of non-negative supply quantities q�ijr. Before the lemma is stated,

we define a new index to rank the order of the production sites. For each market j, we create a new index set

where the order of the elements is decreasing in dij. Let ljðiÞ be the order of production site i with respect to

market j in this new index. Then we have:

Lemma 1. For a market j, suppose that there exists some production site i� such that jZi� j > 0 and
di� j6

PL
k¼1 jZkjdkj

� �
=ðjZj þ 1Þ. Then, there exists a unique rank order l�j < L in which production sites whose

rank order are higher produce positive quantities and whose rank order are lower produce zero:

q�ijr ¼
Pl�j

lj¼1 jZlj j þ 1
� 	

dij �
Pl�j

lj¼1 jZlj jdljj

bjð
Pl�j

lj¼1 jZlj j þ 1Þ
if ljðiÞ6 l�j < L; and

q�ijr ¼ 0; if ljðiÞ > l�j ;

ð6Þ

where r 2 Zlj 6¼ /.
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The proof of Lemma 1 is provided in the appendix. Similar results were presented by Anderson and
Neven (1990). They showed the existence of a unique Nash equilibrium for the uncapacitated Cournot

game. If ci ¼ 0 for all i, our result corresponds to Anderson and Neven (1990). However, our original

problem is a capacitated Cournot game. We obtain the solution to our problem by showing that supply

quantities in Lemma 1 generate an equilibrium for the original capacitated problem.

Proposition 1. The q�ijr�s in Eq. (6) and K
�
r ¼

PM
j¼1 q

�
ijr are a Nash equilibrium for the two-stage capacitated

Cournot quantity game. (The proof is provided in the appendix.)

Proposition 1 provides a way to obtain a Nash equilibrium for the capacitated Cournot game when the

variable costs are not uniform. In the proof of Lemma 1, l�j is defined as:

l�j ¼ max kj dkjj








8<
: >

Pkj
lj¼1 jZlj jdljj

� 	
Pkj

lj¼1 jZlj j þ 1
� 	

9=
;:

l�j can be produced by simply ranking the production sites and searching for the kj which satisfies the given

condition. Thus, Lemma 1 and Proposition 1 enable us to construct an exact algorithm to obtain the set

of capacity choice Kr, supply quantities qijr, price p, and therefore profit pr for each entrant r within a

polynomial-time bound. (The algorithm and its computational complexity are described in the appendix.)

We call entrants who ship positive quantity to a market, active in that market. As long as the condition
of Lemma 1 is satisfied in some market, there exists a firm that does not supply to all markets. Thus, the

number of active firms in some market is less than the total number of entrants N �. Corollary 1 states this

result formally.

Corollary 1. Define N �j as the number of active entrants supplying to market j. For a market j, suppose that
there exists some production site i such that jZij > 0 and dij <

PL
k¼1 jZkjdkj

� �
=ðjZj þ 1Þ. Then, in a Nash

equilibrium the total number of active facilities or entrants supplying to market j, N �j �
Pl�j

lj¼1 jZlj j < jZj (i.e.
the total number entrants).

Corollary 1 implies that firms do not supply to all markets, resulting in a phenomenon of localization of
supply. For given Zi�s, N �j is a function of l�j , which is a function of dij. Thus, N �j is determined by dij�s. An

increase in the maximum demand level aj in market j or a decrease in capacity acquiring cost ci, production
cost vi and transportation cost tij at site i will lead to an increase in dij and hence the number of markets to

which a firm can supply.

These results may be easily extended to a multi-product case. Suppose that firms produce multiple

products rather than a single commodity. It is assumed that the demand of each product is independent of
other products, while each product of a firm competes for a common resource, that is, production capacity.

Then the net profit of entrant r 2 Zi is expressed as:

prðx;K;QÞ ¼
XH
h¼1

XM
j¼1

phj ðqh	j	Þ
h

� vhi � thij
i
qhijr � ciKr � fi ð7aÞ

subject to:
XH
h¼1

XM
j¼1

qhijr 6Kr;

where hð¼ 1; . . . ;HÞ is an index for products produced. With the same reasoning as in the single product

case,
PH

h¼1
PM

j¼1 q
h
ijr ¼ Kr and Eq. (7a) reduces to:
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prðx;QÞ ¼
XH
h¼1

XM
j¼1

phj ðqh	j	Þ
h

� vhi � thij � ci
i
qhijr � fi ð7bÞ

From the first-order condition of Eq. (7b), the firm�s supply quantity decisions for the H products inM
markets can be made independently of each other. Thus, similar results are obtained: i.e., supply quantities

obtained using Eq. (6) for each product generate overall capacities of entrants and shipments of each

product.

