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 We study the demand forecast-sharing process between a buyer of customized production equipment and a set of equipment suppliers. Based on a large data collection we undertook in the semiconductor equip
 ment supply chain, we empirically investigate the relationship between the buyer's forecasting behavior and
 the supplier's delivery performance. The buyer's forecasting behavior is characterized by the frequency and

 magnitude of forecast revisions it requests (forecast volatility) as well as by the fraction of orders that were
 forecasted but never actually purchased (forecast inflation). The supplier's delivery performance is measured
 by its ability to meet delivery dates requested by the customers. Based on a duration analysis, we are able to
 show that suppliers penalize buyers for unreliable forecasts by providing lower service levels. Vice versa, we
 also show that buyers penalize suppliers that have a history of poor service by providing them with overly
 inflated forecasts.
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 1. Introduction
 Sharing demand forecast information has been recog
 nized as a key element in supply chain coordination
 (Cach?n 2001). Over the last decade, companies have
 engaged in various forecast-sharing practices, includ
 ing the commonly known Collaborative Planning,
 Forecasting and Replenishment (CPFR) initiative,
 which was launched to "create collaborative relation

 ships between buyers and sellers through coman
 aged processes and shared information/'1 Retailers
 such as Wal-mart and Best Buy, along with suppliers
 such as Procter & Gamble and Kimberly-Clark, have
 all reported substantial benefits from CPFR projects.
 For example, GlobalNetXchange, a consortium con
 sisting of more than 30 trade partners including Sears,
 Kroger, Unilever, Procter & Gamble, and Kimberly
 Clark, have reported a 5%-20% reduction in inventory
 costs and an increase in off-the-shelf availability of

 2%-12% following the launch of their CPFR program
 (VICS CPFR Committee 2002).

 Despite these success stories, forecast sharing still
 suffers from several problems in practice. In this arti
 cle, we analyze two types of problems related to
 forecast sharing. First, forecasts change and are con
 tinually updated as the buyer receives new informa
 tion about the demand it faces. This problem, which

 we refer to as forecast volatility, raises the question of
 when the forecast information provided by the buyer
 is sufficiently accurate to justify the supplier acting
 on it. A supplier that will act immediately on any
 given forecast will likely face significant future adjust

 ment and rework costs.

 Second, forecasts provide information about what
 the buyer intends to do in a given future state of the

 world. These intentions, however, are not verifiable
 and cannot be enforced. This makes contracting based
 on shared forecasts extremely difficult. In the absence
 of a contractual obligation for the buyer to purchase
 what it has forecasted, the buyer has an incentive to
 inflate forecasts to assure sufficient supply (forecast

 Authors are named in reverse alphabetical order. All authors con
 tributed equally.

 1 Website: http://www.cpfr.org.
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 Figure 1 Forecast Sharing and the Prisoner Dilemma

 Cooperate
 (forecast truthfully)

 Buyer

 Do Not Cooperate
 (inflate forecast)

 Supplier
 Cooperate

 (trust forecast)
 Do Not Cooperate

 (ignore forecast)

 Buyer forecasts truthfully
 and supplier trusts the
 forecast.

 Buyer inflates forecast;
 supplier trusts the inflated
 forecast (supplier incurs
 cost of inventory and
 cancellation).

 Buyer forecasts truthfully,
 but supplier waits until a
 firm purchase order is
 submitted (buyer incurs
 cost of delay).

 Buyer inflates forecast,
 supplier discounts
 forecasts and waits until
 firm purchase order is
 submitted.

 inflation; see, e.g., Cach?n and Lariviere 2001). Fearing
 inflated forecasts, the supplier might prefer to delay
 its actions to a point in time when the buyer is willing
 to commit to its forecast. This setup shares many sim
 ilarities with the classical prisoner's dilemma: As is
 illustrated by Figure 1, both parties can either coop
 erate (buyer shares forecasts truthfully, and supplier
 trusts the forecast), achieving the Pareto-optimal out
 come, or, as predicted by the one-period equilibrium

 model, they can decide to act noncooperatively (buyer
 inflates forecasts; supplier discounts forecast), forego
 ing the benefits of forecast sharing (shaded cell in
 Figure 1).

 The extent to which the two parties will choose
 cooperative actions depends on the relevant planning
 horizon. Most of the existing analytical research on
 supply chain contracting considers one-shot games
 (Cach?n and Netessine 2003). As demonstrated earlier
 (Cohen et al. 2003), this single period game induces
 the buyer to overforecast and the supplier to delay the
 initiation of a production order. More recently, there
 has been a growing interest in the supply chain litera
 ture (Taylor and Plambeck 2003, Debo 1999, Ren et al.
 2004) and beyond (see, e.g., Sommer and Loch 2003
 for an application in project management) in the role
 of trust and reputation in multiperiod games. This
 study complements this emerging area of research
 with an empirical foundation. Taking a multiperiod
 perspective, we demonstrate that both parties con
 sider the outcome of previous periods when deciding
 whether they should cooperate in the present period.

 Our study is grounded on detailed data related to
 forecast sharing and order fulfillment collected in the
 semiconductor equipment supply chain. We created
 a unique proprietary data set, capturing transactions
 between one buyer and 78 suppliers. Over a period of
 2 years we collected data on more than 3,000 orders.
 This allows us to make the following contributions.
 First, we show that suppliers in the semiconductor
 equipment supply chain penalize the buyer for unreli
 able forecasts by delaying the fulfillment of forecasted
 orders. Specifically, we show that suppliers that have
 experienced large amounts of forecast volatility from
 the buyer are less willing to allocate capacity toward

 forecasted orders, leading to overproportionally long
 tool delivery times. Second, we show that suppli
 ers that have been exposed to forecast inflation in
 the form of excessive order cancellations are less

 willing to allocate capacity toward forecasted orders,
 also leading to overproportionally long tool delivery
 times. Third, we show that the buyer penalizes those
 suppliers that have not been able to meet prior deliv
 ery requests by providing them with overly inflated
 forecasts. Together with the actions of the supplier,
 this penalty scheme from the buyer creates a "tit-for
 tat" strategy, which is in line with earlier predictions
 from the economics literature for repeated prisoner
 dilemma games (e.g., Axelrod 1981, Kreps et al. 1982).

