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Abstract-The effort required to service maintenance requests on a software system increases as the software system ages and 
deteriorates. Thus, it may be economical to replace an aged software system with a freshly written one to contain the escalating cost 
of maintenance. We develop a normative model of software maintenance and replacement effort that enables us to study the 
optimal policies for software replacement. Based on both analytical and simulation solutions, we determine the timings of software 
rewriting and replacement, and hence the schedule of rewriting, as well as the size of the rewriting team as functions of the 1) user 
environment, 2) effectiveness of rewriting, 3) technology platform, 4) development quality, 5) software familiarity, and 6) 
maintenance quality of the existing and the new software systems. Among other things, we show that a volatile user environment 
often leads to a delayed rewriting and an early replacement (i.e., a compressed development schedule). On the other hand, a 
greater familiarity with either the existing or the new software system allows for a less-compressed development schedule. In 
addition, we also show that potential savings from rewriting will be higher if the new software system is developed with a superior 
technology platform, if programmers’ familiarity with the new software system is greater, and if the software system is rewritten with 
a higher initial quality. 
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1 INTRODUCTION 
PPLICATION software maintenance has always been a 
resource-intensive Information System (IS) activity. In 

the ‘8Os, it was estimated at US$30 billion worldwide annu- 
ally and to comprise 50%-80% of the corporate IS expendi- 
tures in the United States 1251, [33]. While no recent figures 
are available, it is believed that this trend of high mainte- 
nance cost is likely to continue in the foreseeable future as 
new software systems continue to be developed at a faster 
rate than old software systems are discarded [3]. 

An organization incurs a huge software maintenance 
cost because of 

1) a volatile user environment and 
2) deteriorating software maintainability. 

A volatile user environment generates new user require- 
ments. These requirements are translated into maintenance 
requests which call for modifications or enhancements to 
the existing software system. Consequently, the higher the 
volatility of the user environment, the higher is the mainte- 
nance effort. Also, as the software system is being modified 
or enhanced, its maintainability degrades. With frequent 
enhancements, the number of inputs and outputs, the 
number of functions, and inter-module interactions in the 
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software system increase, leading to higher complexity [4]. 
In addition, these changes are often neither well-integrated 
into the existing software design nor well-documented. 
This results in a deterioration of system structure and qual- 
ity [22]. Consequently, the effort required for each mainte- 
nance request increases as the software system ages 1151, 
1201, [251, 1331. The increase in the effort per request exacer- 
bates the total cost of maintenance. 

There are two major ways for improving the maintain- 
ability of an existing software system. One way is through 
software restructuring’ [Ml. This method improves the 
structural quality of the softyare system but at a cost of 
increasing its size (in SLOC). In addition, this technique 
may not be viable for some language platforms as restruc- 
turing tools are only currently available for Cobol, Fortran, 
PL/I, and C. 

Another way, which is particularly appropriate when 
the software system concerned is old and the associated 
documentation is outdated, is to replace the software sys- 
tem by rewriting it. The key idea in software replacement is 
that over the expected life time of an application, there may 
exist a time when it is more economical to rewrite the soft- 
ware system than to continue maintaining it so that its 
overall maintenance cost is reduced ]161. This is because the 
new software system will often have a higher quality than 
the aged software system. In addition, the software sysiem 
may be rewritten with a superior technology platform so 
that future maintenance can be done more efficiently. 
Swanson and Beath found that replacement of aged soft- 

1. Empirical research has shown that software size is a significant pre- 
dictor of the magnitude of maintenance effort required (see, for example, 
[121 and [201). 

2. In this paper, a technology platform refers to a language platform and 
its associated development environment. 
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ware system is indeed a  significant IS activity [33], thereby 
emphasiz ing the importance of studying the economic 
ramifications of various replacement policies. 

The  study of optimal policies for hardware replacement 
has  a  long tradition in the operat ions research literature ([28] 
and  1351  are comprehensive surveys of hardware mainte- 
nance/replacement models developed in the ’70s  and  ‘8Os, 
respectively). These hardware replacement models are not 
directly applicable to software replacement because new 
hardware is “bought” whereas new software system is often 
“developed” in-house. Consequent ly,  hardware replacement 
occurs instantaneously but software replacement often re- 
quires a  dedicated team of programmers working over  an  
extended period of time. This fundamental  dif ference neces-  
sitates a  different model  for software replacement.  

The  use of quantitative models in the study of software 
maintenance is not new. Lehman and  Belady developed an  
analytical model  for explaining the growth pattern (or the 
evolution dynamics) of a  system software as  a  function of 
its release version [ZZ]. Their model  explains why a  system 
software grows in size in some releases but not in others. 
They found that a  software system grew when maintenance 
effort was expended on  progressive work, which involved 
extending the functionality of the software system. Progres- 
sive work or enhancement ,  however,  caused degradat ion in 
the software structure which led to lower productivity in 
any  future progressive work. To  reduce degradat ion in 
productivity, effort must be  expended on  anti-progressive 
work, which would improve the software structure but 
would not extend the software functionality. 

Arnold and  Parker p roposed a  set of criteria against 
which an  IS department’s software maintenance perform- 
ance could be  assessed [2]. For example, one  proposed cri- 
terion is the percentage of enhancements  and  perfective 
requests that should be  completed within one  person-week 
or less. The  levels of the criteria against which an  IS de-  
partment is benchmarked depend  on  the specific IS envi- 
ronment and  its priorities. While these criteria could be  
used to determine if an  existing software system has  be-  
come too costly to maintain, they cannot  be  used to assess 
whether or not software replacement could reduce the total 
cost of maintenance. 

