
580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

oftware
es

Taizan Chan, Siu Leung Chung, and Teck Hua Ho

Abstract-The effort required to service maintenance requests on a software system increases as the software system ages and
deteriorates. Thus, it may be economical to replace an aged software system with a freshly written one to contain the escalating cost
of maintenance. We develop a normative model of software maintenance and replacement effort that enables us to study the
optimal policies for software replacement. Based on both analytical and simulation solutions, we determine the timings of software
rewriting and replacement, and hence the schedule of rewriting, as well as the size of the rewriting team as functions of the 1) user
environment, 2) effectiveness of rewriting, 3) technology platform, 4) development quality, 5) software familiarity, and 6)
maintenance quality of the existing and the new software systems. Among other things, we show that a volatile user environment
often leads to a delayed rewriting and an early replacement (i.e., a compressed development schedule). On the other hand, a
greater familiarity with either the existing or the new software system allows for a less-compressed development schedule. In
addition, we also show that potential savings from rewriting will be higher if the new software system is developed with a superior
technology platform, if programmers’ familiarity with the new software system is greater, and if the software system is rewritten with
a higher initial quality.

Index Terms-Software maintenance,
”

oftware replacement, economic modeling, optimization, project management

+

1 INTRODUCTION
PPLICATION software maintenance has always been a
resource-intensive Information System (IS) activity. In

the ‘8Os, it was estimated at US$30 billion worldwide annu-
ally and to comprise 50%-80% of the corporate IS expendi-
tures in the United States 1251, [33]. While no recent figures
are available, it is believed that this trend of high mainte-
nance cost is likely to continue in the foreseeable future as
new software systems continue to be developed at a faster
rate than old software systems are discarded [3].

An organization incurs a huge software maintenance
cost because of

1) a volatile user environment and
2) deteriorating software maintainability.

A volatile user environment generates new user require-
ments. These requirements are translated into maintenance
requests which call for modifications or enhancements to
the existing software system. Consequently, the higher the
volatility of the user environment, the higher is the mainte-
nance effort. Also, as the software system is being modified
or enhanced, its maintainability degrades. With frequent
enhancements, the number of inputs and outputs, the
number of functions, and inter-module interactions in the

T. Ckan is with the National University of Singapore, Lower Kent Ridge
Road, Singapore 119260. E-mail: ckantz@iscs.nus.sg.
S.L. Chung is with the School of Business b Administration, Open Learn-
ing Institute of Hong Kong, Trade Dept. Tower, 700 Nathan Road, Hong
Kong. E-mail: slchung@olivl.oli.kk
T.H. Ho is with the Anderson School at UCLA, University of California at
Los Angeles, 110 Westwood Plaza, Box 951481, Los Angeles, CA 90095
1481. Email: teck.ho@anderson.ucla.edu.

Manuscript received Aug. 3,1994; revised Feb. 18,1996.
Recommended fou acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
transse~compmter.org, and reference IEEECS Log Number 595592.

software system increase, leading to higher complexity [4].
In addition, these changes are often neither well-integrated
into the existing software design nor well-documented.
This results in a deterioration of system structure and qual-
ity [22]. Consequently, the effort required for each mainte-
nance request increases as the software system ages 1151,
1201, [251, 1331. The increase in the effort per request exacer-
bates the total cost of maintenance.

There are two major ways for improving the maintain-
ability of an existing software system. One way is through
software restructuring’ [Ml. This method improves the
structural quality of the softyare system but at a cost of
increasing its size (in SLOC). In addition, this technique
may not be viable for some language platforms as restruc-
turing tools are only currently available for Cobol, Fortran,
PL/I, and C.

Another way, which is particularly appropriate when
the software system concerned is old and the associated
documentation is outdated, is to replace the software sys-
tem by rewriting it. The key idea in software replacement is
that over the expected life time of an application, there may
exist a time when it is more economical to rewrite the soft-
ware system than to continue maintaining it so that its
overall maintenance cost is reduced]161. This is because the
new software system will often have a higher quality than
the aged software system. In addition, the software sysiem
may be rewritten with a superior technology platform so
that future maintenance can be done more efficiently.
Swanson and Beath found that replacement of aged soft-

1. Empirical research has shown that software size is a significant pre-
dictor of the magnitude of maintenance effort required (see, for example,
[121 and [201).

2. In this paper, a technology platform refers to a language platform and
its associated development environment.

0098-5589/96$0.5.0001996 IEEE

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 581

ware system is indeed a significant IS activity [33], thereby
emphasiz ing the importance of studying the economic
ramifications of various replacement policies.

The study of optimal policies for hardware replacement
has a long tradition in the operat ions research literature ([28]
and 1351 are comprehensive surveys of hardware mainte-
nance/replacement models developed in the ’70s and ‘8Os,
respectively). These hardware replacement models are not
directly applicable to software replacement because new
hardware is “bought” whereas new software system is often
“developed” in-house. Consequent ly, hardware replacement
occurs instantaneously but software replacement often re-
quires a dedicated team of programmers working over an
extended period of time. This fundamental dif ference neces-
sitates a different model for software replacement.

The use of quantitative models in the study of software
maintenance is not new. Lehman and Belady developed an
analytical model for explaining the growth pattern (or the
evolution dynamics) of a system software as a function of
its release version [ZZ]. Their model explains why a system
software grows in size in some releases but not in others.
They found that a software system grew when maintenance
effort was expended on progressive work, which involved
extending the functionality of the software system. Progres-
sive work or enhancement , however, caused degradat ion in
the software structure which led to lower productivity in
any future progressive work. To reduce degradat ion in
productivity, effort must be expended on anti-progressive
work, which would improve the software structure but
would not extend the software functionality.

Arnold and Parker p roposed a set of criteria against
which an IS department’s software maintenance perform-
ance could be assessed [2]. For example, one proposed cri-
terion is the percentage of enhancements and perfective
requests that should be completed within one person-week
or less. The levels of the criteria against which an IS de-
partment is benchmarked depend on the specific IS envi-
ronment and its priorities. While these criteria could be
used to determine if an existing software system has be-
come too costly to maintain, they cannot be used to assess
whether or not software replacement could reduce the total
cost of maintenance.

Sneed proposed a cost-benefit model for evaluating the
benefits of software replacement against those of software
reengineer ing and doing nothing at all 1291. Sneed’s meth-
odology could be used to help an IS manager to decide if
software replacement may be more economical than the
other two approaches. The methodology, however, does
not prescribe the optimal policy for doing so (i.e., when to
replace decision).

Gode, Barua, and Mukhopadhyay provided the first
formulation for analyzing the optimal timing to replace a
software system [16]. They showed that it would be optimal
to replace a software system before the cumulative number
of requests reached half the total number of requests ex-
pected over the planning horizon. In addition, they proved
that the timing of software replacement should be earlier if

3. The total number of requests expected could be calculated from the
product of rate of arrival of requests and the length of the planning horizon.

the initial software size was larger. However, their model
assumed, similar to the hardware replacement problem,
that rewriting and replacement of software system occurred
instantaneously. In addition, they did not explicitly model
the user environment.

In [lo], we extended Gode, Barua, and Mukhopadhyay’s
model [16] and al lowed the rewriting to take place over an
extended period of time and captured the volatility of the
user environment. W e showed that if the rewriling of the
new software system has constant return to scale and there
was an unlimited capacity of programming resources, re-
writing and replacement should occur instantaneously (i.e.,
the development schedule should be as small as possible to
reduce the period of duplication of maintenance eifort on
both the existing and the new software systems). Thus,
Gode, Barua, and Mukhopadhyay’s model was shown to be
a special case of the proposed model. In addition, we con-
s idered a special case where the number of programmers
available for rewriting was fixed and there was a dimin-
ishing return to rewriting. The assumption of f ixed rewrit-
ing team size al lowed us to reduce the problem of f inding
the optimal timings of rewriting and replacement (a two-
variable optimization problem) into one that involved only
a single variable. Here, we showed, among other things,
that the development schedule should be more compressed
when the new technology platform was superior to the ex-
isting technology platform.

In this paper, we determine both the optimal timings to
rewrite and to replace an aged software system with no
assumption made on the size of the development team.
This allows us to study the optimal level of programming
resources to be assigned to rewrite the software system, an
important issue which has not been addressed previously.
In addition, we explicitly model the software degradat ion
process. Prior research assumes that maintentnce only de-
teriorates the quality of the software system. However, a
large proport ion of software maintenance jobs involves
enhancements [241, and these enhancements not only de-
grade the quality of the software system but also increase
its functional complexity. The distinction between func-
tional complexity and system quality is important because
rewriting a software system will improve its quality but will
not reduce its functional complexity. Furthermore, we
analyze the potential savings derivable from software re-
placement. W e found that savings will be higher if the new
software system is developed with a superior technology
platform, if the staff ass igned to maintain the new software
system is more familiar with the software system, and if the
new software system has a higher initial quality.

The rest of the paper is organized as follows. Section 2
descr ibes the model framework. Section 3 considers the
case when the speed of rewriting is approximated by a lin-
ear function of the development team size. In this case, we
are able to derive close-form analytical solutions for opti-

4. A production process has constant return to scale when the output in-
creases proportionately with the amount of input. That is, doubl ing the
input doubles the output. This is possible in software development context
when the development task is perfectly partit ionable @I.

5. This is so because, under constant return to scale, there is no penalty
associated with compressing the rewriting schedule.

6. This assumption is common in the hardware maintenance literature.

582 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

ma1 timings of rewriting and replacement. We also provide
a formula to quantify the benefit associated with software
replacement. Section 4 considers the case of a concave re-
writing speed. Here, we use simulation approaches to un-
derstand how optimal timings of rewriting and replace-
ment vary with the problem parameters. Section 5 presents
an example that illustrates the key results. Section 6 dis-
cusses the results from a managerial perspective and sug-
gests future research directions.