 2. Research Setting
 Our empirical analysis is based on a proprietary data
 set that we created in the semiconductor equipment
 industry. The data set consists of one buyer and a
 set of 78 suppliers. The buyer in our sample is one
 of the largest chip manufacturers in the industry and
 is the most important buyer of semiconductor equip

 ment worldwide. This gives the buyer a substantial
 amount of power and allows it to implement forecast
 sharing agreements that equipment suppliers might
 not agree to when dealing with smaller equipment
 buyers. This includes contracts design, information
 systems implementation, and requests for short deliv
 ery lead times. Given the technological complexity
 of the pieces of equipment requested by the buyer
 and the large amount of buyer-specific investments
 that suppliers incur, there exists only one supplier for
 every piece of equipment (i.e., for any piece of equip
 ment, the buyer is committed to a single-sourcing
 strategy). While the powerful position of the buyer
 clearly limits the generalizability of our findings, it
 is advantageous from a research design perspective,
 as it holds the forecast-sharing mechanism constant
 across all 78 suppliers in our sample.

 As in many customized capital goods industries,
 the semiconductor equipment supply chain faces an
 order-fulfillment dilemma. On the one hand, buyers
 of equipment expect their suppliers to be responsive
 and to be able to fulfill orders within a relatively short
 time. On the other hand, the high value and the cus
 tomized nature of the product make it risky for the
 supplier to keep finished products or subsystems in
 inventory, leading to long and variable manufactur
 ing lead times. Given the integral nature of the equip

 ment, postponement strategies that have been found
 useful to shorten delivery times and to reduce inven
 tory risks (e.g., Lee 1996) have not yet been imple

 mented in this industry.
 To resolve this dilemma, the buyers (producers of

 microchips) provide their equipment suppliers with
 order forecasts for 24 months and longer. Unlike
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 Figure 2 Changes in Spending Levels in the Semiconductor Industry

 80% ,-.

 1995 1996 1997 1998 1999 2000 2001

 firm purchase orders, such forecasted orders?also
 referred to as "soft orders"?are a reflection of the
 buyer's purchase intent and are not legally binding.
 Demand for semiconductor production equipment

 is triggered by the (projected) demand for chips,
 including microprocessors and memory chips. Given
 that the demand for chips is in turn generated by the
 demand for electronic devices, semiconductor equip
 ment makers find themselves at the wrong end of
 the "bullwhip" (e.g., Lee et al. 1997). They face busi
 ness cycles that flood them with orders one year
 and starve them for work the next (see Figure 2).
 The large chip producers create market forecasts on a
 monthly or quarterly basis. These forecasts are used
 to project production capacity needs for the next
 2-5 years. Forecasts and capacity plans are updated
 on the basis of a rolling horizon principle. Chip man
 ufacturers use these product-level demand forecasts,
 combined with equipment output models, to forecast
 capacity requirements to both existing and potentially
 new fabs. If the forecasted capacity requirement is
 not supported by the size and productivity of the
 installed equipment base, additional equipment must
 be ordered. This projected need for additional equip
 ment is shared with equipment suppliers in the form
 of forecasted (soft) orders, consistent with the princi
 ple of forecast sharing and collaborative planning.
 The chip manufacturer is unlikely to actually com

 mit to purchase equipment at the time of the initial
 soft order placement. Over the next two years, the
 chip manufacturer will obtain new information about
 demand for chips as well as about the effective capac
 ity of the currently installed equipment base (based
 on production yields, throughput time, and machine
 up time). As a result, the chip manufacturer may
 update the soft order and will usually delay mak
 ing a firm order (i.e., issue a purchase order) until
 3-6 months prior to the projected delivery date. This
 flexibility of the buyer, which delays a commitment
 until relatively close to the delivery date, reflects the
 buyer's strong bargaining position.
 During the time between the initial placement of

 the soft order and the final placement of the purchase

 order, the buyer and the supplier continue to exchange
 information. Specifically, the buyer will inform the
 supplier about changes to the requested delivery date,
 the location of the fab where the tool will be operat
 ing, and other delivery-related information. In con
 trast to these delivery detail changes, the buyer does
 not change the specification of the equipment. This
 reflects the buyer's policy known as "copy exact"
 (see Terwiesch and Xu 2004 for details), which pos
 tulates that every piece of production equipment has
 to be absolutely identical. In the absence of specifi
 cation changes, a soft order can be modified in one
 of the following two ways: (1) The requested deliv
 ery date might be moved forward or backward in
 time, reflecting new information the buyer has about
 detailed capacity planning at the fab. Given the high
 capital costs associated with acquiring the equipment,
 the buyer prefers to delay the requested delivery date
 rather than receive the equipment earlier than needed
 and having it be idle. (2) The soft order may be can
 celled if market demand is less than initially projected
 or if existing equipment operates at higher yield levels
 or at a higher level of productivity. Alternatively, the
 soft order remains unchanged in the forecast-sharing
 system. Figure 3 shows the sequence of events for
 a soft order that is ultimately converted into a firm
 order.

 Table 1 shows an example of four soft orders rep
 resentative of the type of data we collected. This
 includes when the soft order was placed, how the
 requested delivery date changed, and whether the
 soft order ended up being purchased or being can
 celled. Tool #197 has a stable forecast history but
 was cancelled six months after it was forecast. The
 requested delivery date for tool #199 changed three
 times. Tool #316 has a relatively stable forecasting
 history and was delivered earlier than requested. In
 contrast, tool #365 has a volatile forecasting history,
 with its requested delivery date changing widely from
 as early as 8/16/2000 to as late as 12/30/2000. This
 order ultimately was delivered almost 2 months later
 than requested.