Sneed proposed a  cost-benefit model  for evaluating the 
benefits of software replacement against those of software 
reengineer ing and  doing nothing at all 1291.  Sneed’s meth- 
odology could be  used to help an  IS manager  to decide if 
software replacement may be  more economical  than the 
other two approaches.  The  methodology,  however,  does  
not prescribe the optimal policy for doing so (i.e., when to 
replace decision). 

Gode,  Barua, and  Mukhopadhyay  provided the first 
formulation for analyzing the optimal timing to replace a  
software system [16]. They  showed that it would be  optimal 
to replace a  software system before the cumulative number  
of requests reached half the total number  of requests ex- 
pected over  the planning horizon. In addition, they proved 
that the timing of software replacement should be  earlier if 

3. The total number  of requests expected could be  calculated from the 
product of rate of arrival of requests and the length of the planning horizon. 

the initial software size was larger. However,  their model  
assumed,  similar to the hardware replacement problem, 
that rewriting and  replacement of software system occurred 
instantaneously. In addition, they did not explicitly model  
the user  environment.  

In [lo], we extended Gode,  Barua, and  Mukhopadhyay’s 
model  [16] and  al lowed the rewriting to take place over  an  
extended period of time and  captured the volatility of the 
user  environment.  W e  showed that if the rewriling of the 
new software system has  constant return to scale and  there 
was an  unlimited capacity of programming resources, re- 
writing and  replacement should occur  instantaneously (i.e., 
the development schedule should be  as  small as  possible to 
reduce the period of duplication of maintenance eifort on  
both the existing and  the new software systems). Thus,  
Gode,  Barua, and  Mukhopadhyay’s model  was shown to be  
a  special case of the proposed model.  In addition, we con- 
s idered a  special case where the number  of programmers 
available for rewriting was fixed and  there was a  dimin- 
ishing return to rewriting. The  assumption of f ixed rewrit- 
ing team size al lowed us  to reduce the problem of f inding 
the optimal timings of rewriting and  replacement (a two- 
variable optimization problem) into one  that involved only 
a  single variable. Here, we showed,  among  other things, 
that the development schedule should be  more compressed 
when the new technology platform was superior to the ex- 
isting technology platform. 

In this paper,  we determine both the optimal timings to 
rewrite and  to replace an  aged  software system with no  
assumption made  on  the size of the development team. 
This allows us  to study the optimal level of programming 
resources to be  assigned to rewrite the software system, an  
important issue which has  not been  addressed previously. 
In addition, we explicitly model  the software degradat ion 
process. Prior research assumes that maintentnce only de-  
teriorates the quality of the software system. However,  a  
large proport ion of software maintenance jobs involves 
enhancements  [241, and  these enhancements  not only de-  
grade the quality of the software system but also increase 
its functional complexity. The  distinction between func- 
tional complexity and  system quality is important because 
rewriting a  software system will improve its quality but will 
not reduce its functional complexity. Furthermore, we 
analyze the potential savings derivable from software re- 
placement.  W e  found that savings will be  higher if the new 
software system is developed with a  superior technology 
platform, if the staff ass igned to maintain the new software 
system is more familiar with the software system, and if the 
new software system has  a  higher initial quality. 

The  rest of the paper  is organized as  follows. Section 2  
descr ibes the model  framework. Section 3  considers the 
case when the speed of rewriting is approximated by  a  lin- 
ear  function of the development team size. In this case, we 
are able to derive close-form analytical solutions for opti- 

4. A production process has constant return to scale when the output in- 
creases proportionately with the amount  of input. That is, doubl ing the 
input doubles the output. This is possible in software development context 
when the development task is perfectly partit ionable @I. 

5. This is so because, under constant return to scale, there is no  penalty 
associated with compressing the rewriting schedule. 

6. This assumption is common in the hardware maintenance literature. 
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ma1 timings of rewriting and replacement. We also provide 
a formula to quantify the benefit associated with software 
replacement. Section 4 considers the case of a concave re- 
writing speed. Here, we use simulation approaches to un- 
derstand how optimal timings of rewriting and replace- 
ment vary with the problem parameters. Section 5 presents 
an example that illustrates the key results. Section 6 dis- 
cusses the results from a managerial perspective and sug- 
gests future research directions. 

2 MODEL FRAMEWORK 

We consider the cumulative maintenance effort of an inde- 
pendent application over a planning horizon T (measured 
in months). The planning horizon starts at the time when 
the applicagion is operational and ends at the time when it 
is obsolete. It is assumed that the application manager re- 
ceives and fulfills an incoming stream of maintenance re- 
quests from users. According to [311, maintenance requests 
can be classified into 

1) adaptive, 
2) perfective, and 
3) corrective. 

In our study, we focus on adaptive and perfective mainte- 
nance requests, which account for 75% or more of the total 
maintenance effort in most IS environments [24] and refer 
to them collectively as enhancements. 

The software maintainability deteriorates as more and 
more enhancements are made to the software system. At T’, 
(measured in months), the application manager begins the 
development of a new software system whose functiopality 
is equivalent to the existing software system at TX. This 
development is scheduled to end at TN (also measured in 
months), the time when the existing software system is 
withdrawn and the new software system is operational. 
Note that the time interval (TN - TX) is the development 
schedule, during which there is a duplication of mainte- 
nance effort. Fig. 1 shows the problem scenario we wish to 
model here. 

Old System is Operational New System is Operational 
b-1 b 

I 

0 ik A -k 

f f 
Timing of Timing of 
Rewriting Replacement 

Fig. 1. The problem scenario. 

7. We make a distinction between application and software system. The 
existing software system is obsolete when it is withdrawn and the applica- 
tion is only obsolete at the end of the planning horizon. 