2.2. First stage: Location decision

In this subsection, we investigate Nash equilibria for two location decision games: the simultaneous

entry game (GT) and the sequential entry game (GS). Also, we define ‘‘SS’’ as introduced by Dobson and
Karmarkar (1987) and relate them to Nash equilibria. Finally, we discuss the existence of pure strategy

Nash equilibria for both games.

In this stage, each firm r maximizes prðxÞ ¼ prðx;K�ðxÞ;Q�ðxÞÞ by selecting xr, considering the equilib-

rium capacity choice K�ðxÞ and supply quantity Q�ðxÞ of the following stages. We use PNE as the solution

concept. At equilibrium, no firm (player) can benefit from a unilateral change in its location decision. That

is, a location vector x� is a PNE in the first stage, iff prðx�r ; x��rÞP prðxr; x��rÞ for all xr and all r, where x�r
denotes a strategy profile of all firms but r. Since the equilibria of the second and third stages are Nash, the

equilibrium obtained in the first stage is Subgame Perfect (Selten, 1975).
Dobson and Karmarkar (1987) introduce the notion of a ‘‘SS’’. 4 According to them, a set of facility

locations is regarded as stable, if and only if the entrants make a profit (viability) and potential entrants

cannot find any location where their profit after entry is positive (survival). In Dobson and Karmarkar�s
problem formulation, the stability concept describes the state of an industry configuration rather than

active decisions of firms. The vector of the number of firms at each production site is defined as an

occupancy vector and expressed as (jZ1j; . . . ; jZLj). 5 Then a SS is defined formally as follows:

Definition 1 (Stable set (SS) in the first stage). The occupancy vector (jZ1j; . . . ; jZLj) is an element of a SS, iff
(i) for all r such that r 2 Z, pr P 0 (viability), and (ii) for any s such that s 62 Z, ps < 0, if s enters (survival).

Before we investigate the relationship between SSs and Nash equilibria, we define a ‘‘restricted game’’ in

which firms have pre-assigned locations but must simultaneously decide whether to enter or not. In this

game, the decision of each firm can be represented by a binary value: 0 if a firm decides not to enter; 1 if a

firm decides to enter. We denote this game, G01. Then we can show that pure strategy Nash equilibria of GT,

GS, and G01 always satisfy the conditions for stability and that the set of pure strategy Nash equilibria of

G01 is equivalent to the SS. (The proof is provided in the appendix.)

Proposition 2. (i) SS � PNEðGTÞ; (ii) SS � PNEðGSÞ; (iii) SS ¼ PNEðG01Þ.

Proposition 2 provides us with a different way to understand Nash equilibrium in competitive location

games. The proposition indicates that the Nash equilibria must satisfy viability and survival conditions;

otherwise, firms have incentives to change their action. For example, if the profit of an entrant is negative,

4 They define several variants of SS according to the context of the problem. We refer to the SS defined by their variants with the

properties of Weak survival, Restricted entry, and Independent viability.
5 Unlike in the second stage, Zi is a variable in the first stage.
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which is a violation of viability, then the entrant will move out of the industry. If a potential entrant can
make a positive profit by establishing a facility, which is a violation of the survival condition, then the firm

enters the industry. These results explain why the later entrants are blockaded, even though co-location at

each production site is not prohibited.

Proposition 2 also gives us a way to produce PNEðGTÞ and PNEðGSÞ. For example, part (iii) implies that

stability does not guarantee the Nash equilibria of GT. This is because each entrant may have an incentive to

move to other production sites, even though the stability condition is satisfied. Thus, PNEðGTÞ is identified
by testing each element of the SS in the following way. Suppose an occupancy vector (jZ1j; . . . ; jZLj) is stable.
We reduce jZij by one and test whether the entrant leaving site i can be better off at any other sites. This
procedure is repeated for all sites i ¼ 1; . . . L. If no entrant can be better off during this procedure, then this

occupancy vector corresponds to a Nash equilibrium. (An algorithm is provided in the appendix.)