2 MODEL FRAMEWORK

We consider the cumulative maintenance effort of an inde-
pendent application over a planning horizon T (measured
in months). The planning horizon starts at the time when
the applicagion is operational and ends at the time when it
is obsolete. It is assumed that the application manager re-
ceives and fulfills an incoming stream of maintenance re-
quests from users. According to [311, maintenance requests
can be classified into

1) adaptive,
2) perfective, and
3) corrective.

In our study, we focus on adaptive and perfective mainte-
nance requests, which account for 75% or more of the total
maintenance effort in most IS environments [24] and refer
to them collectively as enhancements.

The software maintainability deteriorates as more and
more enhancements are made to the software system. At T’,
(measured in months), the application manager begins the
development of a new software system whose functiopality
is equivalent to the existing software system at TX. This
development is scheduled to end at TN (also measured in
months), the time when the existing software system is
withdrawn and the new software system is operational.
Note that the time interval (TN - TX) is the development
schedule, during which there is a duplication of mainte-
nance effort. Fig. 1 shows the problem scenario we wish to
model here.

Old System is Operational New System is Operational
b-1 b

I

0 ik A -k

f f
Timing of Timing of
Rewriting Replacement

Fig. 1. The problem scenario.

7. We make a distinction between application and software system. The
existing software system is obsolete when it is withdrawn and the applica-
tion is only obsolete at the end of the planning horizon.

8. It is possible that the organization may take the opportunity to discard
outdated functions and develop a software system with only a proportion
of the original functionality at T,. Conversely, the organization may incor-
porate new functions during rewriting so that the new software system is in
fact larger than the current one at TX. We can model either situation by
modeling the size of the new software system as a product of the size of the
existing software system at TR and a proportional parameter. The resultant
model, while more complex, is qualitatively similar to the current model.

The total effort required for maintaining the application
is the sum of two components:

^ ̂

1) the cumulative maintenance effort (of the existing and
the new software systems) and

2) the rewriting effort.

In the first two subsections, we shall describe the request
arrival process and the software degradation process. In the
third subsection, we shall determine the cumulative main-
tenance effort and the rewriting effort and show that the
software maintenance/replacement problem can be for-
mulated as a constrained nonlinear optimization problem.

2.1 Request Arrival Process
We model the business environment explicitly by consid-
ering the rate of arrival of maintenance requests. We as-
sume a constant rate of arrival of requests, denoted by ;2.
This assumption is empirically supported by our field data
on the arrival rates of 10 applications over a seven year pe-
riod [9]. We regressed the number of requests arrived per
month against the month period for each of the 10 applica-
tions and found that only two applications had slopes sig-
nificantly different from zero at the 5% level. Furthermore,
the slopes were very small (0.0269 and 0.0161, correspond-
ing to a growth rate of approximately one request every
three and five years, respectively). A more volatile business
environment is represented by a larger il.

In addition, we assume that each request entails a task
complexity denoted9 by 0,. 0, measures the number of
function points (FE’) that must be added to the software
system to fulfill the request [19].

Let M(t) be the total number of arrivals by time t, and
N(t) be the total number of FPs added to the software sys-
tem by time t. Then, M(t) = ;It, and

N(t) = M(t)@, = 20,. (2.1)

2.2 Software Degradation Process
The maintainability of a software system tends to deteriorate
as more maintenance requests are serviced. This phenomenon
is so pervasive that Lehman and Belady have termed it as the
third law of software evolution: “the law of increasing en-
tropy” [221. We model software maintainability as a function
of the functional complexity and the quality of the software
system. Software maintainability is assumed to decrease with
the functional complexity 1191 and increase with the quality of
the software system [151,1201. Functional complexity measures
the number of functions that a software system serve;. It is
measured in terms of the number of function points. Soft-
ware quality refers to the programmer-oriented (as opposed to
user-oriented) features of the software system that relate to
maintenance effort. It is measured in terms of characteristics
such as its structuredness [15], modifiability [25], and under-

9. Function point is a measure of the functional complexity for an MIS-
type system 111. This raw measure is a weighted function of the number of
inputs and outputs, the number of files, and the number of interfaces a
software system has. The raw measure is adjusted by a set of 14 technical
characteristics of the software system to yield the final measure. For further
discussions of function point measurement, see [14],[19], 1211.

10. Other functional measures, such as Demarco’s Function Bang Matrics
1131, are possible. However, Function Point measurement appears the most
popular 1141, [191.

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 583

standability]5]. It is a reflection of the technology platform
used 161 and the discipline embedded in the maintenance pro-
cedure 1251. A comprehensive treatment on the measurement
of these attributes can be found in [26].

Let F&t) and F,(t) be the functional complexit ies of the ex-
isting and the new software systems at time t, respectively.
F,(t) is the sum of the initial functional complexity of the ex-
isting software system when it was first installed (BO) and the
functionality added to the software system (as a result of the
enhancements) up to time t. From (2.1), we have

F&t) = e, + Ate,. (2.2)
That is, the software system climbs up a functional com-

plexity ladder with a step size of 8,. Each maintenance re-
quest adds, on average, a complexity of 8,. This linear as-
sumption is consistent with Lehman and Belady’s observa-
tion that the size of a software system tends to grow line-
arly with time [22]. A typical value of an initial application
size is 500 FPs (i.e., ~9, = 500) [19]. If the arrival rate is four
requests per month (i.e., il = 4) and the software system
increases in functional complexity by approximately 12%
with respect to its initial size every year 1331, then 0, = 1.2 FE.

At TR, when rewriting begins, the specification for the
new software system is “frozen” based on the functionality
of the existing software system at TR. That is, the initial
complexity of the new software system is given by Fo(TR).
Any requests that arr ived after TR must be fulfilled to keep
the software system current. The expected total number of
requests (at time t) that arr ived after TX is given by M(t) -
M(T,). Thus, the expected functionality of the new software
system at time t > T, is given by

F,(t) = F&T,) + (At - AT&&

= eo + /Item. (2.3
Let Q&t) and QI(t), both E r-1, 01, be the code qualities of

the existing and the new software systems at time t, respec-
tively. A ‘0’ reflects a perfect software system and a ‘-1’
means a highly unstructured software system. Q(t) is given
by the initial quality of the software system minus the dete-
rioration in quality due to changes made to the software
system up to time t. Let 9s be the initiul quality of the exist-
ing software system and 9i be the initial quality of the new
software system when they were first installed, then

Q&t) = qo - &It, (2.4)

Ql(t) = q l- b&It - /zr,,. (2.5)
Our formulations of Q. and Q, are similar to those of

Woods ide [36], who developed a model to account for the
growth in disorder in software system observed by Lehman
and Belady [22]. In [36], the magni tude of “disorder” of a
software system (a positive value in his model) at time t
was formulated as the sum of the software i$sorder at time
t - 1 and disorder introduced during time t.

11. More specifically, Woods ide’s formulation of software disorder also
included a term representing a possible reduction in disorder that may be
brought about by effort expended on restructuring the code. This term is
set to zero if no effort is expended on code restructuring, which is the
situation considered in this paper.

The initial software qualities 9. and 9i reflect the control
for quality dur ing the development of the existing and the
new software systems respectively. More control exercised
in ensur ing a quality software system should yield higher
values of 9. and 91. The value, 90, for example, could be de-
termined by first measur ing the relevant software attributes
with the appropriate metrics descr ibed in [26] and then
combining these metric values into a singIe quantity. Cole-
man et al. [ill and Oman and Hagemeister [271 proposed
various means by which values from different software
metrics could be combined into a single maintainability or
quality index. The index value could then be normalized to
fall in the interval [-1, 01 by first subtracting from it the
maximum possible index value and then dividing the dif-
ference (a negat ive value) by the maximum value.

Each maintenance request is assumed to cause a constant
deterioration in the quality by S. 6 reflects the discipline
imposed on the maintenance procedure. A more stringent
maintenance procedure has a lower 6 [6]. An estimate for 6
could be obtained by calculating the difference in the qual-
ity index values before and after a specific number of re-
quests and then dividing the difference by the number of
requests [20]. For example, assume that the same software
system we considered earlier has an initial quality 9. of -0.01
when it was first installed. If its quality value is assessed as
-0.06 a year later, & couldip approximated as 0.001 (0.05
divided by 4 * 12 requests).

The effort required to fulfill each maintenance request is
a product of the maintenance productivity of the program-
mers (in person-hours per function point) and the task
complexity of each request (that is, ~9,). The maintenance
productivity is determined by the structuredness of the
technology platform, the functional complexity, and the
quality of the software system. The degree of impact of
functional complexity and software quality depends on
how familiar the programmers are with the software sys-
tem [17]. Let p. and p, be the maintenance productivity on
the existing and the new software systems respectively.
Then p. and p1 are given by

po(WLQo(t)) = a, + P&,(f) - roQo(t)

= (a, + Poe,, - ~09,) + (PO% + Vo)aL (2.6)

p,(W)rQ,@)) = a, +&F,(t) - rlQ#)

= [a, + he0 - ~~9~ - ~,wi] + (ok + h4)at. (2.7)

The parameter a may be interpreted as the person-hours
spent in coding a function point worth of code in some
technology platform. It is similar to the development pro-
ductivity of writing a new independent program, uncon-
strained by any existing software system (i.e., when both
F(t) and Q(t) are zeroes). It is a reflection of the productivity
of the maintenance staff with respect to the given technology
platform. A superior technology platform (such as a Fourth
Generat ion Language (4GL), as compared to Cobol) should

12. Kafura and Reddy [201 found that an enhancement request could de-
teriorate the structure of a software system by between 10% to nearly 50%,
depending on which structural metrics is used to measure the deteriora-
tion.

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

yield a lower a [18], [19]. or, and ai are constants because
we assume that the same technology platform is used to
maintain a software system throughout the operational life
of the software system.