8. It is possible that the organization may take the opportunity to discard 
outdated functions and develop a software system with only a proportion 
of the original functionality at T,. Conversely, the organization may incor- 
porate new functions during rewriting so that the new software system is in 
fact larger than the current one at TX. We can model either situation by 
modeling the size of the new software system as a product of the size of the 
existing software system at TR and a proportional parameter. The resultant 
model, while more complex, is qualitatively similar to the current model. 

The total effort required for maintaining the application 
is the sum of two components: 

^ ̂  

1) the cumulative maintenance effort (of the existing and 
the new software systems) and 

2) the rewriting effort. 

In the first two subsections, we shall describe the request 
arrival process and the software degradation process. In the 
third subsection, we shall determine the cumulative main- 
tenance effort and the rewriting effort and show that the 
software maintenance/replacement problem can be for- 
mulated as a constrained nonlinear optimization problem. 

2.1 Request Arrival Process 
We model the business environment explicitly by consid- 
ering the rate of arrival of maintenance requests. We as- 
sume a constant rate of arrival of requests, denoted by ;2. 
This assumption is empirically supported by our field data 
on the arrival rates of 10 applications over a seven year pe- 
riod [9]. We regressed the number of requests arrived per 
month against the month period for each of the 10 applica- 
tions and found that only two applications had slopes sig- 
nificantly different from zero at the 5% level. Furthermore, 
the slopes were very small (0.0269 and 0.0161, correspond- 
ing to a growth rate of approximately one request every 
three and five years, respectively). A more volatile business 
environment is represented by a larger il. 

In addition, we assume that each request entails a task 
complexity denoted9 by 0,. 0, measures the number of 
function points (FE’) that must be added to the software 
system to fulfill the request [19]. 

Let M(t) be the total number of arrivals by time t, and 
N(t) be the total number of FPs added to the software sys- 
tem by time t. Then, M(t) = ;It, and 

N(t) = M(t)@, = 20,. (2.1) 

2.2 Software Degradation Process 
The maintainability of a software system tends to deteriorate 
as more maintenance requests are serviced. This phenomenon 
is so pervasive that Lehman and Belady have termed it as the 
third law of software evolution: “the law of increasing en- 
tropy” [221. We model software maintainability as a function 
of the functional complexity and the quality of the software 
system. Software maintainability is assumed to decrease with 
the functional complexity 1191 and increase with the quality of 
the software system [151,1201. Functional complexity measures 
the number of functions that a software system serve;. It is 
measured in terms of the number of function points. Soft- 
ware quality refers to the programmer-oriented (as opposed to 
user-oriented) features of the software system that relate to 
maintenance effort. It is measured in terms of characteristics 
such as its structuredness [15], modifiability [25], and under- 

9. Function point is a measure of the functional complexity for an MIS- 
type system 111. This raw measure is a weighted function of the number of 
inputs and outputs, the number of files, and the number of interfaces a 
software system has. The raw measure is adjusted by a set of 14 technical 
characteristics of the software system to yield the final measure. For further 
discussions of function point measurement, see [14],[19], 1211. 

10. Other functional measures, such as Demarco’s Function Bang Matrics 
1131, are possible. However, Function Point measurement appears the most 
popular 1141, [191. 
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standability ]5]. It is a  reflection of the technology platform 
used 161  and  the discipline embedded  in the maintenance pro- 
cedure 1251.  A comprehensive treatment on  the measurement  
of these attributes can be  found in [26]. 

Let F&t) and  F,(t) be  the functional complexit ies of the ex- 
isting and  the new software systems at time t, respectively. 
F,(t) is the sum of the initial functional complexity of the ex- 
isting software system when it was first installed ( BO) and  the 
functionality added  to the software system (as a  result of the 
enhancements)  up  to time t. From (2.1), we have 

F&t) =  e, +  Ate,. (2.2) 
That is, the software system climbs up  a  functional com- 

plexity ladder with a  step size of 8,. Each maintenance re- 
quest  adds,  on  average,  a  complexity of 8,. This linear as- 
sumption is consistent with Lehman and  Belady’s observa-  
tion that the size of a  software system tends to grow line- 
arly with time [22]. A typical value of an  initial application 
size is 500  FPs (i.e., ~9, =  500)  [19]. If the arrival rate is four 
requests per  month (i.e., il =  4) and  the software system 
increases in functional complexity by  approximately 12% 
with respect to its initial size every year  1331,  then 0, =  1.2 FE. 

At TR, when rewriting begins, the specification for the 
new software system is “frozen” based on  the functionality 
of the existing software system at TR. That is, the initial 
complexity of the new software system is given by  Fo(TR). 
Any requests that arr ived after TR must be  fulfilled to keep 
the software system current. The  expected total number  of 
requests (at time t) that arr ived after TX is given by  M(t) - 
M(T,). Thus,  the expected functionality of the new software 
system at time t >  T, is given by  

F,(t) =  F&T,) +  (At - AT&& 

= eo  + /Item. (2.3 
Let Q&t) and  QI(t), both E r-1, 01, be  the code qualities of 

the existing and  the new software systems at time t, respec- 
tively. A ‘0’ reflects a  perfect software system and  a  ‘-1’ 
means  a  highly unstructured software system. Q(t) is given 
by  the initial quality of the software system minus the dete- 
rioration in quality due  to changes  made  to the software 
system up  to time t. Let 9s  be  the initiul quality of the exist- 
ing software system and  9i be  the initial quality of the new 
software system when they were first installed, then 

Q&t) = qo  - &It, (2.4) 

Ql(t) = q l- b&It - /zr,,. (2.5) 
Our formulations of Q. and  Q, are similar to those of 

Woods ide [36], who developed a  model  to account  for the 
growth in disorder in software system observed by  Lehman 
and  Belady [22]. In [36], the magni tude of “disorder” of a  
software system (a positive value in his model)  at time t 
was formulated as  the sum of the software i$sorder at time 
t - 1  and  disorder introduced during time t. 