 Figure 4 shows an aggregation of order forecasts for
 one specific supplier. Each of the shared forecasts is a

 Figure 3 Events Leading to a Firm Order and Tool Delivery
 (Noncancellation Case)

 Soft order

 Buyer

 Supplier

 Delivery time Revised
 Soft orders Tool

 -.... Firm order delivery

 Start procurement
 and production

 Production and shipment lead time
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 Figure 4 Forecasted (Soft) Orders vs. Actual Orders
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 time series consisting of the seven quarters included in
 the relevant forecast window. For example, in Q2 2000,
 the buyer provides forecast quantities for the time
 interval from Q3 2000 to Ql 2002. We observe that fore
 casts vary widely, both over time (what is forecast in
 Ql 2000 for the period of Q2 2000 to Q4 2001) as well
 as from one forecast to the next (e.g., what is forecast
 in Q4 1998 for Q2 1999 vs. what is forecast in Ql 1999
 for Q2 1999). Figure 4 also contrasts the forecasts with
 the actual tool purchases. On average, the buyer places
 significantly more soft orders than hard orders, sug
 gesting the use of forecast inflation.

 3. Research Objectives and
 Hypotheses

 Our objective was to identify patterns of shared order
 forecasting that lead to an on-time tool delivery. Given
 that when a purchase order is placed, its produc
 tion lead time exceeds the residual time available to
 the requested delivery date (see Figure 3), an on-time
 delivery requires that the supplier start working on an
 order while it was still a forecast (soft order).

 Unfortunately, the effectiveness of working with
 forecast orders can be greatly reduced through nonco
 operative behavior of either party, buyer or supplier.
 The buyer can place more soft orders than it antici
 pates purchasing in the hope that this will secure him
 production capacity of the supplier. Vice versa, the
 supplier can discount or even ignore the information
 provided in the form of a soft order, knowing that
 it is the single supplier for a specific tool and that it

 would be legally almost impossible to hold it account
 able for a delay. Consequently, the single period game
 between the buyer and the supplier resembles the
 traditional "prisoner's dilemma," which is known to
 have a Pareto inefficient equilibrium (Figure 1).

 While playing a game once can lead to mistrust and
 a noncooperative outcome, the economics literature
 suggests that playing a game repeatedly can lead to

 more cooperative outcomes. Specifically, it has been
 argued that in the repeated game, parties are likely
 to adopt a "tit-for-tat" strategy, that is, cooperate
 (the buyer forecasts orders correctly on average and
 the supplier reacts to the forecast order) as long as
 the other party does the same and retaliate (the buyer
 overforecasts and the supplier ignores forecast orders)
 upon the other party's defection (Axelrod 1981, Kreps
 et al. 1982). The hypotheses derived below attempt to
 document that the buyer and supplier indeed follow
 such a "tit-for-tat" strategy.

 The Supplier's Perspective
 Consider the perspective of the supplier first. Given
 that the buyer has the right to change the deliv
 ery dates of soft orders and can cancel any open
 soft order, the supplier carries the risk of commenc
 ing production prior to receiving a firm order. How
 ever, since the supplier depends on the buyer for
 business for future technology generations, the sup
 plier is unlikely to completely discount every piece
 of information he receives from the buyer. Instead,
 the supplier will evaluate the reputation of the buyer
 based on prior transactions, rewarding good fore
 casting behavior with early commencement of the
 production process and penalizing bad forecasting
 behavior with delays.

 In our context, a buyer's bad forecasting behavior
 is constituted by two forces, forecast volatility and
 forecast inflation. Forecast volatility arises as fore
 cast orders are based on preliminary information and
 made at a point in time that the buyer still faces
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 substantial uncertainty about actual needs for the
 equipment. This uncertainty is likely to make the
 forecasts volatile, which in turn makes the supplier
 reluctant to commit resources to it. Forecast volatility
 has been analyzed by several prior studies (Heath and
 Jackson 1994, Graves et al. 1998, Cakanyildirim and
 Roundy 2002, and Kaminsky and Swaminathan 2001).
 Cattani and Hausman (2000) show that demand fore
 casts do not necessarily become more accurate as they
 are updated. They argue that such forecast churning
 can cause inefficiencies if the firm reacts to the wrong
 forecast update. A similar result has been provided
 by Toktay and Wein (2001). Similar observations have
 also been made in the coordination and project man
 agement literature.2

 In our research setting, forecast volatility can take
 one of two forms: order-specific forecast volatility or
 buyer-specific forecast volatility. With order-specific
 volatility, we refer to the number of change requests
 the buyer places for a particular order.3 In con
 trast, we label the number of change requests (across
 orders) the buyer has placed with the supplier as
 buyer-specific forecast volatility4 Buyer-specific fore
 cast volatility thereby captures the recent history of
 forecast behavior of the buyer.

 Hypothesis 1a (Order-Specific Forecast Volati
 lity). The more the customer changes the requested deliv
 ery date of a particular soft order, the more likely this
 particular order will be delayed.

 Hypothesis 1b (Buyer-Specific Forecast Volatil
 ity). The more the buyer has changed requested delivery
 dates for soft orders in the past, the more likely it is that
 the current order will be delayed.

 A second reason why a supplier might not be will
 ing to initiate work for a soft order relates to the
 perceived probability of order cancellation. Given the
 complex and capital-intense production process of
 semiconductor manufacturing, the buyer faces severe
 costs if the equipment does not arrive on the required
 delivery date. Late shipments of equipment?and

 consequently late availability of capacity?can lead to
 idle time for other equipment in the fab and poten
 tially lost wafer output. Industry observers estimate
 that a 1-hour delay in installing capacity of a fab is

 worth in excess of $100,000. This creates an incentive
 for the buyer to provide overly aggressive forecasts to
 the supplier, that is, place more soft orders than firm
 orders. As the real capacity needs of the buyer are
 unobservable to the supplier, the buyer can always
 cancel the order and justify such change on informa
 tion that is not verifiable by the supplier, for example,
 an unexpected drop in demand or increased produc
 tion yields from existing equipment. Note that, in con
 trast to forecast volatility, which would also exist in a
 vertically integrated firm, forecast inflation reflects an
 opportunistic (noncooperative) behavior of the buyer.