,PI measures the marginal effort required to deal with a
functionally more complex software system. This is the addi-
tional effort needed to understand a more complex software
system in order to determine how and where a change
should be implemented. It depends on the extent to which
the maintenance staff is familiar with the functionality of the
software system 1171. In [17], it was found that servicing a
request on a software system could reduce the effort required
to service the next request (of the same task complexity) on
the same software system by an average of 33%.

y is the marginal effort required to deal with a lower
quality software system. A more unstructured code will
require greater effort in changing the code and evaluating
the impact of the change [231. Similar to p, y also depends
on software familiarity of the maintenance staff. The effort
required to deal with unstructured code is less if the staff is
more familiar with the softyaare system [17]. Thus, greater
familiarity implies a lower y

The potential values for pa and pi could range from 17.9
person-hours/Fl? to 76 person-hours/FP (based on a data
set of 4200 software development, enhancement , and
maintenance projects in [19]).i4 As an illustration of the
possible values that a, ,& and ymay presume, consider the
same software system which we have discussed earlier.
Given that the software system has an initial functional
complexity of 500 FP, the initial productivity for fulfilling
an enhancement request on this software system would be
approximately 25 person-hours/FP [19]. Assuming that the
software system is developed in a third-generation language
such as Cobol, or, is est imated at 20.3 person-hours/FYI’ [19].
Since the initial functional complexity and initial quality is
respectively 500 FP and -0.01, the potential values for p0 and
x are 0.005 and 200, respectively. That is, the marginal effort
required in an enhancement request to deal with the initial
functional complexity of 500 FP is 2.5 person-hours and the
marginal effort needed to deal with the initial quality of the
software system is two person-hours.

Given the productivity values p0 and pi, the effort re-
quired per maintenance request on the existing software
system at time t is given by

B,p,,(Q,,(t), F&)), (2.8)
and the effort required per maintenance request on the new
software system at time t is given by

B,pl(Ql(t), FlW). (2.9)

2.3 The Maintenance Planning Problem
During the planning horizon, three types of effort are ex-
pended. First, effort is needed to maintain the existing
software system. The total effort required for the mainte-

13. It is likely that ,8 and yare also affected by the technology platform.
However, we believe that this effect should be less critical compared to
programmers’ familiarity with the software system.

14. The productivity figures in [19] are reported in units of person-month.
As in [71, we multiply the number of person-months by 152 to obtain the
corresponding number of person-hours.

nance of the existing software system is

It is the integral sum of all the effort required for fulfilling
all the maintenance requests from the time the existing
software system starts operat ing to the time at which the
existing software system is replaced.

Second, effort is needed to maintain the new software
system. Similarly, the total effort required for the mainte-
nance of the new software system is

It is the integral sum of all the effort required for fulfilling
all the maintenance requests from the time the design speci-
fication is ‘frozen’ up to the end of the planning horizon, T.
It should be noted that the maintenance period for the new
software system is T - TX and not T - T W This is to account
for any enhancement requests arr ived during the rewriting
period.

The final effort to be expended is the rewriting effort for
the new software system. Rewriting a software system often
requires a dedicated team of staff working over an extended
period of time. A general formulation of this effort is

UT, - TX), (2.12)

where L is the size of the development team that is em-
ployed to rewrite the software system (measured in person-
hours per month), and (TN - TR) is the rewriting period. The
rewriting effort is related to the functional complexity of
the existing software system at the time of rewriting. From
(2.21, the expected functional complexity of the existing
software system at time TX, F,(T,) is given by

F&J = 8, + niy9,. (2.13)

Similar to [3], we conceptual ize software development as
a function points product ion process. That is, the rewriting
effort is related to the functional complexity of the software
system at time TR by the following equation:

(2.14)

where S(L) represents the speed of function points delivery
by a development team of size L.

The total cumulative effort of maintaining the applica-
tion over the planning horizon T, E(T,, TN), is the sum of
the three components, (2.10), (2.11), and (2.121:

Table 1 summarizes the variables, functions, and pa-
rameters used in our model. The optimization problem of
interest here is:

subject to Fa(T,) = W>(TN - TR)/

and T, <= TN. (2.16)

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 585

TABLE 1
MODEL VARIABLES, FUNCTIONS, AND PARAMETERS

TABLE la
MODEL VARIABLES

Variables Definition Dimension

Ti? The time when rewriting starts. month

TN The time when the existing software system is replaced. month

L The size of the rewriting team.
person--hours

zu2ath

TABLE 1 b
MODEL FUNCTIONS

Functions Definition Dimension

S(L) The speed of the rewriting team. >‘P

W) Functional complexity of the existing software system FP
at time t.

4 0) Functional complexity of the new software system at FP
at time t.

$i;
Code quality of the existing software system at time t. dimensionless

1 Code quality of the new software system at time t. dimensionless

~o(Fo(t), Qo(t)) Maintenance productivity on the existing software system ~erso~~hoUTe
at time t.

pl (Fl (t), &I (t)) Maintenance productivity on the new software system person--hours
FP

at time t.

TABLE lc
MODEL PARAMETERS

Category Parameters Definition Dimension

Effort required to develop a function point

WI equivalent of code with the existing technology platform; it
perrm--hours

FP
Technology reflects the structuredness of the existing technology platform.

Platform Effort required to develop a function point

Q1 equivalent of code with the new technology platform; person--hours
FP

PO

it reflects the structuredness of the new technology platform.

Marginal effort required to deal with the
functional complexity of the existing software system; it
reflects staff familiarity with the existing software system.
Marginal effort required to deal with the
deteriorating code quality of the existing software system; it
reflects staff familiarity with the existing software system.
Marginal effort required to deal with the
functional complexity of the new software system;

person-hows
FP

Software
Familiarity

70

Pl

person-hours

person--hours
FP

Development
Quality

Maintenance
Quality

User
Environment

it reflects staff familiarity with the new software system.
Marginal effort required to deal with the
deteriorating code quality of the new software system; person-hours
it reflects staff familiarity with the new software system.

Code quality of the existing software system when it became
operational; it reflects the control imposed on code dimensionless
quality during the development of the existing software system.
Code quality of the new software system when it becomes
operational; it reflects the control imposed on code dimensionless
quality during the development of the new software system.

Deterioration rate of code quality of the existing
software system; it reflects the control imposed on code F&z
quality during the maintenance of the existing software system.
Deterioration rate of code quality on the new
software system; it reflects the control imposed on code F&z
quality during the maintenance of the new software system.
Functional complexity of the existing software system when
it became operational; it reflects the complexity FP
of the functional domain of the software system. I\
Average complexity of each maintenance request. FP
Average rate of arrival of requests; it reflects reauesrr

norkth
the volatility of the business environment.

In the following sections, we solve the optimization we assume that S(L) is a linear function of L. In Section 4,
problem [G] and characterize the optimal software re- S(L) is assumed to be a concave function of L.
placement policies. In addition, we perform sensitivity
analyses to obtain qualitative insights on the impact of 3 LINEAR REWRITING SPEED
technology platform, software familiarity, user environ-
ment, development quality, maintenance quality, and re-

In this section, we consider a software development sce-

writing effectiveness on the optimal policies. In Section 3,
nario in which S(L) could be expressed as a linear function
of L as follows:

586 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

TABLE 2
SENSITIVITY ANALYSIS (LINEAR REWRITING SPEED)

CONDITIONS:

D’ lf /I,8,q, + a&7, + poBo6, > &, then Ti, TG - T,* increases and L* decreases with a, else Ti, Ti - T,* decreases and L” increases with M.

0’ If j31C9,q1A + y + $- 6, > /310,6,A2T + a,~?,?. + QIo6,J., then T,* increases; Ti - T,* decreases and L* increases with R, else T,* decreases;
m

Ti - Ti increases and L* decreases with R,

D3 If (m/Z?j3,y16,T f v&x,fi, + rn@~Q, - mJ.~.P,ylq, - ;Ip,)f3: -2cj3,0, + cylS, > 0, then T,” increases; Ti - T,* decreases with Q,, else T; de-

creases; Ti - T,* increases with 8,.

D41fA < 2c
B~lm(a,+B,B,-Y,q,)~11 / then Ti incveases with A., else Ti decreases with A.

D5 If (rnAz&y,G,T + m;la,p, + rn;l& - mA&ylq, - ;Ip,)Qi -2c@, + cy16, > 0, then L* increases with 8,.

S(L) = c + d, (3.1)
where m and c are constants. The linear rewriting function
can be considered as a linear approximation of the more
general concave rewriting function (discussed in Section 4).
This approximation will be good if the size of the develop-
ment team can vary only over a small range. Given a con-
cave rewriting speed curve, a higher m is associated with a
smaller c and vice versa. A higher m (and therefore smaller
c) imply that the speed of rewriting, S(L) would increase
more with an increase in L. This is especially the case if a
superior technology platform is adopted for rewriting the
software system and the development process is well man-
aged so that the inefficiency associated with a larger team
size is smaller [8]. This linear rewriting speed case is inter-
esting because many IS departments have very limited
freedom in expanding the size of the development team.
Empirically, c and m can be derived by regressing the speed
of rewriting (or softwyse development) against the size of
the development team.

3.1 Optimal Software Replacement Policies
Solving [G] gives us the following proposition.

PROPOSITION 1. If ‘/1 S, > p1 B,, E(T,, TN) is strictly convex in TX
and TM I,,

then the optimal replacement policies Ti and Ti are given by

15. Regressing S(L) agaiyst L using a limited data set in [19 p. 143, Table
3.111 yields an adjusted R of 0.88, suggesting that the linear function is a
reasonable approximation.

y@,T
‘,* = (~~6, - ble,) +

(~5 + 66 - ~7~) e,a+c
(~~6, - mJa - m(~,4 - wQ~zem

, (3.2)

T; =
C a, + Poe0 - yoqo

m(p,e, + yo6,)a2e, - (poem + yo60)a
(3.3)

Otherwise,

T; = T;v

= YIVT - [(a, + PO@0 - Yo40) - (“1 + PPO - Y141)] - t

[(PO@, + Yo60) + (YA - ~l%)]~

PROOF. See Appendix. q
Equations (3.2) and (3.3) provide closed-forni solutions

for the optimal timings of rewriting and replacement when

L
e,a+c

Poe, r; ~~6, + ~84 - PIem 1
1

Tizq”

y,qa + a, + PI@0 - Y141 + a0 + PO@0 - Yoclo

Yl% - PP, Ple, + ~~6, .