11. More specifically, Woods ide’s formulation of software disorder also 
included a  term representing a  possible reduction in disorder that may be  
brought about by effort expended on restructuring the code. This term is 
set to zero if no  effort is expended on code restructuring, which is the 
situation considered in this paper. 

The initial software qualities 9. and  9i reflect the control 
for quality dur ing the development of the existing and  the 
new software systems respectively. More control exercised 
in ensur ing a  quality software system should yield higher 
values of 9. and  91. The  value, 90, for example, could be  de-  
termined by  first measur ing the relevant software attributes 
with the appropriate metrics descr ibed in [26] and  then 
combining these metric values into a  singIe quantity. Cole- 
man  et al. [ill and  Oman and  Hagemeister [271 proposed 
various means  by  which values from different software 
metrics could be  combined into a  single maintainability or 
quality index. The  index value could then be  normalized to 
fall in the interval [-1, 01  by  first subtracting from it the 
maximum possible index value and  then dividing the dif- 
ference (a negat ive value) by  the maximum value. 

Each maintenance request  is assumed to cause a  constant 
deterioration in the quality by  S. 6  reflects the discipline 
imposed on  the maintenance procedure.  A more stringent 
maintenance procedure has  a  lower 6  [6]. An estimate for 6  
could be  obtained by  calculating the difference in the qual- 
ity index values before and  after a  specific number  of re- 
quests and  then dividing the difference by  the number  of 
requests [20]. For example, assume that the same software 
system we considered earlier has  an  initial quality 9. of -0.01 
when it was first installed. If its quality value is assessed as  
-0.06 a  year  later, & couldip approximated as  0.001 (0.05 
divided by  4  * 12  requests).  

The  effort required to fulfill each  maintenance request  is 
a  product  of the maintenance productivity of the program- 
mers (in person-hours per  function point) and  the task 
complexity of each  request  (that is, ~9,). The  maintenance 
productivity is determined by  the structuredness of the 
technology platform, the functional complexity, and  the 
quality of the software system. The degree of impact of 
functional complexity and  software quality depends  on  
how familiar the programmers are with the software sys- 
tem [17]. Let p. and  p, be  the maintenance productivity on  
the existing and  the new software systems respectively. 
Then  p. and  p1  are given by  

po(WLQo(t) )  =  a, +  P&,(f) - roQo(t) 

= (a, +  Poe,, - ~09,) +  (PO% + Vo)aL (2.6) 

p,(W)rQ,@)) = a, +&F,(t) - rlQ#) 

= [a, +  he0  - ~~9~ - ~,wi] +  (ok +  h4)at. (2.7) 

The  parameter  a  may be  interpreted as  the person-hours 
spent  in coding a  function point worth of code in some 
technology platform. It is similar to the development pro- 
ductivity of writing a  new independent  program, uncon-  
strained by  any  existing software system (i.e., when both 
F(t) and  Q(t) are zeroes).  It is a  reflection of the productivity 
of the maintenance staff with respect to the given technology 
platform. A superior technology platform (such as  a  Fourth 
Generat ion Language  (4GL), as  compared to Cobol)  should 

12. Kafura and Reddy [201 found that an  enhancement  request could de- 
teriorate the structure of a  software system by between 10% to nearly 50%, 
depending on  which structural metrics is used to measure the deteriora- 
tion. 
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yield a  lower a  [18], [19]. or, and  ai are constants because 
we assume that the same technology platform is used to 
maintain a  software system throughout the operational life 
of the software system. 

,PI measures the marginal effort required to deal with a  
functionally more complex software system. This is the addi- 
tional effort needed  to understand a  more complex software 
system in order to determine how and  where a  change 
should be  implemented. It depends  on  the extent to which 
the maintenance staff is familiar with the functionality of the 
software system 1171.  In [17], it was found that servicing a  
request  on  a  software system could reduce the effort required 
to service the next request  (of the same task complexity) on  
the same software system by an  average of 33%. 

y is the marginal effort required to deal with a  lower 
quality software system. A more unstructured code will 
require greater effort in changing the code and  evaluating 
the impact of the change [231. Similar to p, y  also depends  
on  software familiarity of the maintenance staff. The  effort 
required to deal with unstructured code is less if the staff is 
more familiar with the softyaare system [17]. Thus,  greater 
familiarity implies a  lower y 

The  potential values for pa  and  pi could range from 17.9 
person-hours/Fl? to 76  person-hours/FP (based on  a  data 
set of 4200  software development,  enhancement ,  and  
maintenance projects in [19]).i4 As an  illustration of the 
possible values that a, ,& and  ymay presume, consider the 
same software system which we have discussed earlier. 
Given that the software system has  an  initial functional 
complexity of 500  FP, the initial productivity for fulfilling 
an  enhancement  request  on  this software system would be  
approximately 25  person-hours/FP [19]. Assuming that the 
software system is developed in a  third-generation language 
such as  Cobol, or, is est imated at 20.3 person-hours/FYI’ [19]. 
Since the initial functional complexity and  initial quality is 
respectively 500  FP and  -0.01, the potential values for p0  and  
x are 0.005 and  200,  respectively. That is, the marginal effort 
required in an  enhancement  request  to deal with the initial 
functional complexity of 500  FP is 2.5 person-hours and  the 
marginal effort needed  to deal with the initial quality of the 
software system is two person-hours.  