The search for PNEðGSÞ is narrowed by Proposition 2. First, it provides the maximum number of players

in an industry for the free entry model so that the depth of the game tree is determined a priori. Once the

depth of the game tree is restricted, one needs only to look at the branches generated by the SS rather than

the whole game tree (which is given in Fig. 3). This restricted search implies that players may foresee the

ends, but only the limited ends. The algorithm may be sketched as follows:

Step 1. Obtain elements of the SS.

Step 2. Find PNE(GS) among the elements of the SS.

When identifying PNEðGTÞ and PNEðGSÞ, we need to have the SS on hand. SSs can be generated by

search algorithms such as genetic algorithms. Rhim (1997) presents the implementation of the genetic al-

gorithms. Applying non-binary representation, chromosomes to be evolved are occupancy vectors. Genetic

algorithms seek balance between population diversity and selective pressure. Unlike optimization problems,

generating almost all elements of the SS within a reasonable time bound is critical to identifying right
equilibrium points. Therefore, population diversity is emphasized more than selective pressure. In the

following example, we illustrate the computation of Nash equilibria and discuss properties of Proposition 2.

Example 1. (i) Stable set: Suppose that costs and inverse demand curves are as given in Fig. 1. Let

ðf1; f2; f3Þ ¼ ð35; 17; 7Þ. For simplicity, suppose that ci ¼ 0 for all i. In order to enumerate the occupancy

vectors, we need an upper bound of the potential number of entrants at each site. The bound is obtained by

Fig. 1. Three node case.
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increasing the number of firms at a production site until the total profit of each firm located at the site

becomes negative, while keeping the other sites unoccupied. The resulting upper bound is (1, 1, 2). Then, we

enumerate the occupancy vectors up to the upper bound. Profits of individual firms at each production site
i, pZi�s according to the occupancy vector (jZ1j; . . . ; jZLj) are summarized in Table 2, the occupancy-payoff
table. This table allows us to identify the SS, which is fð0; 0; 2Þ; ð0; 1; 1Þ; ð1; 0; 0Þg. Note that the number of

entrants in each element of SSs can be different: i.e., 16N �6 2.

(ii) PNE(GT): We can represent this game with a two-dimensional payoff matrix as shown in Fig. 2. The

strategy set of individual firms is f0; 1; 2; 3g, where 0 represents no-entry decision. The payoff matrix can be

constructed from Table 2 except for some diagonal elements which are always dominated by a no-entry

decision. While (1,0), (0,1), (2,3), (3,2), and (3,3) are possible strategy pairs from the SS, only (2,3) and (3,2)

belong to PNE(GT). This result illustrates that SS � PNEðGT Þ. On the other hand, Nash equilibria can be
obtained directly from the SS. Among three elements of the SS, only (0,1,1) satisfies the condition of

moving nowhere. That is, no entrant can be better off by moving to other sites. Therefore, (2,3) and (3,2) is

constructed as PNE(GT ).

(iii) PNE(GS): The SS limits the number of entrants to at most two so that we can construct a game tree

to identify PNE(GS), as in Fig. 3. The branches are strategy profiles of the entrants in the first stage, while

the numbers at the end of the leaves are the payoffs of firm 1 and firm 2 after the third stage game.

Backward induction starts from the decision of firm 2. For each subgame, firm 2 selects the best strategy by

comparing the payoffs. Then, the game is reduced to a profit-maximization problem of firm 1. Since se-
lecting site 1 is the best strategy for firm 1, (1,0) is identified as PNE(GS). In this procedure, the relationship

established in Proposition 2 enables us to restrict the search only to the solid branches. The size of the tree

to be searched is reduced by 75% in this example.

The existence of PNE of GS is guaranteed by backward induction since each information set of the game

tree is a singleton (Kuhn, 1953). Non-emptiness of the SS is guaranteed by Proposition 2 and the existence

of PNE of GS. However, a PNE of GT may not exist, as shown in Example 2.

Table 2

Occupancy-payoff table of the network in Fig. 2

Occupancy vector pZ1 pZ2 pZ3 Occupancy vector pZ1 pZ2 pZ3

(0,0,0) 0 0 0 (1,0,0) 9.25 0 0

(0,0,1) 0 0 17.12 (1,0,1) �3.39 0 �2.22
(0,0,2) 0 0 3.72 (1,0,2) �8.81 0 �4.31
(0,1,0) 0 17.38 0 (1,1,0) �9.94 �5.11 0

(0,1,1) 0 3.94 0.28 (1,1,1) �13.38 �7.38 �5.38
(0,1,2) 0 �1.41 �2.91 (1,1,2) �15.26 �8.56 �5.96