Using these equations, we analyze the sensitivity of the variables
T,*, TA, TG - Ti, and L” with respect to each of the problem pa-
rameters, X. The results are summarized in Table 2. Their proof
can be found in the Appendix (under Implications 1-15).

We divide our insights into six categories, according to
the factors that impact the software replacement policies.

3.1.1 Technology Platform
The platform of technology affects the productivity of
maintenance significantly. Enhancements can be made
more quickly if a superior technology platform is adopted
[19]. Our results show that the technology platform can also
impact the replacement policy. We show that an inferior

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 587

existing technology platform (i.e., higher o.$ leads to an
earlier software replacement or a shorter operational life for
the existing software system. The reduct ion in the opera-
tional life will reduce the expensive maintenance effort (due
to high c+) of the existing software system.

Our results also suggest that an existing software system
should be rewritten earlier if a superior new technology
platform (i.e., lower ai) is available. This is done to exploit
the benefits of the superior technology platform earlier. An
inferior technology platform, either existing or new, neces-
sitates a compressed development schedule to reduce the
period of maintenance overlap, which is prohibitively ex-
pensive when an inferior technology platform is involved.
Such a compressed strategy can be achieved by assigning
more programmers to the rewriting project.

3.1.2 Software Familiarity
W e aIso show that if the maintenance staff are not familiar
with the existing software system (i.e., higher A), its opera-
tional life should be shorter. The reduct ion in the operational
life will reduce the expensive maintenance effort (due to high
,E$ of the existing software system. W e also show that an ex-
isting software system should be rewritten earlier if the staff
are familiar with the new software system (i.e., lower pI). In
general, software familiarity reduces the need for a com-
pressed development schedule. This implies that if mainte-
nance jobs are assigned based on staff availability rather than
familiarity, then if an existing software system must be re-
placed, it must be done with a shorter development schedule.

3.1.3 User Environment
The greater the initial functional complexity of the software
system, (i.e., higher f&), the later should rewriting begin and the
earlier should replacement be done. This is so because @, in-
creases both the maintenance effort of the existing and the new
software systems. This makes any duplication in maintenance
effort much more costly. However, by delaying the timing of
rewriting and bringing forward the timing of replacement, the
maintenance overlap would be reduced. The size of the devel-
opment team however must be increased to handle the more
complex rewriting project. Note that this is true only if the re-
writing team is significantly more product ive than the mainte-
nance team. In practice, this is often the case [191.

The timing of rewriting increases wit& the rate of main-
tenance requests (A if it is not too high. The timing of re-
placement decreases, however, with the rate of mainte-
nance requests. Overall, a more volatile business environ-
ment implies that a more compressed development sched-
ule is necessary for reducing the maintenance overlap so
that less maintenance requests are being serviced for both
the existing and the new software systems. Similar insights
are obtained for the complexity of the request 0,. In gen-
eral, we observe that the firm in a volatile business envi-
ronment should staff for its rewriting project and strive to
complete the project as early as possible.

It is useful to note that the above results are consistent
with the situations we observed at a field site [91. The IS
department at this field site is currently planning to replace
three of its software systems. These software systems are

16. The threshold value for 1 in condit ion D4 is rather high in general.

large-each having more than 2,000 FPs. In addition, the
volume of demand for modifications to these software sys-
tems is high, account ing for almost 90% of all the requests
received by the IS department per month. Despite these fac-
tors, the IS department plans to accomplish the rewriting of
all the three software systems within a short schedule of one
and a half year. Apparently, the reason cited for the proposed
compressed schedule is to reduce maintenance overlap.

3.1.4 Development Quality
Based on the effort function for the existing software system,
we can observe that its initiaI quality, qs, affects the mainte-
nance effort per request not only initially when the existing
software system becomes operational, but actually through-
out the entire operational per iod of the software system. Our
sensitivity analysis shows that, with a better initial quality,
the existing software system can be replaced later. This is
because with better initial quality, the cumulative mainte-
nance effort for the existing software system would be lower,
therefore making it less costly to replace the software later.
By delaying the replacement of the existing software system,
we can afford a more relaxed rewriting schedule. Similar
benefits can be derived if the new software system has better
initial quality (i.e., higher qil. Rewriting can start earlier so
that a lower maintenance effort per request for the new soft-
ware system can be enjoyed earlier. It also means a lower
rewriting effort s ince a less complex software system needs to
rewritten and the rewriting schedule is less compressed. This
insight emphasizes the importance of the quality of devel-
opment. A higher quality software system not only reduces
maintenance effort out front, it also reduces the effort
throughout the entire operational life of the software system.

3.1.5 Maintenance Quality
As our model suggests, the rate at which the quality of the
software system degrades determines how quickly the main-
tenance effort (per request) rises. A higher L$, implies that the
software quality will degrade quickly and that the mainte-
nance effort for the existing software system will be much
higher in the later part of its operational life. W e have shown
that this increase can be counteracted by replacing the existing
software system earlier. Similarly, if 6; is higher, the opera-
tional life of the new software system should begin later by
starting the rewriting later. In addition, with poor maintenance
quality (i.e., higher 4, a system manager will need to plan for a
short rewriting schedule by assigning as many programmers
as possible to rewrite the software system.

3.1.6 Rewriting Effectiveness
Our sensitivity analysis shows that when c is higher, that is,
when increasing the team size is less efficient, the rewriting
schedule should be extended by rewriting earlier and replac-
ing later so that a smaller team size is required for rewriting
the software system. Our analysis also shows that if m is
higher, then a more compressed schedule is feasible. The ap-
plication manager can now start rewriting later while at the
same time replacing the existing software system earlier. This
implies a shorter operational life for both the existing and the
new software systems and thus a lower maintenance effort.

588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, No. a, AUGUST 1996

3.2 Potential Saving from Software Replacement

PROPOSITION 2. The potential saving in effort from replacing the
existing software system is given by

0,

sav = 2(&e, + yo6,) [
+xo+Po~o-7oYo~]
mwl

f [(an - a,) + (PO - P I)@ , - (Yo90 - Y&%T

f [(Do - P,)e, + (~~6, - Y~~,)]$+T~
00
m’ (3.4)

PROOF. See Appendix. El
Note that the first two terms in the (3.4) are always posi-

tive. Thus, whether sav is positive or negative depends on the
last three terms in Proposition 2. The third and the fourth
terms are expressed as the difference between the problem
parameters of the existing and the new software systems to
show the impact of the technology platform, software famili-
arity, development quality, and maintenance quality on the
potential saving derivable from an optimal software re-
placement policy. The last term relates to the initial func-
tional complexity of the software system and the effective-
ness of rewriting. We make the following observations.

0 The third term of sav indicates that the potential savings
from rewriting will be higher if the new software system
is developed with a superior technology platform, if
programmers’ familiarity with the new software system
is higher, and if the software system is rewritten with a
higher initial quality. This term will only be positive if
(q + plOO - ~4~) < (q + &;Ba - XQ,). This implies that re-
placing a software system with a better technology plat-
form and quality (i.e., lower oc, and higher ql) alone may
not be sufficient to justify replacement. The maintenance
staff for the new software system should also be suffi-
ciently familiar with the new software system (i.e., low
/$ and x). Thus, IS managers should avoid assigning in-
experienced programmers to maintain the new software
system if they want to maximize the return from re-
writing. A high ,B, and “~1 may reduce or even eliminate
the intended saving from software replacement.

0 The fourth term indicates that to increase potential
savings, stringent maintenance procedure must also be
implemented for the new software system (to achieve
low 4). Since the multiplier of this term (q) is

greater than that of the third term (AT), the effect of S,
cannot be over-emphasized. Thus, a formal procedure
for controlling software quality during maintenance is
critical. A plan for software replacement should there-
fore be accompanied by an appropriate quality control
plan for the maintenance of the new software system.

* The last term suggests that rewriting may not be eco-
nomical for a large software system when the planning

horizon is short or the rate of arrival is 10w.l~ A large BO
may render sav negative and thus make rewriting un-
economical. Even if the initial software size is not large,
a short planning horizon or infrequent maintenance re-
quest arrivals may also make rewriting an unattractive
option. Note that the rewriting effort includes not only
the effort to redevelop the past enhancements, but also
the effort to redevelop the initial functions of the soft-
ware system. This makes rewriting quite expensive.

4 CONCAVE REWRITING SPEED
In many practical situations, the speed of rewriting, S(L), is a
concave function of the team size, L. That is, there is a dimin-
ishing return to labor input: an increase in input, L, results in
less than proportionate increase in output (the number of FPs
that could be produced per unit time). This is so in situations
where the development task requires constant communica-
tions among the team members 171, 181. The need for com-
munication implies that the potential increase in output due
to an additional programmer is discounted by a decrease in
output from other members of the team who need to spend
otherwise productive effort communicating with the new
programmer. For these cases, the number of function points
produced per period can be represented as a log-linear form
of the development team size. That is,

S(L) = KLW, (4.1)
where K measures the structuredness of the development
technology platform used and w measures the productivity
of the rewriting team. The log-linear form is similar to the
schedule and effort equations in [7, pp. 751. A high K im-
plies a highly structured development technology platform.
A high w implies a rewriting team whose members are very
experienced and are familiar with the software system un-
der maintenance. It also involves good project management
that employs supporting methods, such as configuration
managemeiqt, to support communications among the pro-
grammers. In most situations, w < 1, which implies a di-
minishing return to labor input [6].