 Forecast inflation has been analyzed by Lee et al.
 (1997), Celikbas et al. (1999), and Cach?n and
 Lariviere (2001). While these models are based on
 one-shot games, there has been a growing interest in
 the role of trust and reputation in supply chains from
 a multiperiod perspective (Taylor and Plambeck 2003,
 Debo 1999, Ren et al. 2004, Cach?n and Netessine
 2003). These studies, directly or indirectly, fit the
 repeated prisoner's dilemma framework outlined in
 Figure 1 and hence predict that the supplier will
 penalize the buyer for order cancellations by provid
 ing longer delivery times.

 Hypothesis lc (Forecast Inflation). Past soft-order
 cancellations prolong current order lead time. That is,
 the more frequently the buyer has cancelled soft orders
 in the past, the more likely it is for the supplier to delay
 production, which leads to longer order lead time.

 Cancelled orders are especially costly to the sup
 plier while operating at full capacity, as in such cases
 the cancellation costs include not only costs of inven
 tory and procurement, but also the cost of lost busi
 ness. We therefore extend our hypothesis as follows:

 Hypothesis Id (Forecast Inflation in Economic
 Upturn). The delay from order cancellation is more severe
 during an economic upturn.

 The Buyer's Perspective
 While cooperation from the supplier's perspective
 means reacting to the forecasted orders provided by
 the buyer, cooperation from the buyer's perspective

 means providing realistic estimates for the forecasted
 orders. To the extent that buyer and supplier indeed
 follow a tit-for-tat strategy, the buyer will react to non
 cooperative behavior of the supplier by acting nonco
 operatively itself.

 In the buyer's eyes, noncooperative supplier behav
 ior is characterized by late deliveries of equipment.
 Although the action of the supplier itself is not
 observable to the buyer, the buyer can estimate sup
 plier cooperation based on delivery dates; everything

 2 See Krishnan et al. (1997), Loch and Terwiesch (1998), and Roe
 mer et al. (2000) for models of sharing preliminary information
 in which the manager of an information-receiving task needs to
 decide when it is willing to commit resources to information sup
 plied by other, concurrently executed, tasks.

 3 Consider, for example, a supplier in February 2001 that received
 a soft order in May 2000 with an initially requested delivery date
 of July 2001. However, between May 2000 and February 2001, the
 soft order has been modified (e.g., pushed out) multiple times.

 4 Consider, again, a supplier that has received a soft order in
 May 2000 with a requested delivery date of July 2001. In January
 2001, the supplier considers initiating the order-fulfillment pro
 cess. Yet, from prior experience with the same buyer, the supplier
 knows that in more than half of the cases the buyer has delayed
 the requested delivery date up to five months from the initially
 requested delivery date.
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 else being equal, a supplier with late equipment deliv
 eries is more likely to have engaged in noncooperative
 behavior than a supplier that has delivered on time.

 Once the buyer has decided to punish a supplier,
 it can do so by placing soft orders and then can
 celling them overproportionally often compared to
 the case of cooperation. In absence of forced compli
 ance (Cach?n and Lariviere 2001), this is the only pun
 ishment mechanism available to the buyer during the
 interaction with the supplier for this tool generation.

 We therefore hypothesize?

 Hypothesis 2 (Forecast Inflation). Past delivery
 delays lead to an increase in future cancellations.

 4. Model Specification
 We model the evolution of a soft order to a firm order

 and ultimately to a delivered piece of equipment in
 the form of a two-stage process. The first stage cap
 tures the fact that soft orders can either end up as
 firm orders, that is, the buyer places an order, or be
 cancelled. A firm order will see a delivery time that
 consists of the elapsed time between the placement of
 the firm order and its arrival at the customer's fab.

 These two stages are summarized by Figure 5.
 Let (s, ;) denote the index of the yth soft order the

 buyer places with supplier s. We use a logit formula
 tion to describe the probability that this soft order is
 transformed into a firm order:

 Pr, ,(firm order) =-?, (1)

 where xs ; is a vector of explanatory variables and
 ? is a parameter vector of appropriate dimensionality.
 Since any soft order will either be transformed into a
 firm order or be cancelled, the probability of cancel
 lation is

 Prs; (cancel) = 1 ? Prs ;(firm order)

 l + exp(*S//j8)'

 On placement, a firm order will experience a strictly
 positive delivery lead time. We model the duration
 between the buyer's placing a firm order and its

 Figure 5 Two-Step Model

 hi= Soft order ?-?

 Cancelled
 order

 Firm order
 Tool
 delivery

 >i=0

 Stage 1 : Cancellation Stage 2: Delivery
 process (Logit model) process (Duration analysis)

 delivery by the supplier using a hazard rate model
 (Cox 1972). Using the hazard rate as a dependent
 variable rather than the actual delivery lead time
 has several advantages. First, durations may have a
 nonnormal distribution. Restricted to being positive,
 they are often skewed. Thus the normality assump
 tion of standard regression is violated. Second, haz
 ard rate models should be chosen instead of standard

 regression analysis when working with survival data
 (Helsen and Schmittlein 1993). In our case, perform
 ing a regression analysis on only those soft orders that
 have been delivered would lead to a right-censoring
 of the data, as many of the soft orders we traced were
 not yet delivered at the end of our data collection.
 Finally, hazard models are also capable of capturing
 interesting dynamics of durations, such as the change
 in hazard rate over time, which can lead to additional
 insights in the underlying dynamics of the order ful
 fillment process.

 Despite their advantages, standard hazard rate
 models require that observations be independent of
 each other. This may be reasonable in the context
 of a medical lifetime study, yet in a manufacturing
 environment like the one we study, the lead time of
 one order is likely to be positively correlated with
 the lead time of the subsequent order at the same
 supplier. Such correlation reflects congestion effects:

 A long lead time for one particular order will increase
 the probability of the next order in the production
 pipeline also experiencing a long lead time. Conse
 quently, the independence assumption is violated and
 a refined model specification is needed.