Fig. 2. Two-dimensional payoff matrix of three node case.
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Example 2. Suppose that costs and inverse demand curves are as given in Fig. 4. Possible facility sites are

limited to nodes 1, 3, 5 because of the high fixed cost at other nodes. Markets exist only at nodes 2, 4, 6. The

occupancy-payoff table is provided in Table 3. In this example, (1,0,1,0,1,0) is not viable. Also, cost and

demand parameters do not allow more than one firm to open facilities at the same site. Thus,

fð1; 0; 1; 0; 0; 0Þ; ð1; 0; 0; 0; 1; 0Þ; ð0; 0; 1; 0; 1; 0Þg is the SS.

Since the number of entrants in each occupancy vector of the SS is not greater than two, we can rep-

resent this game with a two-dimensional payoff matrix as shown in Fig. 5. We do not have to consider the

no-entry decision since it is dominated by the other entry decisions. Fig. 5 shows that a pure strategy Nash

equilibrium does not exist. This can happen when the variable production and transportation costs have a

special pattern, giving firms incentive to deviate from the current decision. For example, if player 1 enters

site 1, player 2 chooses site 3, since site 3 has a cost advantage over site 1. Then player 1 will move to site 5,

which will make player 2 move to site 1. Thus, the two players will hop around the sites endlessly. This
phenomenon was called ‘‘dancing’’ by Teitz (1968). It was also observed by Labb�ee and Hakimi (1991), who

dealt with the duopoly case without fixed cost. However, this example shows that this phenomenon also

happens in the free entry problem with fixed cost.

Example 2 shows that PNE of GT may not exist in general. However, we show below that if the profit

function of the firm depends only on the number of other firms choosing the same strategy profile, that is,

prðxÞ ¼ fiðjZijÞ for any player r 2 Zi, the existence of PNE of GT can be guaranteed. Before we present the

result, we need to define the notion of generic game. A game GT is called generic if fiðjZijÞ 6¼ fi0 ðjZi0 jÞ for
every i 6¼ i0, and 16 jZij, jZi0 6N �. (See Milchtaich, 1996b.)

Proposition 3. (a) Suppose that there exist a production site îij at every market j such that; (i)

vîij þ tîijj þ cîij < vi þ tij þ ci for any i 6¼ îij; (ii) 2ðvi þ tij þ ciÞ � ðvîij þ tîijj þ cîijÞ > aj for any i 6¼ îij; (iii)P
k2Sîij
ðak � vîij � tîijk � cîijÞ

2
=4bk > fîij , where Sîij � fkjvîij þ tîijk þ cîij < vi þ tik þ ci for any i 6¼ îijg. Then,

prðxÞ ¼ fiðjZijÞ for any player r 2 Zi, and there exists a PNE of GT.

Fig. 3. A game tree to identify PNE(Gs).
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(b) Suppose that vi þ tij þ ci ¼ vi0 þ ti0j þ ci0 for all i, i0 at every market j and that there exists i� such that
fi� < fi for all i and ðaj � vi� � ti� � ci� Þ2=4bj > fi� . Then there always exists a PNE of GT. Furthermore, all
entrants are located at the site i�.

(c) Let GS be a corresponding sequential move game of GT. If part (a) holds and GT is generic,
PNEðGSÞ � PNEðGTÞ. Under the conditions of part (b), PNEðGSÞ � PNEðGTÞ always holds.

Part (a) of Proposition 3 maintains that if every market is served only by one production site and each

production site is profitable enough to accommodate at least one firm, then there exists at least one PNE of

GT. This condition generates circumstances similar to Bertrand price competition, since most of the pricing

games result in a natural monopoly in each market. The proof is based on general the results of congestion

games, which are introduced by Rosenthal (1973) and generalized by Monderer and Shapley (1991),

Fig. 4. A case for dancing phenomenon.

Table 3

Occupancy-payoff table of the network in Fig. 4

Occupancy vector pZ1 pZ2 pZ3 pZ4 pZ5 pZ6

(1,0,1,0,0,0) 0.02 0 0.19 0 0 0

(1,0,0,0,1,0) 0.15 0 0 0 0.04 0

(0,0,1,0,1,0) 0 0 0.05 0 0.17 0

(1,0,1,0,1,0) �0.01 0 0.03 0 0.01 0

Fig. 5. Two-dimensional payoff matrix of the dancing case.
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Milchtaich (1996a). Congestion games are a class of games where the payoff of a player is a non-increasing
function of the number of players who select the same strategy profile. We prove existence by showing that

our model is a special case of congestion games. Thus, under the given conditions of (a), firms at one

production site do not depend on the strategy profiles of the firms at the other production sites. That

is, firms located at one production site construct their own territory consisting of exclusively served

markets.