Given the productivity values p0  and  pi, the effort re- 
quired per  maintenance request  on  the existing software 
system at time t is given by  

B,p,,(Q,,(t), F&)), (2.8) 
and  the effort required per  maintenance request  on  the new 
software system at time t is given by  

B,pl(Ql(t), FlW). (2.9) 

2.3 The Maintenance Planning Problem 
During the planning horizon, three types of effort are ex- 
pended.  First, effort is needed  to maintain the existing 
software system. The total effort required for the mainte- 

13. It is likely that ,8 and yare also affected by the technology platform. 
However, we believe that this effect should be  less critical compared to 
programmers’ familiarity with the software system. 

14. The productivity figures in [19] are reported in units of person-month. 
As in [71, we multiply the number  of person-months by 152 to obtain the 
corresponding number  of person-hours.  

nance  of the existing software system is 

It is the integral sum of all the effort required for fulfilling 
all the maintenance requests from the time the existing 
software system starts operat ing to the time at which the 
existing software system is replaced. 

Second,  effort is needed  to maintain the new software 
system. Similarly, the total effort required for the mainte- 
nance  of the new software system is 

It is the integral sum of all the effort required for fulfilling 
all the maintenance requests from the time the design speci- 
fication is ‘frozen’ up  to the end  of the planning horizon, T. 
It should be  noted that the maintenance period for the new 
software system is T  - TX and  not T  - T W  This is to account  
for any  enhancement  requests arr ived during the rewriting 
period. 

The  final effort to be  expended is the rewriting effort for 
the new software system. Rewriting a  software system often 
requires a  dedicated team of staff working over  an  extended 
period of time. A general  formulation of this effort is 

UT, - TX), (2.12) 

where L  is the size of the development team that is em- 
ployed to rewrite the software system (measured in person-  
hours per  month),  and  (TN - TR) is the rewriting period. The  
rewriting effort is related to the functional complexity of 
the existing software system at the time of rewriting. From 
(2.21, the expected functional complexity of the existing 
software system at time TX, F,(T,) is given by  

F&J = 8, + niy9,. (2.13) 

Similar to [3], we conceptual ize software development as  
a  function points product ion process. That is, the rewriting 
effort is related to the functional complexity of the software 
system at time TR by the following equation: 

(2.14) 

where S(L) represents the speed of function points delivery 
by  a  development team of size L. 

The  total cumulative effort of maintaining the applica- 
tion over  the planning horizon T, E(T,, TN), is the sum of 
the three components,  (2.10), (2.11), and  (2.121: 

Table 1  summarizes the variables, functions, and  pa-  
rameters used in our  model.  The  optimization problem of 
interest here is: 

subject to Fa(T,) =  W>(TN - TR)/ 

and  T, <= TN. (2.16) 



CHAN ET AL.: AN ECONOMIC MODEL TO ESTIMATE SOFTWARE REWRITING AND REPLACEMENT TIMES 585 

TABLE 1 
MODEL VARIABLES, FUNCTIONS, AND PARAMETERS 

TABLE la 
MODEL VARIABLES 

Variables Definition Dimension 

Ti? The time when rewriting starts. month 

TN The time when the existing software system is replaced. month 

L The size of the rewriting team. 
person--hours 

zu2ath 

TABLE 1 b 
MODEL FUNCTIONS 

Functions Definition Dimension 

S(L) The speed of the rewriting team. >‘P 

W) Functional complexity of the existing software system FP 
at time t. 

4 0) Functional complexity of the new software system at FP 
at time t. 

$i; 
Code quality of the existing software system at time t. dimensionless 

1 Code quality of the new software system at time t. dimensionless 

~o(Fo(t), Qo(t)) Maintenance productivity on the existing software system ~erso~~hoUTe 
at time t. 

pl (Fl (t), &I (t)) Maintenance productivity on the new software system person--hours 
FP 

at time t. 

TABLE lc 
MODEL PARAMETERS 

Category Parameters Definition Dimension 

Effort required to develop a function point 

WI equivalent of code with the existing technology platform; it 
perrm--hours 

FP 
Technology reflects the structuredness of the existing technology platform. 

Platform Effort required to develop a function point 

Q1 equivalent of code with the new technology platform; person--hours 
FP 

PO 

it reflects the structuredness of the new technology platform. 

Marginal effort required to deal with the 
functional complexity of the existing software system; it 
reflects staff familiarity with the existing software system. 
Marginal effort required to deal with the 
deteriorating code quality of the existing software system; it 
reflects staff familiarity with the existing software system. 
Marginal effort required to deal with the 
functional complexity of the new software system; 

person-hows 
FP 

Software 
Familiarity 

70 

Pl 

person-hours 

person--hours 
FP 

Development 
Quality 

Maintenance 
Quality 

User 
Environment 

it reflects staff familiarity with the new software system. 
Marginal effort required to deal with the 
deteriorating code quality of the new software system; person-hours 
it reflects staff familiarity with the new software system. 

Code quality of the existing software system when it became 
operational; it reflects the control imposed on code dimensionless 
quality during the development of the existing software system. 
Code quality of the new software system when it becomes 
operational; it reflects the control imposed on code dimensionless 
quality during the development of the new software system. 

Deterioration rate of code quality of the existing 
software system; it reflects the control imposed on code F&z 
quality during the maintenance of the existing software system. 
Deterioration rate of code quality on the new 
software system; it reflects the control imposed on code F&z 
quality during the maintenance of the new software system. 
Functional complexity of the existing software system when 
it became operational; it reflects the complexity FP 
of the functional domain of the software system. I\ 
Average complexity of each maintenance request. FP 
Average rate of arrival of requests; it reflects reauesrr 

norkth 
the volatility of the business environment. 