 Let (s, i) denote the index of the zth firm order at
 supplier s, and let Js be the number of firm orders
 received by supplier s. Define random variables TS/i
 as the logarithm of the duration between the place
 ment of the firm order (s, i) and the delivery date
 of the equipment. Let fs ? be the realizations of these
 random variables. In our estimation, we assume that
 the congestion at the supplier can be captured via a
 first-order correlation between lead times for this sup
 plier: Two orders close together (or with overlapping
 lead times) will be more tightly correlated than two
 orders that are far apart in time. Specifically, define
 the hazard rate of one completed order (s, i) con
 ditional upon the completion time of the preceding
 order to the same supplier (i.e., the order that the sup
 plier received directly before order i), (s, i -1), as

 Ws,i I ki-i) = ho(ts,i I tS/i.1)-exp(zSfia), (3)

 where h0(tsi | ?S/Z_i) is the correlated baseline hazard
 function, zS/ { is a vector of explanatory variables, and
 a is a parameter vector of appropriate dimensionality.
 According to Cox (1972), the baseline hazard func
 tion is

 l~ t\ls,i I h,i-l)
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 where f(tsi \ tsi_x) (F(tsi \ t^J) is the conditional
 normal density (distribution) function for the ?th
 order at supplier s, given that the lead time of the pre
 ceding order to the same supplier (i.e., order s, i ? 1)
 is tSfi_v Given identical marginal means ?jl and stan
 dard deviations a, as well as a correlation coefficient p
 for the unconditional bivariate normal distribution, it

 follows that Ts i | (TS/ ^ = tSt ^ ~ N(/x + p(tS/ f_a - p,),
 a2(l ? p2)). In order to formally test to what extent the
 log-normal distribution indeed represents the deliv
 ery durations in our sample, we performed both
 a Kolmogorov-Smirnov test as well as a traditional
 Chi square test (see Law and Kelton 1991 for details).
 Both tests supported our assumption?that is, the
 hypothesis of log-normality could not be rejected.
 The importance of the correlation coefficient, p, will
 become apparent in the estimation results of our
 model.

 Define an indicator variable rs> ? = 0 if the dura
 tion is censored (i.e., the firm order was not com
 pleted at the time of our data collection), and rs z = 1
 if it is not censored. Then the likelihood contribution,
 that is, the probability of observing duration ts { con
 ditional upon it being firm ordered, is (Kalbfleisch
 and Prentice 1980):

 Pr(*s,f I *,,/-i) = lf(*s.i I 's,,--i)]Ml - Ht,,i I Wl1"'"'

 Given our assumption of first-order correlation, we
 can write the likelihood contribution of observing the
 vector (tSfl,..., tSfI) of delivery times at supplier s as

 Prs(tsA,...,tsJs)

 = Pr(?8#1).Pr(?8/2|?8/1).Pr(fUsKw). (5)
 Finally, we obtain the log-likelihood function of the
 complete two-stage model:

 LL(a,?,ix,a,p)

 = E ^ln(Prs ;(firm order)) + In(Prs/(cancel))
 S 1 L ;

 + ln(Pr8(fS/1/.../t8/?5))J (6)
 5. Construct Definition
 Over the period from September 1999 to July 2001 we
 collected data on all soft and firm orders the buyer
 placed with his 78 equipment suppliers, leading to
 a total of 3031 observations. The econometric model

 specified above uses two dependent variables. For the
 first stage, the dependent variable is binary, with a
 value of 1 denoting that the soft order was converted
 into a firm order and a value of 0 denoting a cancella
 tion. In total, 53.2% of the soft orders were converted
 into firm orders. For the second stage, the dependent
 variable is the duration between the placement of the
 firm order and the delivery of the equipment to the

 buyer's fab.
 In addition to these dependent variables, our

 hypotheses include the following set of explanatory
 variables. For a given soft order, we measured order
 specific volatility (ORDER_VOLA) as the amount of
 due date change (forward or backward in time) that
 this soft order has experienced prior to becoming a
 firm order. In other words, we added up the abso
 lute value of all due date changes this soft order
 experienced. For example, a soft order that was ini
 tially placed for May 2002, moved forward to March
 2002, and finally moved back to June 2002 would
 have a score of 2 + 3 = 5 months. Similarly, we mea
 sured buyer-specific volatility (BUYER_VOLA) for
 a given soft order as the average amount of due
 date change (forward or backward in time) across
 all soft orders the buyer submitted to the supplier

 within the last three months prior to this soft order.
 Both, BUYER.VOLA and ORDER_VOLA, are mea
 sured in months. BUYER_VOLA ranged between 0
 and 16.4 months, with an average of 3.76 months.
 In our data set, ORDER.VOLA ranged from 0 to
 51.2 months. The average was?coincidentally?also
 3.76 months. Forecast inflation was measured by com
 paring the number of soft order cancellations over the
 past three months to the total number of (soft and
 firm) orders. The corresponding ratio, which we label
 as CANCEL, can be interpreted as the probability of
 order cancellation.

 We measured the overall economic conditions by
 including the industry's book-to-bill ratio, as defined
 and tracked by Semiconductor Equipment and Mate
 rials International. It is defined as a ratio of the
 three-month moving average bookings to the three

 month moving average shipments for the North
 American semiconductor equipment industry. This
 statistic characterizes the relative balance of supply
 and demand in the industry. If the ratio is larger
 than 1, demand exceeds current supply. We defined a
 binary variable, BOOKJ3ILL, that was equal to 1
 if demand exceeds supply (indicating an economic
 upturn) and 0 otherwise. Finally, we measured the
 past delivery performance of the supplier for a given
 soft order as the total delay across all tool deliveries
 that occurred within the last six months of this soft
 order. The mean value of this variable, which we label
 as PAST_LATE, was 0.14 month.