Part (b), unlike part (a), addresses the case when the total variable costs are indifferent. In this equi-

librium, identical quantities are supplied from individual entrants regardless of their site decisions. Then the

gross contributions of productions before fixed costs are again identical. Thus entrants eventually select the
site with the cheapest fixed cost. A special case of part (b) occurs when only a single market exists. This case

might be interpreted as a metropolitan market surrounded by possible production sites in the ex-urban

area. The proposition suggests that facilities concentrate in the site with the cheapest fixed cost when they

cannot take advantage of variable costs. Conversely, firms are dispersed around the metropolitan market

only if there are significant trade-offs between variable costs and fixed costs.

Part (c) addresses the relationship between simultaneous and sequential games under the given condi-

tions. While the proof under the conditions of part (b) is obvious, that of part (a) depends on results by

Milchtaich (1996a,b), who shows the relationship between simultaneous and sequential move congestion
games. By this relationship, the first mover�s advantage over its followers is guaranteed. This will be ad-

dressed in the next section.

Labb�ee and Hakimi (1991) present a condition for the duopolistic game, and Sarkar et al. (1997) gen-

eralize it to the n-person game. The condition is such that the total variable costs must be sufficiently small

for any location, implying that every entrant should serve every market. Our condition, found in part (a), is

somewhat different from theirs. Under our condition, firms localize their territories. In other words, the

total market is regionalized and no interaction occurs between regional markets.

2.3. First mover advantage

In the sequential decision game GS, firms who make location decisions earlier (or first movers) may or

may not have an advantage over their followers. In the following proposition, we show when first mover

advantage is guaranteed. By first mover advantage, we mean that the profit of the first mover is greater than

or equal to that of its followers. Proofs are provided in the appendix.

Proposition 4. In the sequential entry game GS, first mover advantage is ensured if PNE of GT exists and
PNEðGSÞ � PNEðGTÞ.

Proposition 4 states that firms entering the market early will be better off than their followers only if

certain conditions are satisfied. The conditions can be clarified by examining Example 2. Suppose that firms

enter the industry sequentially, while other problem settings are unchanged. Then, the follower observes the

move of the first entrant and deviates from the decision which endows the first mover with a cost advantage

in the example. However, if a Nash equilibrium exists in the simultaneous entry (for example, the dancing

phenomenon does not occur), and if the Nash equilibrium of the sequential game is a subset of the Nash
equilibria for the simultaneous game, then the follower�s best response is to select the site which endows the

first mover with a cost advantage. Therefore, the first mover is better off than the follower.

The phenomenon that the strong first mover advantage does not exist was called the ‘‘first entry par-

adox’’ by Ghosh and Buchanan (1988). They discuss the first entry paradox with a duopolistic location

model in a linear market, and observe the relationship between the first entry paradox and the non-exis-

tence of a Nash equilibrium. Our result in Proposition 4 is a generalization of their result, since we deal with

an oligopolistic model on a network.

H. Rhim et al. / European Journal of Operational Research 149 (2003) 211–228 223



3. Conclusion

Our eventual aim in this research is to develop methods for the support of plant location decisions in

process industries. However, the underlying problem is of some technical difficulty, and the present state-

of-the-art in modeling such problems is not very advanced. Our approach in this paper is to develop the

modeling approach to a level that is rich enough to tackle realistic problems.

The models analyzed in this paper provide qualitative insights, as well as progress towards numeri-

cal techniques for analyzing location decisions in a competitive setting. An important issue in terms
of qualitative results is the analysis of the competitive reach of plants. Given a set of locations, the

Cournot model, unlike the Bertrand competition, shows that multiple entrants can compete in a given

market. However, the ability and willingness to compete diminish as the cost of supplying a market

increases.

From a strategic perspective, the analysis shows a problem for the case of simultaneous entry, which

appears as the ‘‘dancing’’ phenomenon and the absence of a guaranteed equilibrium. Intuitively, what is

happening here is that without the pre-commitment that occurs in sequential entry, the competitive situ-

ation is unstable. On the other hand, with sequential entry, there may be no advantage to early entry. This
situation is not unlike the popular ‘‘rock-paper-scissors’’ game. In the location case, the lack of advantage

for the first mover is created by the possibility of later entrants occupying locations that can ‘‘surround’’ the

early entrant.