In the following sections, we solve the optimization we assume that S(L) is a linear function of L. In Section 4, 
problem [G] and characterize the optimal software re- S(L) is assumed to be a concave function of L. 
placement policies. In addition, we perform sensitivity 
analyses to obtain qualitative insights on the impact of 3 LINEAR REWRITING SPEED 
technology platform, software familiarity, user environ- 
ment, development quality, maintenance quality, and re- 

In this section, we consider a software development sce- 

writing effectiveness on the optimal policies. In Section 3, 
nario in which S(L) could be expressed as a linear function 
of L as follows: 
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TABLE 2 
SENSITIVITY ANALYSIS (LINEAR REWRITING SPEED) 

CONDITIONS: 

D’ lf /I,8,q, + a&7, + poBo6, > &, then Ti, TG - T,* increases and L* decreases with a, else Ti, Ti - T,* decreases and L” increases with M. 

0’ If j31C9,q1A + y + $- 6, > /310,6,A2T + a,~?,?. + QIo6,J., then T,* increases; Ti - T,* decreases and L* increases with R, else T,* decreases; 
m  

Ti - Ti increases and L* decreases with R, 

D3 If (m/Z?j3,y16,T f v&x,fi, + rn@~Q, - mJ.~.P,ylq, - ;Ip,)f3: -2cj3,0, + cylS, > 0, then T,” increases; Ti - T,* decreases with Q,, else T; de- 

creases; Ti - T,* increases with 8,. 

D41fA < 2c 
B~lm(a,+B,B,-Y,q,)~11 / then Ti incveases with A., else Ti decreases with A. 

D5 If (rnAz&y,G,T + m;la,p, + rn;l& - mA&ylq, - ;Ip,)Qi -2c@, + cy16, > 0, then L* increases with 8,. 

S(L) = c + d, (3.1) 
where m and c are constants. The linear rewriting function 
can be considered as a linear approximation of the more 
general concave rewriting function (discussed in Section 4). 
This approximation will be good if the size of the develop- 
ment team can vary only over a small range. Given a con- 
cave rewriting speed curve, a higher m is associated with a 
smaller c  and vice versa. A higher m (and therefore smaller 
c) imply that the speed of rewriting, S(L) would increase 
more with an increase in L. This is especially the case if a 
superior technology platform is adopted for rewriting the 
software system and the development process is well man- 
aged so that the inefficiency associated with a larger team 
size is smaller [8]. This linear rewriting speed case is inter- 
esting because many IS departments have very limited 
freedom in expanding the size of the development team. 
Empirically, c  and m can be derived by regressing the speed 
of rewriting (or softwyse development) against the size of 
the development team. 

3.1 Optimal Software Replacement Policies 
Solving [G] gives us the following proposition. 

PROPOSITION 1. If ‘/1 S, > p1 B,, E(T,, TN) is strictly convex in TX 
and TM I,, 

then the optimal replacement policies Ti and Ti are given by 

15. Regressing S(L) agaiyst L using a limited data set in [19 p. 143, Table 
3.111 yields an adjusted R of 0.88, suggesting that the linear function is a 
reasonable approximation. 

y@,T 
‘,* = (~~6, - ble,) + 

(~5 + 66 - ~7~) e,a+c 
(~~6, - mJa - m(~,4 - wQ~zem 

, (3.2) 

T; = 
C a, + Poe0 - yoqo 

m(p,e, + yo6,)a2e, - (poem + yo60)a 
(3.3) 

Otherwise, 

T; = T;v 

= YIVT - [( a, + PO@0 - Yo40) - ( “1 + PPO - Y141)] - t 

[ (PO@, + Yo60) + (YA - ~l%)]~ 

PROOF. See Appendix. q 
Equations (3.2) and (3.3) provide closed-forni solutions 

for the optimal timings of rewriting and replacement when 

L 
e,a+c 

Poe, r; ~~6, + ~84 - PIem 1 
1 

Tizq” 

y,qa + a, + PI@0 - Y141 + a0 + PO@0 - Yoclo 

Yl% - PP, Ple, + ~~6, . 

Using these equations, we analyze the sensitivity of the variables 
T,*, TA, TG - Ti, and L” with respect to each of the problem pa- 
rameters, X. The results are summarized in Table 2. Their proof 
can be found in the Appendix (under Implications 1-15). 

We divide our insights into six categories, according to 
the factors that impact the software replacement policies. 

3.1.1 Technology Platform 
The platform of technology affects the productivity of 
maintenance significantly. Enhancements can be made 
more quickly if a superior technology platform is adopted 
[19]. Our  results show that the technology platform can also 
impact the replacement policy. We show that an inferior 
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existing technology platform (i.e., higher o.$ leads to an  
earlier software replacement or a  shorter operational life for 
the existing software system. The reduct ion in the opera-  
tional life will reduce the expensive maintenance effort (due 
to high c+) of the existing software system. 

Our  results also suggest  that an  existing software system 
should be  rewritten earlier if a  superior new technology 
platform (i.e., lower ai) is available. This is done  to exploit 
the benefits of the superior technology platform earlier. An 
inferior technology platform, either existing or new, neces-  
sitates a  compressed development schedule to reduce the 
period of maintenance overlap, which is prohibitively ex- 
pensive when an  inferior technology platform is involved. 
Such a  compressed strategy can be  achieved by  assigning 
more programmers to the rewriting project. 