 In addition to the variables relating directly to our
 hypotheses, we included several control variables in
 our analysis. First, we included a binary variable
 DEV_FAB to indicate if the corresponding tool was
 requested by a development fab. Development fabs
 play a crucial role in the development of new equip
 ment technologies and thereby order tools only at the
 very beginning of the tool's product lifecycle. About
 19% of the tools in our sample were ordered for a
 development fab. We expected tools for development
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 fabs to take longer compared to tools shipped to high
 volume manufacturing facilities.

 A second tool characteristic reflected differences

 between the traditional 8-inch wafer technology
 and the new 12-inch technology. A binary variable
 NEW_TECH was set equal to 1 if the correspond
 ing tool was based on 12-inch technology. Since mid
 1999, fabs have been gradually shifting toward using

 wafers of 12-inch diameter, which leads to a much
 higher number of chips on a wafer and consequently
 improved productivity. Roughly 10% of tool orders
 in our sample were for the new 12-inch technology.
 Tools for the 12-inch technology were expected to
 require longer lead times compared to tools based on
 6- or 8-inch technologies.

 Third, we used the variable TOOL_PRICE to reflect
 the price of the tool as stated in the contract between
 buyer and supplier. Prices for tools in our sample
 averaged around $1.4 million but in some cases went
 as high as $10 million per tool. We expected expen
 sive tools to have longer lead times, reflecting that
 expensive tools are typically based on more complex
 technologies. Fourth, we defined a binary variable
 FOREIGN indicating if a tool was requested for a
 non-US fab. Production in these fabs, all of which are
 owned by the buyer, was managed locally and our
 interviews suggested differences between the behav
 ior of fabs in the United States and abroad. About
 16% of the tools were for non-US fabs.

 Fifth, about 8.5% of the tools in our sample were
 reused tools, that is, tools that were initially built
 based on an older technology and then upgraded
 to be usable for the latest process technologies.
 Such upgrades, also referred to as converted tools,
 require that the tool's critical components be replaced.
 A binary variable CONVERTED is equal to 1 if the
 tool has been converted at least once. Converted tools

 are expected to have shorter lead times.
 Sixth, and finally, we needed to control for the lead

 time requested by the buyer when writing a purchase
 order to the supplier (REQ_LEADT). The fact that a
 tool with a long requested lead time takes longer until
 it is delivered had nothing to do with our research
 focus on forecast sharing. It is the deviation from this
 requested lead time that was of interest to us. The
 average requested lead time was about 5 months.

 6. Estimation Results
 To test our hypotheses, we specified and estimated
 a sequence of five models. The specifications as well
 as the parameter estimates are reported in Table 2.

 Model 1 contains a constant and the control variables
 DEV_FAB, FOREIGN, TOOLJPRICE, CONVERTED,
 NEW_TECH, and BOOK_BILL, and?for the duration
 analysis only?the requested lead time REQ_LEADT.
 The effect of the control variables are as predicted.

 All models indicate that the correlation coefficient

 between subsequent orders to the same supplier is

 Table 2 Estimation Results

 Model parameters Model 1 Model 2 Model 3 Model 4 Model 5
 ? Constant -0.001(0.0001) -0.001(0.0001) -0.001(0.0001) -0.001(0.0001) -0.020(0.0001)

 DEV.FAB -1.387 (0.0009) -1.387 (0.0009) -1.387 (0.0009) -1.387 (0.0009) -1.389 (0.0002)
 FOREIGN 0.6829 (0.0004) 0.6829 (0.0004) 0.6829 (0.0004) 0.6829 (0.0004) 0.8224 (0.0003)
 TOOL.PRICE 0.0857 (0.0001 ) 0.0857 (0.0001 ) 0.0857 (0.0001 ) 0.0857 (0.0001 ) 0.0934 (0.0003)
 CONVERTED -0.5290 (0.0002) -0.5290 (0.0002) -0.5290 (0.0002) -0.5290 (0.0002) -0.5686 (0.0003)
 NEVVJECH 0.5442 (0.0018) . 0.5442 (0.0018) 0.5442 (0.0018) 0.5442 (0.0018) 0.5238 (0.0002)
 BOOK.BILL -0.009(0.0002) -0.009(0.0002) -0.009(0.0002) -0.009(0.0002) -0.019(0.0001)
 PAST.LATE 0.190(0.0003)

 a Constant 1.043 (0.0034) 1.317 (0.0041 ) 1.360 (0.0036) 1.329 (0.0042) 1.329 (0.0042)
 DEV_FAB -0.075(0.0022) -0.155(0.0025) -0.117(0.0030) -0.138(0.0031) -0.138(0.0031)

 FOREIGN 0.456 (0.0015) 0.415 (0.0041 ) 0.422 (0.0041 ) 0.403 (0.0041 ) 0.403 (0.0041 )
 TOOL_PRICE -0.109(0.0006) -0.103(0.0006) -0.091 (0.0006) -0.093(0.0006) -0.093(0.0006)
 CONVERTED 0.299(0.0029) 0.246(0.0031) 0.325(0.0032) 0.324(0.0043) 0.324(0.0043)
 NEW_TECH -0.369 (0.0013) -0.413 (0.0015) -0.347 (0.0041 ) -0.335 (0.0043) -0.335 (0.0043)
 BOOK.BILL -0.147 (0.0004) -0.200 (0.0021) -0.212 (0.0022) -0.070 (0.0004) -0.070 (0.0004)
 RECLLEADT -0.127 (0.0021) -0.145 (0.0004) -0.146 (0.0028) -0.147 (0.0027) -0.147 (0.0027)

 CANCEL -1.022(0.0144) -0.491 (0.0153) -0.491 (0.0153)
 CANCEL * BOOK.BILL -2.347 (0.0304) -2.347 (0.0304)

 BUYERJ/OLA -0.036 (0.0006) -0.032 (0.0006) -0.031 (0.0005) -0.031 (0.0005)
 ORDERJ/OLA -0.026 (0.0003) -0.031 (0.0003) -0.029 (0.0003) -0.029 (0.0003)