In some situations, the nature of location decisions can be driven towards simultaneity of entry.

For example, some countries require licenses to establish plants and locations for certain industries. These

licenses are often granted over a very short time period. The situation then resembles simultaneous en-

try. Furthermore, the short time available for decision making and the lack of information about com-

petitors� intentions often provide insufficient time to do a thorough analysis. The resulting ‘‘gold rush’’ can
exacerbate the situation. Examples can be found in the licensing policies practiced in India for many years.

There, the result has been a plethora of so-called ‘‘sick’’ firms which, having committed resources in

the initial entry period, are stuck with poor locations and no alternatives for exit.

In terms of numerical solutions, the second and third stage consequences for capacity, quantity, and price,

given the locations, can be analyzed quite easily. However, the entry decision remains a difficult one. At this

stage, it is feasible to analyze small problems which involve a few (less than 25) location choices depending on

the number of players. This is in fact still quite useful; for example, a firm may want to examine the location

of new plant, given the existence of some plants and the possibility of entry of competitors. For larger
problems, we are able to generate ‘‘good’’ strategies and examples of patterns of competitive equilibrium.

However, determining complete solutions to large problems is still out of our reach.

In our model, we assumed single-stage production. However, parts fabrication and final product as-

sembly can be performed at different sites. Corbett and Karmarkar (2001) addressed competition in a multi-

tier supply chain without spatial consideration. Allowing multiple-stage production in our model is a

challenging extension and left to the future research.

Appendix A

Proof of Lemma 1. (i) Existence: Define l�j as

l�j ¼ max kj dkjj


(

>
Xkj
lj¼1
jZlj jdljj

 ! Xkj
lj¼1
jZlj j

 ,
þ 1

!)
: ðA:1Þ
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Produce Eq. (3) only using equations for sites ljðiÞ6 l�j for each j. Then, for each market j:

q�ijr ¼
Pl�j

lj¼1 jZlj j þ 1
� 	

dij �
Pl�j

lj¼1 jZlj jdljj

bj
Pl�j

lj¼1 jZlj j þ 1
� 	 if ljðiÞ6 l�j ; q

�
ijr ¼ 0; if ljðiÞ > lj ðA:2Þ

where r 2 Zi 6¼ /. The profit function is concave in each supply quantity, and Eq. (A.2) satisfies Kuhn–
Tucker conditions simultaneously. Thus, these supply quantities are a Nash equilibrium. In this equilibrium,

l�j < L and q�ijr P 0, which proves existence. (ii) Uniqueness: Let qkjjrðkjÞ be the supply quantity from an

entrant r such that r 2 Zkj where kj � 1 is a specific value of index lj. Suppose that site (kj � 1) is currently

being considered as l�j . We show uniqueness by proving that qkjjrðkjÞ, once it becomes negative, implies that

qðkjþ1Þjrðkj þ 1Þ cannot be positive. At each site, multiple entrants can exist, but their dij�s are homogeneous.

Hence, we consider only the last entrant of each site. Without loss of generality, we assume that jZkj j,
jZkjþ1j > 0. Let us denote the last entrants of the kjth and (kj þ 1)th sites by r and s, respectively. Then,

qkjjrðkjÞ � qðkjþ1Þjsðkj þ 1Þ ¼
zðkjÞzðkj þ 1Þðdkjj � dkjþ1jÞ þ jZkjþ1j zðkj þ 1Þdkjþ1j �

Pkjþ1
lj¼1 jZlj jdljj

� 	
zðkjÞzðkj þ 1Þbj

ðA:3Þ
where zðkjÞ ¼

Pkj
lj¼1 jZlj j þ 1

� 	
. Now, suppose qkjþ1jrðkj þ 1Þ has a positive value, while qkjjrðkjÞ has a non-

positive value. Then, dkjj > dkjþ1j, and from Eq. (A.1), zðkj þ 1Þdkjþ1j �
Pkjþ1

lj¼1 jZlj jdljj > 0. Thus, qkjjrðkjÞ�
qðkjþ1Þjsðkj þ 1Þ > 0, which is a contradiction. Therefore, once qkjjrðkjÞ has a non-positive value, then any

qkjþ1jrðkj þ 1Þ, cannot have a positive value, which proves the uniqueness of l�j . �

Proof of Proposition 1. (i) First, we show that K�r ¼
PM

j¼1 q
�
ijr is a Nash equilibrium for the capacity deci-

sion stage of the original game. Total differentiation of Kr ¼
PM

j¼1 qijr generates dKr ¼
PM

j¼1 dqijr orPM
j¼1 ðdqijr=dKrÞ ¼ 1. Then,

dprðK;QÞ
dKr

¼
XM
j¼1

oprðK;QÞ
oqijr

� dqijr
dKr
þ oprðK;QÞ

oKr
¼
XM
j¼1

oprðK;QÞ
oqijr

� dqijr
dKr
� ci

¼
XM
j¼1

oprðK;QÞ
oqijr

� dqijr
dKr
� ci

XM
j¼1

dqijr
dKr
¼
XM
j¼1

opr K;Qð Þ
oqijr

�
� ci

�
dqijr
dKr

From the first order condition of Eq. (2) and non-negativity condition, qijr ðoprðK;QÞ=oqijrÞ � ci
� �

¼ 0.

On the boundary points, i.e, if ðoprðK;QÞ=oqijrÞ � ci < 0 holds, dqijr=dKr ¼ 0. Therefore, dprðK;QÞ=
dKr ¼ 0. (ii) Second, we show that q�ijr �s are a Nash equilibrium of the original problem, using contradiction.

In the production quantity game, capacity acquiring costs are sunk. From Eq. (5), reduction in dij generates
an incentive to increase qijr. Suppose that q�ijr�s are not a Nash equilibrium, that is, there exists a firm r and
market j such that the firm is better off by increasing qijr. Then, by increasing Kr ¼

PM
j¼1 qijr s, firm r can be

better off, which is a contradiction. �

Proof of Proposition 2

(i) SS � PNEðGTÞ: Suppose that there exists x� such that x� 62 SS. Then, there are two cases: x� is not viable,
or is viable but not stable in the sense of survival.

Case 1: x� is not viable: It implies that there exists a firm r such that x�r 6¼ 0, and prðx�r ; x��rÞ < 0. Since

prð0; x��rÞ ¼ 0 > prðx�r ; x��rÞ, x� ¼ ðx�r ; x��rÞ is not PNE of GT.

Case 2: x� is viable, but not stable in the sense of survival: It implies that there exists a firm r such that
x�r ¼ 0, and prðxr; x��rÞP prðx�r ; x��rÞ. Thus x� ¼ ðx�r ; x��rÞ is not a PNE of GT. �
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Therefore, in both cases, x� cannot be a PNE of GT.

(ii) SS � PNEðGSÞ: The proof is similar to that of (i).

(iii) SS ¼ PNEðG01Þ
(a) SS � PNEðG01Þ: For the proof, we define new variables yr such that yr ¼ 1 if the firm opens its

facility at a preassigned site or yr ¼ 0. Let Y ¼ ðy1; . . . ; yN Þ. Suppose that there exists Y � such that

Y � 62 PNEðG01Þ. Then there exists a firm r such that

prðyr; y��rÞ > prðy�r ; y��rÞ ðA:4Þ

Since y�r can have only two values, we examine the following two cases.

Case 1: y�r ¼ 0, yr ¼ 1: Then Eq. (A.4) implies that Y � ¼ ðy�r ; y��rÞ is not stable in the sense of survival.

Case 2: y�i ¼ 1, yi ¼ 0: From Eq. (A.4), prð0; y��rÞ ¼ 0 > prð1; y��rÞ. Thus Y � ¼ ðy�r ; y��rÞ is not viable.
Therefore, in both case, Y � ¼ ðy�r ; y��rÞ does not belong to SS.

(b) SS � PNEðG01Þ: The proof is similar to that of (i). �

Proof of Proposition 3. (a) We prove existence by showing that our problem is a special case of congestion

games. Congestion games are defined as follows: There are n players who share a common set I ¼
f1; 2; . . . ; Lg of pure strategies and payoff functions pi�s; the payoffs pi�s are monotonically non-increasing

functions of the number of players who select the ith strategy. Rosenthal (1973) defined such games and

proved the existence of a PNE.

In order to transform our free entry model into a fixed entry model, we add an artificial production site

to the original sites. The variable and fixed production costs in the artificial site are zero and transportation
costs to the markets are infinity. The firms that cannot make profit in the production sites of the original

problem will be better off by selecting the artificial site. The potential number of firms, N, plays the role of
the given number of players n in the fixed entry model.