3.1.2 Software Familiarity 
W e  aIso show that if the maintenance staff are not familiar 
with the existing software system (i.e., higher A), its opera-  
tional life should be  shorter. The  reduct ion in the operational 
life will reduce the expensive maintenance effort (due to high 
,E$ of the existing software system. W e  also show that an  ex- 
isting software system should be  rewritten earlier if the staff 
are familiar with the new software system (i.e., lower pI). In 
general,  software familiarity reduces the need  for a  com- 
pressed development schedule.  This implies that if mainte- 
nance  jobs are assigned based on  staff availability rather than 
familiarity, then if an  existing software system must be  re- 
placed, it must be  done  with a  shorter development schedule.  

3.1.3 User Environment 
The  greater the initial functional complexity of the software 
system, (i.e., higher f&), the later should rewriting begin and  the 
earlier should replacement be  done.  This is so  because @, in- 
creases both the maintenance effort of the existing and  the new 
software systems. This makes any  duplication in maintenance 
effort much more costly. However,  by  delaying the timing of 
rewriting and  bringing forward the timing of replacement,  the 
maintenance overlap would be  reduced.  The  size of the devel- 
opment  team however  must be  increased to handle the more 
complex rewriting project. Note that this is true only if the re- 
writing team is significantly more product ive than the mainte- 
nance  team. In practice, this is often the case [ 191.  

The  timing of rewriting increases wit& the rate of main- 
tenance requests (A if it is not too high. The  timing of re- 
placement decreases,  however,  with the rate of mainte- 
nance  requests. Overall, a  more volatile business environ- 
ment  implies that a  more compressed development sched-  
ule is necessary for reducing the maintenance overlap so 
that less maintenance requests are being serviced for both 
the existing and  the new software systems. Similar insights 
are obtained for the complexity of the request  0,. In gen-  
eral, we observe that the firm in a  volatile business envi- 
ronment should staff for its rewriting project and  strive to 
complete the project as  early as  possible. 

It is useful to note that the above  results are consistent 
with the situations we observed at a  field site [91. The  IS 
department at this field site is currently planning to replace 
three of its software systems. These software systems are 

16. The threshold value for 1  in condit ion D4 is rather high in general. 

large-each having more than 2,000 FPs. In addition, the 
volume of demand for modifications to these software sys- 
tems is high, account ing for almost 90% of all the requests 
received by  the IS department per  month. Despite these fac- 
tors, the IS department plans to accomplish the rewriting of 
all the three software systems within a  short schedule of one  
and  a  half year. Apparently, the reason cited for the proposed 
compressed schedule is to reduce maintenance overlap. 

3.1.4 Development Quality 
Based on  the effort function for the existing software system, 
we can observe that its initiaI quality, qs, affects the mainte- 
nance  effort per  request  not only initially when the existing 
software system becomes operational, but actually through- 
out the entire operational per iod of the software system. Our  
sensitivity analysis shows that, with a  better initial quality, 
the existing software system can be  replaced later. This is 
because with better initial quality, the cumulative mainte- 
nance  effort for the existing software system would be  lower, 
therefore making it less costly to replace the software later. 
By delaying the replacement of the existing software system, 
we can afford a  more relaxed rewriting schedule.  Similar 
benefits can be  derived if the new software system has  better 
initial quality (i.e., higher qil. Rewriting can start earlier so  
that a  lower maintenance effort per  request  for the new soft- 
ware system can be  enjoyed earlier. It also means  a  lower 
rewriting effort s ince a  less complex software system needs  to 
rewritten and  the rewriting schedule is less compressed.  This 
insight emphasizes the importance of the quality of devel- 
opment.  A higher quality software system not only reduces 
maintenance effort out front, it also reduces the effort 
throughout the entire operational life of the software system. 

3.1.5 Maintenance Quality 
As our  model  suggests,  the rate at which the quality of the 
software system degrades determines how quickly the main- 
tenance effort (per request)  rises. A higher L$, implies that the 
software quality will degrade quickly and  that the mainte- 
nance  effort for the existing software system will be  much 
higher in the later part of its operational life. W e  have shown 
that this increase can be  counteracted by  replacing the existing 
software system earlier. Similarly, if 6; is higher, the opera-  
tional life of the new software system should begin later by  
starting the rewriting later. In addition, with poor  maintenance 
quality (i.e., higher 4, a  system manager  will need  to plan for a  
short rewriting schedule by  assigning as  many  programmers 
as  possible to rewrite the software system. 

3.1.6 Rewriting Effectiveness 
Our  sensitivity analysis shows that when c is higher, that is, 
when increasing the team size is less efficient, the rewriting 
schedule should be  extended by  rewriting earlier and  replac- 
ing later so  that a  smaller team size is required for rewriting 
the software system. Our  analysis also shows that if m  is 
higher, then a  more compressed schedule is feasible. The  ap-  
plication manager  can now start rewriting later while at the 
same time replacing the existing software system earlier. This 
implies a  shorter operational life for both the existing and  the 
new software systems and  thus a  lower maintenance effort. 
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3.2 Potential Saving from Software Replacement 

PROPOSITION 2. The potential saving in effort from replacing the 
existing software system is given by 

0, 

sav = 2(&e, + yo6,) [ 
+xo+Po~o-7oYo~] 
mwl 

f [(an - a,) + (PO - P I)@ , - (Yo90 - Y&%T 

f [(Do - P,)e, + (~~6, - Y~~,)]$+T~ 
00 
m’ (3.4) 

PROOF. See Appendix. El 
Note that the first two terms in the (3.4) are always posi- 

tive. Thus, whether sav is positive or negative depends on the 
last three terms in Proposition 2. The third and the fourth 
terms are expressed as the difference between the problem 
parameters of the existing and the new software systems to 
show the impact of the technology platform, software famili- 
arity, development quality, and maintenance quality on the 
potential saving derivable from an optimal software re- 
placement policy. The last term relates to the initial func- 
tional complexity of the software system and the effective- 
ness of rewriting. We make the following observations. 