With concave rewriting speed given in (4.1), the rewrit-
ing effort is of the form

Unlike the linear case, the rewriting effort in this case is not
separable in T, and Tw The total cumulative effort for mair-
taming the application over the planning horizon T, is given as

17. Note that 00 also appears in the first three terms. Our extensive nu-
merical experiment in Section 4 shows that the impact of BOS on these terms
is relatively small compared to its impact on the last term.

18. We thank an anonymous reviewer for highlighting this point to us.

CHAN ET AL.: : AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 589

TABLE 3
SENSITIVITY ANALYSIS (CONCAVE REWRITING SPEED)

+ [o. +~~Tj~(TN +-:. (4.3)

PROPOSITION 3. If x&p j, O,, E(T,, TN) is strictly convex in TX
and TW The optimal replacement policies Ti and Ti aye
characterized by the first-ouder conditions as follows:

[1
‘-1

1 o,+e,aT; w
(Y,& - P,%$*%J; = -w

0 ?t
K -%(T; - T;)1-$

+ (a, + pleo - y*qJae, + y16,A2qJ, (4.4)

and 1
(pof3, + yo6,)A28,T; = (; - 1)

’

-(a, + Poql - YO~O)%l~ (4.5)

PROOF. See Appendix. 0

We can make use of the convexity of E(T,, TN) to effi-
ciently compute the optimal replacement policies. In an
extensive numerical experiment to study the sensitivity of
the optimal replacement policies with respect to the prob-
lem parameters, we make use of this property (explained
below). The results of the simulation are summarized in
Table 3:

There are altogether 15 problem parameters. Like before,
we have classified them into six categories. Each parameter
is varied at two levels: r and X. The first two rows show
the low and high values for each parameter used in the
simulation. The values of the parameters are carefully cho-
sen to satisfy two criteria:

1) they yield values that are consistent with the litera-
ture and

2) rewriting is always economical.
19

For example, the values of o+, which represent the number

19. The second criterion allows us to examine the sensitivity of the re-
placement policies with respect to the problem parameters properly. Thus
the high and low values for each parameter are chosen such that the poten-
tial saving is always greater than zero (see Proposition 2), i.e., replacement
is always superior to no replacement.

of hours required to code a function point worth of new
code, are based on the data reported in [19]. The values of w
and K are selected to reflect the empirical values reported in
[7] and [191. Proposition 2 has provided us with guidelines
in the choice of the parameters for the new technology plat-
form and software familiarity. For instance, q is assigned a
value which is smaller than oc, so that the new maintenance
effort is a certain fraction of the existing maintenance effort.

There were altogether 215 cases (since the number of pa-
rameters is 15). For each parametric combination, we de-
termine the optimal values of TX, TN, TN - TR, and L ac-
cording to this ‘greedy’ algorithm designed based on the
convexity of E(T,, TN) in Proposition 3.
MINEFFORT := a-large-real-number;
for Tr := 0 to T do

MINFOUND := false;
Tn := Tr+l
PREVIOUS := a-large-realgumber;
repeat

determine the total effort for maintaining the
existing software system

from 0 up to Tn, OLD;
determine the total effort for maintaining the

new software system
from Tr up to T, NEW;

determine the total effort for rewriting the
software system

with schedule (Tn - Tr), REWRITE;
TOTAL := OLD + NEW + REWRITE;
if TOTAL < PREVIOUS then

PREVIOUS := TOTAL
else begin

YINFOUND := true:
if PREVIOUS < MINEFFORT then
begin

Tr* := Tr;
Tn* := Tn - 1;
L* := REWRITE/(Tn* - Tr*);
MINEFFORT := PREVIOUS;

end:
end;
Tn := Tn + 1;

until MINFOUND or Tn > T;
end:
keep statistics for this combination of paramdters:

Since E(T,, TN) is convex in TX and TN, it is also convex
in TN for a given TR. Algorithmically, it means that, for a
fixed TR, it is not necessary to search through the entire fea-
sible space of TN (the feasible region of TN is (TR, T)). The
searching for the optimal TN is only carried out from

590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

T xfi d + 1 to the optimal TM That is, the terminating condi-

tiol for the repeat-loop is E(TRp d , TN) < E(T, jixat ,TpJ + 1).

This knowledge has greatly saved’computation time from
10 hours to 0.5 hour.

To determine the sensitivity of a particular decision,
such as, Ti, to a parameter, say, Q, we find the average Tis
over all parametric combinations (2i4) for “low” and “high”
values of q. We compare the two average T,* values. If

T* Rco”o, < Tica,, then we conclude that Ti increases with a,
0

(indicated as + in our table). If they are equal, then it means
T,* is not affected by or, (indicated as 0). Otherwise, it im-

plies that Ti decreases with oc, (indicated as -).
The results from this sensitivity analysis are quite con-

sistent with those in the case of linear rewriting speed. The
differences are due to the less productive rewriting team
captured by the concavity in the rewriting speed. This
lower productivity tends to lead to expanded rewriting
schedule and smaller team size. The following observations
are new insights. Since these results are derived by simula-
tion, they should be generalized with caution.

4.1 Technology Platform, Software Familiarity,
Development, and Maintenance Quality

Similar to the case of linear rewriting speed, software re-
placement here occurs earlier if the existing software sys-
tem requires more effort to maintain due to either an infe-
rior technology platform (higher Q@, lower software famili-
arity (higher p0 and M), lower development quality (lower qO),

or lower maintenance quality (higher 4). The earlier re-
placement shortens rewriting schedule and reduces main-
tenance overlap. Unlike the linear case where the timing of
rewriting is not affected by these parameters, the timing of
rewriting here becomes earlier when the existing software
system requires more effort to maintain. This implies that a
smaller software system will be rewritten (indicated by a
smaller Ti) when the rewriting speed is concave. The
smaller software size results in a smaller overall rewriting
effort. Consequently, a smaller team size will be needed.
However, the system should not be rewritten too early; it
should strike a proper balance between the rewriting effort
and the maintenance effort for the new software system.

Our simulation results also indicate that rewriting
should begin later if the new software system has become
more expensive to maintain due to any of the four factors,
This implies that a more complex software system must be
developed. In the case of linear rewriting speed, the com-
plex software system is developed by assigning more peo-
ple without having to lengthen the rewriting schedule. In
this case, however, it may be uneconomical to assign pro-
portionately more people because of the diminishing return
to scale. A more economical solution is therefore to expand
both the rewriting schedule and the team size.

4.2 User Environment
Unlike Table 2, Table 3 indicates that TX* decreases while Ti

increases with the initial software size 13,. In addition, both

the rewriting schedule and development team size increase
with 0,. Here, the impact of increasing L” to cope with a

larger 0, is less efficient than in the case of linear rewriting
speed because of diminishing return to scale. Thus, the
schedule should be expanded in order to cope with a more
complex software system. It is useful to note that our result
on T’ is consistent with existing empirical evidence in 1191,
[32], and 1341. They found that a larger software system gets
replaced later (i.e., larger Ti). Our result suggests further
that the rewriting should begin earlier or the effort involves
in the rewriting may be too costly for the replacement to be
economical.

The results for B, and ;Z are consistent with those of the
linear rewriting speed case: the overlap between the main-
tenance of the existing and the new software systems is
reduced by assigning more people to rewriting when these
parameters are larger. Note that we have an earlier rewrit-
ing and replacement timing when 6, increases, and a later
rewriting and replacement timing when ;E increases. This
result appears counterintuitive. We would expect 8, and A
to change the optimal replacement policies in the same
way. This could be attributed to the fact that an increase in
;1 will speed up the quality degradation process but an in-
crease in 6, will not.

4.3 Rewriting Effectiveness
An increase in the superiority of the rewriting technology
platform or productivity of the rewriting team implies that
a more compressed schedule can be achieved more effi-
ciently. This compression in schedule is exploited to in-
crease the potential saving from rewriting. The simulation
results show that this is done by starting the rewriting and
replacement later.

5 AN ILLUSTRATIVE EXAMPLE
This section illustrates the application of our model to de-
rive the optimal software replacement policies for a Cobol
software system. The software system has an initial func-
tional complexity of 500 FE’s (@a = 500) and the IS manager
is interested in minimizing the total application mainte-
nance effort over a planning horizon of 20 years (T = 240
months). When the software system was first installed, it
had an initial quality of -0.01 (qO = -0.01). It deteriorates in
a step of 0.001 (4 = 0.001) for each request performed on
the software system. The user environment generates an
average of four requests per month (;1= 4); and each of the
requests is assumed to entail a functional complexity of 1.2
FP (0, = 1.2).

The software system is currently maintained in a tech-
nology platform with cw, = 20.3 person-hours/FE’. The level
of familiarity of the maintenance staff with the software
system is specified by PO = 0.005 person-hours/FP and x =
200 person-hours. As discussed in Section 2.2, these values
are representative of the sample of applications in [19].
Without replacement, the software system will require a
cumulative maintenance effort of 142,479 person-hours
over the planning horizon.