Suppose that firm r selects a production site i which satisfies conditions (i) and (ii). Then, firm r is

viable and the payoff function can be represented as: prðxr; x�rÞjxr¼i � pirðx�rÞ. Since each market is

served by only one production site from conditions (i) and (ii), the payoff of firm r is independent

of strategies of the firms located at the other sites. Since the payoffs of the firms located at the same

site are identical, the payoff of firm r can be represented as a function of the number of firms who
select the same production site, jZij; i.e., pirðx�rÞ ¼ fiðjZijÞ. From Eq. (6), qijr ¼ ðdij � ciÞ=ðbjðjZij þ 1ÞÞ
for all market j which satisfies the second condition, and thus fiðjZijÞ is a non-increasing function.

Therefore, this game is a special case of congestion games and there always exists a Nash equilibria.

(b) Proposition 2 and the existence of PNE of GS imply the non-emptiness of SS. Let x be a location vector

generated from the member of SS which includes the largest number of entrants among the members. Since

ðaj � vi� � ti� � ci� Þ2=4bj > fi� , at least one firm can exist in the industry. Suppose that there exists an en-

trant r who is not located at the site of the cheapest fixed cost. Then the entrant r will move to the site of the

cheapest fixed cost without affecting the profit of the other firms, since viþ tij þ ci ¼ vi0 þ ti0j þ ci0 for all i, i0
at every j. This procedure will be repeated until all entrants co-locate at the site with the cheapest fixed cost.

The resulting location vector is a PNE, because no entrant can improve its profit and no outside firm can

make profit by entering the industry, considering the fixed costs and identical total variable costs.

(c) Under the conditions of part (a), we showed that our game makes a congestion game. Milchtaich

(1996a,b) addressed the relationship between simultaneous and sequential move game as follows:

If G is a generic simultaneous move congestion game, then the backward induction profile of the cor-

responding sequential move congestion game is a Nash equilibrium (in pure strategies) of G.

This proves the first part of (c). Under the conditions of part (b), no firm has an incentive to move out of

the production site of the cheapest fixed cost. Thus, PNEðGSÞ � PNEðGTÞ. �
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Proof of Proposition 4. Let x ¼ ðx1; . . . xN� Þ be a PNE of GS. Suppose that there exists a firm r such that

pr < prþ1. For a given x1 � xr�1 the game tree for backward induction is reduced to a two-person game (firm

r and r þ 1), since they can foresee equilibria of the subgames starting from firm (r þ 1)�s decision node.

Suppose that firm r can relocate its facility after firm (r þ 1)�s location decision, but does not want to. Then

firm r should have selected firm (r þ 1)�s site in its initial decision. Therefore, the firm must relocate its

facility, which is contradictory to PNEðGSÞ � PNEðGTÞ. �

Algorithm for the second stage:

Step 1. For j ¼ 1 to M,

(1) k  0.

(2) Sort production sites in descending order of dij.
(3) k  k þ 1.

(4) If
P

lkj jZlj jþ1

� 	
ðdkj � ckÞ �

Pk
lj
jZlj jðdljj � cljÞ > 0 and

Pkþ1
lj
jZlj j þ 1

� 	
ðdkþ1j � ckþ1Þ �

Pkþ1
lj
jZlj jðdljj�

cljÞ6 0, go to (5); otherwise go to (3).

(5) l�j ¼ maxfljjlj6 k and jZlj j > 0g; Obtain q�ijr�s using Eq. (6).

Step 2. Obtain p and pr�s.
If we use a heap sort, sorting dij in Step 1 takes OðL 	 log LÞ and other small steps in Step 1 takes OðLÞ.

Thus step 1 takes OðL 	M 	 log LÞ. The computing time of Step 2 is OðL 	MÞ. Therefore, the computational

complexity of this algorithm is OðL 	M 	 log LÞ.

Algorithm to identify PNE (GT) from SS:

Step 1: For i ¼ 1 to L,

(1) jZ 0i j  jZij � 1;

(2) While ðk 6¼ iÞ, jZ 0ktj  jZkj þ 1; if pkðjZ1j; . . . ; jZ 0i j; . . . ; jZ 0kj; . . . ; jZLjÞ > piðjZ1j; . . . ; jZLjÞ, SS 6¼ PNEðGTÞ
and stop; else, return to (2).

Step 2: SS ¼ PNEðGTÞ.
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