 IL 1.682 (0.0005) 1.718 (0.0012) 1.718 (0.0013) 1.722 (0.0013) 1.722 (0.0013)
 p 0.172(0.0005) 0.172(0.0047) 0.167(0.0044) 0.167(0.0006) 0.167(0.0006)

 LL (In sample) -2,825.808 -2,817.200 -2,814.833 -2,812.167 -2,807.576
 LL (Out of sample) -2,682.620 -2,678.003 -2,674.764 -2,668.180 -2,659.400
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 significant and positive. The actual estimates range
 between p = 0.167 and p = 0.172. This significant
 correlation captures the effect of congestion in the
 buyer's production facility: If the nth order from a
 given supplier is experiencing a longer-than-average
 lead time, chances are that the (n + l)st order will
 also be delayed. Thus, our extension of the tradi
 tional duration analysis to include first-order correla
 tion was indeed necessary.
 Consider Hypothesis la (Order-Specific Forecast

 Volatility) and Hypothesis lb (Supplier-Specific Fore
 cast Volatility) first. As shown by Model 2, forecast
 volatility indeed leads to longer delivery duration, as
 indicated by the negative coefficient of BUYER_VOLA
 and ORDERJVOLA. Moreover, comparing the log
 likelihood of Model 2 to that of Model 1, we find
 that adding these variables improves the explanatory
 power of the model. This is indicated by the signifi
 cant likelihood ratio test as reported in Table 3.

 Interestingly, we observe that BUYER_VOLA's
 impact (ranging from ?0.031 to ?0.036) is stronger
 than that of ORDERJVOLA (ranging from -0.026 to
 ?0.031), which suggests that the long-run effect of
 supplier reputation is more profound than the short
 term effect of changing a single order. Based on the
 relationship between the hazard rate and the expected
 lead time, we obtain the marginal effect on lead time
 of an increase of BUYER_VOLA. Each month of deliv
 ery date change results in an average of 0.25 month
 of additional delay. Thus, for every month the buyer
 changes the requested delivery date of an order, it
 will experience a 0.25-month increase in expected lead
 time. A one-month increase in the average change
 in requested delivery date will lead to a 0.16-month
 increase in expected lead time.
 Model 3 indicates that an increase in cancellation

 (CANCEL) will lead to a significant decrease in the
 hazard rate, which is in line with Hypothesis lc.
 Moreover, as shown by Model 4, the business cycle, as
 indicated by the book-to-bill ratio (BOOK_BILL), has
 a strong interaction effect with the forecast inflation
 measure CANCEL, confirming Hypothesis Id. During
 a business upturn (BOOK_BILL = 1), the delaying
 effect of CANCEL increases drastically (from ?0.491%
 to ?2.838% in elasticity across models). This confirms
 our hypothesis that cancellations prolong delivery
 times more profoundly during an economic upturn.

 Table 3 Likelihood Ratio Test

 Model 1 Model 2 Model 3 Model 4 Modelo

 LL -2,825.808-2,817.200 -2,814.833 -2,812.167 -2,807.576
 LR 17.216 4.734 5.332 9.182

 (Model 2 vs. (Model 3 vs. (Model 4 vs. (Model 5 vs.
 Model 1) Model 2) Model 3) Model 4)

 d.f. 2 111
 p value 0.000 0.030 0.021 0.002

 Our results suggest an increasingly delaying impact
 of CANCEL on the delivery time. Moreover, the
 state of the economy, represented by the book-to
 bill ratio, aggravates such negative impact drastically
 The impact from each additional percentage increase
 in CANCEL ranges from 7.6 days (CANCEL = 0%)
 to 14.1 days (CANCEL = 45%) during an eco
 nomic downturn. The impact becomes substantially
 more profound during an economic upturn, ranging
 from a 19.5-day (CANCEL = 0%) delay to a delay
 of 91.2 days (CANCEL = 45%). Thus, a 1 percentage
 point increase in cancellation frequency leads to an
 increase of 1.59 days in delivery duration.
 Finally, Model 5 tests the hypothesized effect of
 prior late shipments on the cancellation probability.
 Based on the significant coefficient of PASTJLATE in
 Model 5, we find also Hypothesis 2 supported. The
 coefficient of 0.190 indicates that a one-week late
 ness in previous shipments will increase the likeli
 hood of future order cancellations by 19 percentage
 points. This complements the tit-for-tat perspective
 to the repeated buyer interaction discussed in the
 Introduction.

 7. Model Validation
 To validate the robustness of our results with respect
 to our construct definition, we used alternative
 measures for buyer volatility (BUYER_VOLA) and
 cancellation probability (CANCEL). In addition to
 measuring these constructs based on the last three
 months as defined above, we varied the "memory''
 of these variables to six and nine months. Simi
 larly, for the past shipment delays from the supplier
 (PAST_LATE), we used a time window of three and
 nine months. All our findings reported in Table 2
 remained structurally unchanged.
 To validate the robustness of our results with
 respect to our sample composition, we ran our anal
 ysis with and without the converted tools. Again, all
 results of Table 2 remained structurally unchanged.
 To test the validity of our logit model (first stage),
 we calculated its ability to correctly predict if a soft
 order would become a firm order as opposed to being
 cancelled. Our logit model predicts more than 70% of
 the binary outcomes correctly, which is in line with
 previous applications of logit models.
 To test the validity of our duration analysis (sec
 ond stage), we performed a May-Hosmer test. The
 test is based on a comparison of the observed num
 ber of deliveries with the expected number of deliv
 eries as predicted by the duration analysis (see May
 and Hosmer 1998). The test first requires calculat
 ing the estimated risk score z? for each observa
 tion and then grouping the subjects into subgroups
 indexed g = l,... ,G. For each subgroup, we compute
 and compare the observed and the expected number
 of uncensored deliveries. A large p-value (typically
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 Table 4 May-Hosmer Test