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 591

TABLE 4
EXAMPLE PARAMETER VALUES

TABLE 5
EXAMPLE OPTIMAL SOFTWARE REPLACEMENT POLICIES

Without Replacement with Replacement with
Replacement Linear Rewriting Speed Concave Rewriting Speed

Total Cumulative Effort
(person-hours) 142,479 71,264 84,759

T; (month 54 43
2-i; (month) 66 50

L' (person-hours/month) 383 2677
Saving person-hours) 71,215 57,720

The IS manager can potentially reduce this total mainte-
nance effort by rewriting the software system with a superior
technology platform such as a 4GL. Jones found that the
development productivity in a 4GL software development
environment ranges from eight person-hours/FP to 16 per-
son-hours/FP [19]. Since the average value in this range is
approximately 12 person-hours/FP, we set ai to this value.
This productivity value is also used to compute the values
of m and K. They are 0.083 FP/person-hour. The IS man-
ager could also use this opportunity to impose strict quality
control during the rewriting to ensure a high development
quality for the new software system such that q1 is -0.005.
The quality of the new software system will deteriorate at a
rate of 0.0005 (8, = 0.0005). The programming staff are as-
sumed to be equally familiar with the new software system
so that h and 34 have the same values as W and x (i.e., a =
0.005 and 34 = 200). Finally, c takes the value 31.5
FP/month, which we obtained in regressing S(L) against L
using a data set in 1191 and w takes a value of 0.9 171.

The parameter values are summarized in Table 4.
Using this set of parameters, we derive the optimal timing to

start rewriting (Ti), the optimal timing to replace the old soft-
ware system (TA), the optimal size of the rewriting team (L”),
and the potential saving derivable from the replacement using
Propositions 1-3. These results are summarized in Table 5.

Note that the timings of replacement in both the linear
and concave rewriting speed cases (66th and 50th month
respectively) are consistent with the empirical observations
made in [19], [25], and [33] that a software system is gener-
ally replaced after five to seven years.

Fig. 2 depicts the growth pattern of the cumulative
maintenance effort of the software system with replacement
(for both linear and concave rewriting speed) against that
without replacement. This example clearly illustrates that a
substantial investment is required for rewriting the soft-
ware system and the payoff for doing so may take a long
time to realize. In the linear case, it takes about 20 months
after replacement to “break-even” the additional effort
spent in rewriting. In concave case, it takes 65 months to do
so. This implies that an IS manager may inappropriately
choose to continue maintaining the existing software system
over replacing it if he or she does not plan sufficiently further
ahead. However, as our model shows, the potential saving in
effort derivable from an optimal replacement policy could be

highly substantial over the entire planning horizon (50% in
the linear case and 40.5% in the concave case).

6 DISCUSSION
As the trend of high maintenance cost is likely to continue, it
is imperative that more research effort be directed at under-
standing and analyzing the means to control this cost. Gode,
Barua, and Mukhopadhyay’s model [16] represents a first
attempt to formalize the tradeoffs between software mainte-
nance and replacement. We have extended their research in
[lOI by providing a more realistic model that took into ac-
count the user environment and the schedule of rewriting.

This paper attempts to contribute to this line of research
by explicitly modeling the software degradation process and
by considering a more general problem scenario. By model-
ing the software degradation process, we show that rewriting
a software system with a superior technology platform alone
may not be able to reduce maintenance cost sufficiently to
make it economical. It should be done in conjunction with
proper control over the quality of the new software system
both during development and during maintenance to har-
ness the full benefits of software replacement.

By investigating a more general problem setting, we are
able to derive the manpower staffing requirements for re-
writing and the optimal rewriting schedule. These extensions
allow us to develop a deeper understanding of the compli-
cated tradeoffs underlying software replacement and main-
tenance. For instance, previous research shows that an infe-
rior existing technology platform should lead to an earlier
replacement. Our results show that this should be accompa-
nied by a later rewrite, if the rewriting team is productive, SO

that the rewriting schedule is as small as possible.
In summary, our model yields the following managerial

implications.

1) Avoid complete rewrite when the application concerned is
large. We have shown that it may not be economical to
rewrite a large application because much of the effort
will be expen&d on redeveloping the initial software
functionality. In this case, an IS manager may con-

20. The reader should be cautioned, however, that there are circum-
stances where complete rewrite is necessary despite the software size. For
example, a software system written in an Assembly language may need to
be rewritten entirely if it is to be done in conjunction with the installation of
a new hardware system that supports a different Assembly language.

592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

- - - With

Fig. 2. Cumulative maintenance effort over t ime of a software system without replacement vs. with replacement under two rewriting scenarios
(linear and concave writing speed).

sider other means, such as downsizing (or off loading)
the software system so that it is possible to partially
rewrite the software system in the future (see future
research direction below). Results from case studies
suggest that this is a promising avenue for reducing
maintenance cost [30].

2) Organize programming staff by application. As explained
earlier, rewriting a software system with better tech-
nology platform and tighter quality control a lone are
insufficient to obtain the maximal gain from rewrit-
ing. It is equally important to ensure that the mainte-
nance staff is familiar with the new software system
so that the effort per maintenance request on the new
software system is as small as possible. One possible
way to accomplish this is to assign the same pro-
grammers who rewrite the software system to its
maintenance. This application-oriented approach has
been adopted by some companies [33].

3) Compress the vewriting schedule as much as possible. Our
model indicates that the rewriting schedule should be
as compressed as possible in order to reduce the du-
plication of maintenance during rewriting. This
should be accompl ished without sacrificing the soft-
ware quality by assigning more product ive staff to
rewriting (instead of pressuring the staff to complete
as soon as possible, for example). Thus the rewriting
team should be composed of staff who are familiar
with the software system to be rewritten. Another
way is to adopt proven technology platform which
will ease the effort of rewriting.

4) Impose strict quality control in maintenance. W e have
shown that a large deterioration rate in code quality
of the new software system (i.e., high 4) may elimi-

nate the intended savings from rewriting because the
maintenance effort for the new software system may
increase so quickly that its cumulative effort may be
greater than expected. Thus, it is important for an ap-
plication manager to lay down systematic mainte-
nance procedures for the new software system while
planning for the replacement of the existing software
system.

In summary, when planning for software replacement,
an application manager must consider both the short-term
issues such as the technology platform to be adopted, the
composit ion of the rewriting team, and the quality of the
new software system as well as long-term issues such as
plans and procedures for controll ing the quality of mainte-
nance over the planning horizon.

Our model has opened up several new research possibili-
ties. The first two are currently being pursued by the authors.

1) Study the efect of maintenance backlogs. Our analysis
has assumed that all maintenance requests are ful-
filled. In many situations, not all the maintenance re-
quests can be satisfied. Some maintenance requests
must be shelved for more urgent ones. In addition,
some requests are not serviceable due to technological
constraints [25]. Our model indicates that deteriorat-
ing quality may not be enough to justify software
replacement. Maintenance backlogs is another im-
portant reason that an aged software system is re-
placed. W h e n an aged software system is rewritten,
not only the quality of the software system is im-
proved, all the backlogs can also be incorporated into
the new software system. Our model can be extended
for studying the effect of backlogs by breaking the

2)

3)

41

expected number of maintenance requests, A, into ful-
filled and unfulfilled ones and assigning a penalty
cost to each unfulfilled request. By applying similar
optimization methods, we can study how backlogs af-
fect the software replacement policies.
Model an application as a collection ofsubmodules to study
the economic impact of partial rewriting. We have sug-
gested that partially rewriting a software system may
be a more viable alternative to controlling the esca-
lating maintenance effort of a large application. As
many existing applications are complex, economic
analysis of this strategy is imperative. We plan to de-
velop a model of maintenance of an application as a
collection of subsystems. We will model each incom-
ing request as having certain probabilities of affecting
the different subsystems, and modeling each sub-
system as having different functional complexity and
quality and thus require different effort per mainte-
nance request. The timings of rewriting and replace-
ment for each submodule can then be determined.
Study the trade-off between development effort and initial
software quality. We have modeled the initial quality of
a software system explicitly, and analyzed how it may
save the maintenance effort of a software system
throughout its operational period. However, it is well
recognized that greater effort must be expended to
develop a higher quality software system. Therefore,
a more general model for the economics of software
maintenance should explicitly model the tradeoff
between the saving in effort due to better quality
software system and the development effort that is
required to achieve a high level of quality.
Study interactions among applications in a portfolio. We
have assumed a single application in our model. In
many real-life situations, however, a system manager
has to wrestle with a portfolio of applications 1331. In
these situations, the manager must decide how to al-
locate a common pool of programmers to different
applications. The scarcity of programmer resources
gives rise to backlogs and frequent switching of pro-
grammers from a system to another (which in turn af-
fects their familiarity with the software system). These
represent interesting extensions to our model.

APPENDIX

PROOF OF PROKSITION 1. The cumulative effort of mainte-
nance can easily shown to be:

E(TpT7.g) = (a,, + P&, - ?‘09,,)%?~ +
(PO% + Yo~o)%lTv2

2

+ (a, + P@o - Y191) M,(T - TR) - y&$~,T,(T - TR)

8, + emaT, c
+ m - ,(Tv - TV.).

Sinceif n&i>m@,

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 593

and

WRJN) =

G
(cA,~, + yo6,)aze, > 0.

Also

Thus, E(TR, TN) is convex in TR and TN, and the first
order conditions are necessary and sufficient.

The K-T conditions for optimality are given by

(19, - PP,)%nT; - (a1 + PFo - ~19$3,

(Poe, + Y~~,)~~~,G + (a0 + Poe0 - Yo90)ae, - G - P = 0;

p(T; - T;) = 0,

where p is a Lagrangean constant. If

y,G,Til + 01, + P& - Y191 + 010 + PO00 - Yo90

YA - PPm file, + ~~6, ’

p=O,Ti >Ti,and

YAT
Ti = ty16, - p,e,) +

(01~ + Plea - ~~9~) e,a+c
(~~6, - ple,)a - m(YA - Pl%)~2em ’

and

T; =
C a, + Poe0 - ~~9~

m(p,O, + yo6,)~e, - (Poem + yo60)a *

Ifp>OthenTi=TGand

T; = T;

= Y,W - [(ao + Poeo - ~090) - (al + P@o - ~191)] - ,‘n

[(poem + ~~6,) + (~3 - mJ]a

Table A shows the results of sensitivity analysis of
the variables Ti, Ti, TG - Ti, and L* with respect to
the various parameters, x.

CONDITIONS:

D’ If /lo0m90 + a,6, + ~090So > &, then Ti, TA - Ti in-

creases and L* decreases with x, else TG, Ti - T,* de-

creases and L” increases with x.

0’ If plem9+ + $ + + 6, > filem6,a2T + a,6,a + pleo61a, m
then Ti increases; Ti - Ti decreases and L* increases

with x, else Ti decreases; Ti -T; increases and L*

decreases with x.

594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

TABLE A

I I Tech. staff 1 Develop. Mad. Rewriting 1

o3 If (mazp,y,6,T + mac+p, + ma@3, - map,y,q, - aB,)e;
-2cp,B, + cy@, > 0, then Ti increases; Ti - Ti de-

creases with Q,, else Ti decreases; Ti - Ti increases

Poem40 + aoso + Poeoao > &(
m

*
dT, dy, > 0 and Ti increases with x. It is obvious that

with B,.

D4 If 2 < 2c
om["(",+P,~~-Y,q~)-~l' then Ti increases with A, else

Ti decreases with A.

o5 If (mAz&yIG,T + mha,P, + mJ&e, - mADIY1ql - a,o,)e:
-2@,e, + cy16, > 0, then L” increases with 0,.

Ti - Ti also increases but L” decreases with x.

IMPLICATION 5. Ti increases, Ti - Ti decreases and Lx in-

creases with ,L$ and TG is independent of pi.

PROOF. Obvious from the expressions for Ti, Ti, TG - Ti,
and L”.

Based on the expressions for Ti, TG , and L”, the re-
sults presented in the entries of the sensitivity analy-

IMPLICATION 6. Ti is independent of ‘/1. If j31emq1A + $

sis table can be proven as follows: +$ > &e,G$T + a,6,;1 t p1e06,a, then l-i in-
m

IMPLICATION 1. TG, TG - Ti decreases and L” increases with creases; Ti - Ti decreases and L” increases with x,

oc, and Ti is independent of q. else Ti decreases; TG - Ti increases and L* decreases

PROOF. Obvious from the expressions for Ti, Ti, Ti - Ti, with z.

and L”. PROOF.

IMPLICATION 2. Ti increases, Ti - Ti decreases and L* in- dT*

creases with ai and Ti is independent of oc,.
-=
dy:

-p16,e,a2T + plemqla - a,6,a - pleo6,a t J$ + 2

(YA - eiJ*a~
PROOF. Obvious from the expressions for T,*, TG, TG - Ti

and L”.
Therefore, if plemqla + $ + f 6, > p,e,6,2T +

*

IMPLICATION 3. Ti, Ti - Ti decreases and L” increases with
@,A + p,Bo6,il, 2 > 0 and the results follow.

PO and T,* is independent of PO. IMPLICATION 7. Ti increases, Ti - T,* increases and L” de-

PROOF. Obvious from the expressions for Ti, Ti, Ti - Ti,
and L”.

IMPLICATION 4. Ti is independent of x. If poe,qo + a,6,
c6,

+Poeo60 > mae, ’ then TG, Ti - Ti increases and L”

decreases with “/o, else Ti, TG - T,* decreases and Lx

increases with x.

PROOF. It is obvious that Ti is independent of x from the
expression of T,*. For TG, since

LIT; -=
dYcl

creases with q. and T,* is independent of qo.

PROOF. Obvious from the expressions for Ti, TA, Ti - T;,
and L”.

IMPLICATION 8. Ti decreases, TG - Ti increases and L” de-

creases with 91 and TG is independent of 91.

PROOF. Obvious from the expressions for Ti, Ti, Ti - TX*,
and L*.

IMPLICATION 9. Tc decreases, TG - Ti decreases and ‘z* in-

creases with 4 and T,* is independent of 6.

PROOF. Obvious from the expressions for T,*, TA, TG - Ti,
and L*.

IMPLICATION 10. T; increases, TG - Ti decreases and L”

icreases with S, and TG is independent of 4.

PROOF. From the optimality condition,

Therefore if

CHAN ET AL AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 595

Differentiate w.r.t. 6, gives

-y,a%,T + yla%,T; + (~~6, - pp,)a%, g = 0,
1

The result of T’ - Ti follows from the results of Ti
and Ti.

For I,*, since

or

dT;
d6,=

Yl(T - q

(Y14 - PP,) ’ O.

Therefore the results follow.

IMPLICATION 11. TG decreases, T;f increases, TG - Tl de- nT;(T; -T;;) - 8,

creases and L* increases with 8,. F!? 1

PROOF. It is obvious from the expressions for Ti, Ti,
Ti - Ti . For L* * f *

d(T;; - T;)
ispositiveif$>O,$<O,andp<O. m m m

dL * -=
d@O

(T;-T;)-(6$,+6$lT;) de IMPLICATION 13. Ti, (Ti - Ti) decreases and L* increases
0

with A. If A < 2c
m(TG - Ti)’

e,[m(a,+P,e,~y,q,)~ll ’ T; increases with A,

else Ti decreases with A.

Since g > 0 and L IICT$‘iTR) < 0, therefore $ > 0 and PROOF. From the optimality condition for TG,
0 0

L” increases with Bo. qPlp, + Yc+$)a~,T; + (PO% + Yo~o)a2% s
IMPLICATION 12. Ti decreases with 0,. If (mA2&y1GlT +

mila,p, + dpf - m&y,q, - ap,x$ - 2cP,@, + cY+$ > 0,
+ (a, + Po4j - Yo90)%l = 0,

then T,* increases; Ti - T,* decreases with 0,, else T,*

decreases; Ti - Ti increases with 0,.

PROOF. Differentiate the optimality condition for Ti w.r.t.

6, gives

or

(voe, + Yo6,)W + (~~0, + Yo6,p, g
m

+ (a0 + soeo - Yo90)a = 0,

or

dT; (woe, +Y~~,)~TG +(a0 +Poeo -yo9J -=-
denI (Po%l + Yofio)%

which is negative and so TG decreases with 0,.
For T,*, since

therefore, 2 > 0 if m

2(p,e, +y&&J; +(Po% +Yo~o)en~

+ --& - (poem + yo6,p,T; = 0,

i.e.,

dT;
ax = -T; -

C

m(P,e, + Yo6,)a2c
< 0.

Similarly,

and hence d(T;-T,: 7 < 0.
For L*,

d(T,, - T;)
dL” dk

-K.= m(Ti - T;)’

emT;(T;; -T;) - '0
d(T; - T;)

da
=

m(T; -T;)
1.

* *
Since %!@d < 0 and

596 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

+ T;T; + T;
C

m(P,% + Yofio)a2.28, I
> 0,

therefore dL* > 0. da
For T,“, since

dT,*- 1

da - (Y$, - P,%)~2 [
-(aI + p. - ~~9~) + A + & I m 1

therefore if A < 8, bal+;,Cgo-ylql l-11 ’ then Tl increases

with A, else T,* decreases with il.

IMPLICATION 14. Ti, Ti - T,* increase with c. T,*, L" decrease
with c.

PROOF It is obvious from the expressions for Ti, TG,
TG - T,*, and I”.

IMPLICATION 15. TG, Ti -T,* decrease with m. T,*, L" in-
crease with m.

PROOF. From the expressions of T,* and Ti, it is obvious
that Ti increases and TG decreases with m.

Since Ti decreases and Ti increases, therefore
Ti - TX* decreases with m.

For L",
dL *
dm=

' e,,Ag m(Ti -T;) -(e, + e,aT;)
i
(Ti - Ti) + m d'Tii ")

1

m2(T; -T;)

+A
m2

From the optimality conditions

dT; C
m dm = - (poem + ~060)mAz8, '

dT; e,a+c
mdm = (~~6, - pp,)mA%,

Therefore

PROOF 01; PROPOSITION 2. Since

E(T,*,T;) = @ O + Poe0 - YoYo)w,& +
(poeti + Yo6,)a24A2

and after some simplifications, becomes

E(T,*, T;;) = _ he, + ~60)a2H,, TG2

(Y14 - Plem)n’@?n -
2 (T-T;)

8 a+c
+LT+$ m

The maintenance effort throughout the whole plan-
ning horizon without rewriting is given by

C,(T) = J,‘J4,go(F,(t)r Q,(t))dt

= (a0 + PO% - Yo90)qJ +
(PO% + Yo~o)a2% T2

2
Therefore, the potential saving for rewriting the soft-
ware is

sav = C,(T) - E(T;, T;)

= (a0 + poOo - yoqo)?d3mT + (poem + r;,'")a2em T2

+ (PO% + Yo~o)en T*2
2

+ (Yf? - PP?J2% * 2
2 (TV- T) R

%I

= 2(poe, + ~~6,) [
L-(ao +ooeo -~~9a!]
maem

aze,
+ 2(y,6, - p,e,) y161T + i

(a, + he0 - ~~9~) * ema + c
a d*e, 1

+ [(a0 - 4 + (PO - PIP0 - (~7~ - 759,)]w2

00 --. m I3

PROOF OF PROPOSEION 3. We can treat E(T,, TN) as the sum
of the three functions:

Since $- > 0, therefore g > 0.

CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 597

i.e., E(T,, TN) = E(T,) + E(TN) + R(T,, TN).
The second partial derivatives are

J2EPR)
2 = (~~4 - m$*,

ar,

3 = (poem + yo6,)a*,

a’R(T,,T,) 1 1

Jc
=,(~-l,[“+~a~~+‘(~)2(~~-~Ri’-~

+ 4;4fe0 +~aT~~+~!$~~N -T,)-i

1
J2R(T,, T,) w ar,ar, (TN - T,)+

-J,~-l) [eO+~a~~-~~(‘*-iR)-~

Since ES, - p10,,, > 0, therefore 9 > 0 and it is ob-

d2E(TH) a’R(T,,T,) d2R(TJN) vious that 2,
ar, 212 mx ar,

are all positive.