 Actual Expected z Score p Value
 Decile of risk score

 1 2 0.218 3.811 0.000
 2 1 0.348 1.106 0.269

 3 3 2.142 0.586 0.558
 4 23 18.245 1.113 0.266
 5 48 53.912 -0.805 0.421
 6 177 169.569 0.571 0.568
 7 545 575.146 -1.257 0.209
 8 607 629.92 -0.913 0.361
 9 259 249.264 0.617 0.537

 10 51 30.188 3.788 0.000

 greater than 10%) accepts the hypothesis that there is
 no significant difference between the observed num
 ber of deliveries and the expected number of deliver
 ies and therefore indicates a good model prediction.
 The test results are reported in Table 4.
 We observe that our model performs well except
 for the first and the last decile. The first decile is

 not of significance because the corresponding sub
 group only contains two observations. The 10th decile
 has 51 observed deliveries, compared to 31 predicted
 deliveries. This is due to the fact that the risk score

 subgroup contains observations with unusually large
 risk scores, and our model fails to predict those out
 liers. For the other groups, which contain 96.5% of
 the observations in our sample, the test results show
 that our model predicts well, with p-values all greater
 than 10%.

 The overall model fit is visualized by plotting the
 actual observed durations against the fitted durations
 (Figure 6). Toward this end, we increase the number
 of subgroups to 100. A perfect model fit would lead
 to points lying on the 45-degree line in the graph.
 The points obtained from our model are overall close
 to the 45-degree line, indicating a good fit. This is
 formalized by the following regression analysis:

 Predicted = -0.28 + 0.94* x Observed.

 "Indicates significance at 0.1% level. R2 = 90.5%.

 Despite this good fit, it should be emphasized that
 our empirical findings might not directly generalize
 to other supply chain settings. The strong buyer, the
 fast-changing technology, and the complexity of the
 orders clearly differentiate the semiconductor equip
 ment supply chain from many other industrial set
 tings. Empirical research in other industries is needed
 to overcome this limited generalizability.

 8. Conclusion
 Forecast sharing has the potential to dramatically
 improve supply chain performance. Yet, as demon
 strated by our research findings, a supply chain

 might not be able to achieve the potential perfor

 Figure 6 Actual vs. Fitted Durations

 manee improvements from forecast sharing. From the
 perspective of the supplier, the forces that prevent
 effective forecast sharing are forecast volatility and
 forecast inflation. Forecast volatility arises because
 forecasts are based on preliminary information and

 made at a point in time at which the equipment
 buyer still faces substantial uncertainty about the
 market demand for chips as well as of the capacity of
 the currently installed production equipment. As the
 buyer is exposed to additional information, it updates
 its forecasts to the supplier. While always sharing
 the latest information with the supply chain seems
 like a reasonable behavior for the buyer, frequent
 updates of information are perceived as disturbing
 from the perspective of the supplier. As we showed

 with respect to Hypothesis la, the supplier views a
 soft order that has been changed already multiple
 times as less reliable than a soft order that has not yet
 been changed. Consequently, the supplier is not will
 ing to allocate production capacity to this soft order.

 Hypothesis lb demonstrates that frequent changes to
 one soft order have externalities on how the supplier
 views future soft orders. Specifically, the more a buyer
 changes the requested delivery dates for equipment,
 the more the supplier will wait for the forecasts to
 stabilize when considering subsequent soft orders.

 Forecast inflation can occur in the semiconductor

 equipment supply chain, as the buyer has an incentive
 to create overly aggressive forecasts. Forecast infla
 tion is facilitated in this setting because shared fore
 casts are not verifiable and thus the supplier will
 never be able to validate whether actual inflation
 occurred. However, as we demonstrate in conjunction
 with Hypothesis lc, frequent forecast inflation can
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 hurt the buyer in the long run. This penalty for past
 cancellations is especially severe during an economic
 upturn, during which the supplier has many other
 profitable opportunities to use its production capacity
 (Hypothesis Id).
 As does the supplier, which penalizes the buyer

 for inflated forecasts through longer delivery times,
 the buyer provides more aggressive forecasts to those
 suppliers that have failed to deliver previous orders
 on time (Hypothesis 2). This follows the logic of
 the repeated prisoner's dilemma game and estab
 lishes that both buyer and supplier apply a tit-for-tat
 strategy.
 Our empirical research findings and our multi

 period framework of forecast sharing open up inter
 esting opportunities for future research. First, we
 believe additional research is needed to analyze sup
 ply chain coordination in repeated game settings.
 While repeated games have been extensively studied
 in the economics literature, most of the contracting
 research in operations management has taken a rather
 static perspective, ignoring effects of trust building
 and reputation.

 Second, one needs to overcome the forecast volatil
 ity problem. Currently, forecasts provided by the
 buyer do not acknowledge that they are based on pre
 liminary information and are likely to change. Thus,

 while the buyer shares the expected outcome for a
 particular equipment order in the form of a best
 guess, it does not relay information reflecting possi
 ble alternative outcomes as well as the probabilities
 that such alternative outcomes occur. The supplier
 in turn perceives the almost unavoidable iterations
 as an indication that the shared forecasts are of low

 quality and consequently is not willing to commit
 resources based on this information. Recent research

 related to the information sharing in teams outlines
 alternative approaches to this (Terwiesch et al. 2002),
 including the concept of sharing information in the
 form of sets, which are gradually narrowed over time,
 rather than sharing information in the form of points,

 which "jump around" in an unpredictable fashion. In
 our setting, set-based information sharing could be
 based on quantities ("We will order between 5 and
 10 tools this year") or requested delivery times ("We
 need this soft order between June and December").
 Addressing some of the concerns related to trust and
 reputation raised by the present study, the buyer ini
 tiated a fundamental redesign of the forecast-sharing

 mechanism, which included providing information to
 the suppliers about forecasted orders in the form of
 intervals.

 While new information technologies have enabled
 firms involved in a supply chain to gain insight into
 the planning processes of other firms, our findings

 demonstrate that there remain substantial organiza
 tional barriers preventing firms from fully achiev
 ing the benefits of forecast sharing and collaborative
 planning.
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