Let Det(H(E(T,, TN))) be the determinant of the
hessian of E(T,, TN). Since

Def(ff(E&,T,))) =

J’E(T,)
ar,‘+

J’R(T,, TN)
ar,’

d*E(T,) d*E(T,) d2E(Tx) d*R(T,, TN) + d’R(T,, TN) d*E(T,)
=-jjcy’-gy”

ar, JG G Tiy$-

+ ~‘X(T,,T,) d*R(T&T,)

Jr; CJq;

Since d’E(T) d*E(T) t’*R(T, ,T,)
2I -&’ -I

mx ar,’
and 2 d2R(T~rT~) are all

ar,
positive and

1
0

Therefore Det(H(E(TR, TN))) > 0 which shows that
E(T,, TN) is convex and the solution to [Gl exists and
is unique.

Let p be a Lagrangean constant. The K-T condit ions
for [Gl are given by

(T; -T;+ + p = 0;

1
(a, + Poe0 - Yo90)aem + (Poe, + ~o~o)~%A + 0 - =)

1

8, + emaT;

[1

'
K(T; - T;) - ' = ';

p(T; - 7-G) = 0.
Consider the case when Ti = TG. W e can see that for
W<l

Therefore, optimal solution cannot occur when
Ti = TG, thus the optimality condit ions cor respond to
p = 0 and are given by:

1
O-l 8 a *(T ;; - T ;;)1-:

- (-$l) 8, + 8 aT; L 1 w Km (T;-T;) :

+ (a, + plea - Y14Jae, + uv2e,T. 0

ACKNOWLEDGMENTS
W e would like to thank the editor, Prof. Hausi Muller, and
three anonymous reviewers for their helpful comments and
constructive suggest ions on earlier versions of the paper.
Taizan Chan gratefully acknowledges partial financial sup-
port from the Reginald H. Jones Research Center of the
Whar ton School, University of Pennsylvania. This research
was partially under taken while Taizan Chan was a visiting
scholar at the Whar ton School of the University of Pennsyl-
vania. Teck Hua Ho under took this research while he was
in Singapore in 1994.

598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

REFERENCES

Cl1

El

[31

M

[51

F.51

t71

181

[91

A.J. Albrecht and J.E. Gaffney, “Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Vali-
dation,” IEEE T&s. Software Eng., vol. 9, pp. 639-648, Nov. 1983.
R.S. Arnold and D.A. Parker, “The Dimensions of Healthv Main-
tenance,” Proc. Sixth Int’l Conf, Soffware Eng., pp. 10-27, Sept. 1982.
R.D. Banker, SM. Datar, and CF. Kemerer, “A Model to Evaluate
Variables Impacting the Productivity of Software Maintenance
Projects,” Management Science, vol. 37, pp. l-18, Jan. 1991.
R.D. Banker, SM. Datar, CF. Kemerer, and D. Zweig, “Software
Complexity and Maintenance Costs,” Comm. ACM, vol. 36, pp. 81-
94, Nov. 1993.
G.M. Berns, “Assessing Software Maintainability,” Comm. ACM,
vol. 27, pp. 14-23, Jan. 1984.
G.D. Bergland, “A Guided Tour of Program Design Methodolo-
gies,” Computer, vol. 14, no. 10, pp. 13-37, Oct. 1981.
B.W. Boehm, Software Engineering Economics. Englewood Cliffs,
N.J.: Prentice Ha& 1981.
F.P. Brooks Jr., The Mythical Mun-Month 120th Anniversary Edition).
Reading, Mass.: Addison-Wesley, 1995.
T. Chan and T.H. Ho, ‘An Empirical Analysis of the Arrival and
the Service Processes in Software Maintenance,” Working Paper,
Dept. of Information Systems and Computer Science, Nat’1 Univ.
of Singapore, 1996.

llO1 T. Chan, S.L. Chung, and T.H. Ho, “Timing of Software Replace-
ment,” &oc. 15th In”t’l Co@. Information Sys?ems, pp. 291-307; Dec.
1994.

[11] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using Metrics to
Evaluate Software System Maintainability,” Computer, vol. 27,
no. 8, pp. 44-49, Aug. 1994.

[12] B. Curtis, S.B. Sheppard, I’. Milliman, M.A. Borst, and T. Love,
“Measuring the Psychological Complexity of Software Mainte-
nance Tasks with the Halstead and McCabe Matrics,” IEEE Trans.
Software Eng., vol. 5, pp. 96-104, Feb. 1979.

[13] T. DeMarco, Co~irolling Softwnve Projecfs. New York: Yourdon,
1982.

[14] J.B. Dreger, Function Point Annlysis. Englewood Cliffs, N.J.: Pren-
tice Hall, 1989.

[15] V.R. Gibson and J.A. Senn, “System Structure and Software
Maintenance Performance,” Comm. ACM, vol. 32, pp. 347-358,
Mar. 1989.

[I61 D.K. Gode, A. Barua, and T. Mukhopadhyay, “On the Economics
of the Software Replacement Problem,” Proc. 11th Int’l Conf. In-
formation Systems, pp. 159-170, Dec. 1990.

[17] T. Ho and T. Chan, “Estimating Service Time in Software Mainte-
nance: Application-Specific and General-Purpose Human Capi-
tal,” UCLA Working Paper, 1996.

[IS] C. Jones, “Software Enhancement Modelling,” T. Software Muinte-
n&e, vol. 1, pp. 91.100,1989.

- -

1191 C. Tones, Am&d Software Measurement: Assurina Productivitv and
Qukify. Net; York: McGraw-Hill, 1991.

[20] D. Kafura and G. Reddy, “The Use of Software Complexity Met-
rics in Software Maintenance,” IEEE Trans. Software Eng., vol. 13,
no. 3, pp. 335-343, Mar. 1987.

[21] C. Kemerer, “An Empirical Validation of Software Cost Estima-
tion Models,” Comm. ACM, vol. 30, pp. 416-429, May 1987.

1221 M.M. Lehman and L.A. Beladv, Proaram Evolution: Processes of
Software Change. London: Acade’mic P&s, 1985.

[23] J.R. Lyle and K.B. Gallagher, “Using Program Decomposition to
Guide Modification,” Proc. Conf. Software Maintenance, pp. 265.
269, Oct. 1988.

[24] BP. Lientz and E.B. Swanson, Software Maintenance Management.
Reading, Mass.: Addison-Wesley, 1980.

1251 J. Martin and C. McClure, Software Maintenance: The Problem and
its Solution. Englewood Cliffs, N.J.: Prentice Hall, 1983.

1261 I’. Oman, J. Hagemeister, and D. Ash, “A Definition and Taxon-
omy for Software Maintainability,” SETL Report #91-O&TR, Univ.
of Idaho, 1991.

1271 I’. Oman and J. Hagemeister, “Metrics for Assessing Software
System Maintainability,” Puoc. Conf. Software Maintenance 1992,
pp. 337-344, Nov. 1992.

[28] W.P. Pierskalla and J.A. Voelker, “A Survey of Maintenance
Models: The Control and Surveillance of Deteriorating Systems,”
Navul Research Logistics, vol. 23, pp. 353-388, Sept. 1976.

[29] H. Sneed, “Planning the Reengineering of Legacy Systems,” IEEE
Software, vol. 12, no. 1, pp. 24-34, Jan. 1995.

1301 H.M. Sneed and E. Nyary, “Downsizing Large Application Pro-
grams,” Proc. Co$ Software Maintenance 1993, pp. 110-119, Sept.
1993.

1311 E.B. Swanson, “The Dimensions of Maintenance,” Proc. Second
Int’l Conf. Soffware Eng., pp. 492-497,1976.

1321 E.B. Swanson, “Svstem Maintenance and Exuected Life,” Infor-
i

mation Systems Working Paper #9-95, John E’. Anderson Gradu-
ate School of Management, UCLA, Sept. 3995.

1331 E.B. Swanson and CM. Beath, Maintaining InJormation Systems in
Organizations. New Work: John Wiley and Sons, 1989.

1341 T. Tamai and Y. Torimitsu, “Software Lifetime and Its Evolution
Process over Generations,” Proc. Conj Sofkware Maintenance, pp. 63-
69, Nov. 1992.

I351 C. Valdez-Flores and R. Feldman, “A Survey of Preventive
Maintenance Models for Stochastically Deteriorating Single Unit
Systems,” Naval Research Logistics, vol. 36, pp. 419-446, Sept. 1989.

1361 C. Woodside, “A Mathematical Model for the Evolution of Soft-
ware,” Program
Lehman and L.A

Evolution: Processes of Software Change, M.M.
Belady, eds. London: Academic Press, 1985.

Taizan Chan is currently a PhD candidate in the
Department of Information Systems and Com-
puter Science at the National University of Sin-
gapore He was a visiting scholar at the Whar-
ton School at the University of Pennsylvania
from 1995-1996. His research interests include
economics of software maintenance and elec-
tronic commerce.

Siu Leung Chung obtained his PhD in com-
puter science from the University of Illinois at
Chicago. He was a lecturer in the Department of
Information Systems and Computer Science at
the National University of Singapore. His re-
search interests include quantity methods in
information systems, computer security, legal
and policy issues in information systems secu-
rity, and uses of IT in distance education.

Teck Hua Ho obtained his PhD in operations
and information management from the Wharton
School at the University of Pennsylvania in
1993. His dissertation received honorable men-
tion for the prestigious George Dantzig Disser-
tation Award in 1994. He is an assistant profes-
sor of operations and technology management
at the Anderson Graduate School of Manage-
ment at the University of California at Los An-
geles. His research interests include marketing-
operations coordination, new product manage-

ment, individual and group decision making, and competitive strategy.
Dr. Ho has articles and research papers published or to be published
in Communications of fhe ACM, Management Science, Journal of Risk
and Uncertainty, Journal of Economic Dynamics & Control, and Journal
of Marketing Research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