0 The third term of sav indicates that the potential savings 
from rewriting will be higher if the new software system 
is developed with a superior technology platform, if 
programmers’ familiarity with the new software system 
is higher, and if the software system is rewritten with a 
higher initial quality. This term will only be positive if 
(q + plOO - ~4~) < (q + &;Ba - XQ,). This implies that re- 
placing a software system with a better technology plat- 
form and quality (i.e., lower oc, and higher ql) alone may 
not be sufficient to justify replacement. The maintenance 
staff for the new software system should also be suffi- 
ciently familiar with the new software system (i.e., low 
/$ and x). Thus, IS managers should avoid assigning in- 
experienced programmers to maintain the new software 
system if they want to maximize the return from re- 
writing. A high ,B, and “~1 may reduce or even eliminate 
the intended saving from software replacement. 

0 The fourth term indicates that to increase potential 
savings, stringent maintenance procedure must also be 
implemented for the new software system (to achieve 
low 4). Since the multiplier of this term (q) is 

greater than that of the third term (AT), the effect of S, 
cannot be over-emphasized. Thus, a formal procedure 
for controlling software quality during maintenance is 
critical. A plan for software replacement should there- 
fore be accompanied by an appropriate quality control 
plan for the maintenance of the new software system. 

* The last term suggests that rewriting may not be eco- 
nomical for a large software system when the planning 

horizon is short or the rate of arrival is 10w.l~ A large BO 
may render sav negative and thus make rewriting un- 
economical. Even if the initial software size is not large, 
a short planning horizon or infrequent maintenance re- 
quest arrivals may also make rewriting an unattractive 
option. Note that the rewriting effort includes not only 
the effort to redevelop the past enhancements, but also 
the effort to redevelop the initial functions of the soft- 
ware system. This makes rewriting quite expensive. 

4 CONCAVE REWRITING SPEED 
In many practical situations, the speed of rewriting, S(L), is a 
concave function of the team size, L. That is, there is a dimin- 
ishing return to labor input: an increase in input, L, results in 
less than proportionate increase in output (the number of FPs 
that could be produced per unit time). This is so in situations 
where the development task requires constant communica- 
tions among the team members 171, 181. The need for com- 
munication implies that the potential increase in output due 
to an additional programmer is discounted by a decrease in 
output from other members of the team who need to spend 
otherwise productive effort communicating with the new 
programmer. For these cases, the number of function points 
produced per period can be represented as a log-linear form 
of the development team size. That is, 

S(L) = KLW, (4.1) 
where K measures the structuredness of the development 
technology platform used and w measures the productivity 
of the rewriting team. The log-linear form is similar to the 
schedule and effort equations in [7, pp. 751. A high K im- 
plies a highly structured development technology platform. 
A high w implies a rewriting team whose members are very 
experienced and are familiar with the software system un- 
der maintenance. It also involves good project management 
that employs supporting methods, such as configuration 
managemeiqt, to support communications among the pro- 
grammers. In most situations, w  < 1, which implies a di- 
minishing return to labor input [6]. 

With concave rewriting speed given in (4.1), the rewrit- 
ing effort is of the form 

Unlike the linear case, the rewriting effort in this case is not 
separable in T, and Tw The total cumulative effort for mair- 
taming the application over the planning horizon T, is given as 

17. Note that 00 also appears in the first three terms. Our extensive nu- 
merical experiment in Section 4 shows that the impact of BOS on these terms 
is relatively small compared to its impact on the last term. 

18. We  thank an anonymous reviewer for highlighting this point to us. 
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TABLE 3 
SENSITIVITY ANALYSIS (CONCAVE REWRITING SPEED) 

+ [o. +~~Tj~(TN +-:. (4.3) 

PROPOSITION 3. If x&p j, O,, E(T,, TN) is strictly convex in TX 
and TW The optimal replacement policies Ti and Ti aye 
characterized by the first-ouder conditions as follows: 

[ 1 
‘-1 

1 o,+e,aT; w  
(Y,& - P,%$*%J; = -w 

0 ?t 
K -%(T; - T;)1-$ 

+ (a, + pleo - y*qJae, + y16,A2qJ, (4.4) 

and 1 
(pof3, + yo6,)A28,T; = (; - 1) 

’ 

-(a, + Poql - YO~O)%l~ (4.5) 

PROOF. See Appendix. 0 

We can make use of the convexity of E(T,, TN) to effi- 
ciently compute the optimal replacement policies. In an 
extensive numerical experiment to study the sensitivity of 
the optimal replacement policies with respect to the prob- 
lem parameters, we make use of this property (explained 
below). The results of the simulation are summarized in 
Table 3: 

There are altogether 15 problem parameters. Like before, 
we have classified them into six categories. Each parameter 
is varied at two levels: r and X. The first two rows show 
the low and high values for each parameter used in the 
simulation. The values of the parameters are carefully cho- 
sen to satisfy two criteria: 

1) they yield values that are consistent with the litera- 
ture and 

2) rewriting is always economical. 
19 

For example, the values of o+, which represent the number 

19. The second criterion allows us to examine the sensitivity of the re- 
placement policies with respect to the problem parameters properly. Thus 
the high and low values for each parameter are chosen such that the poten- 
tial saving is always greater than zero (see Proposition 2), i.e., replacement 
is always superior to no replacement. 

of hours required to code a function point worth of new 
code, are based on the data reported in [19]. The values of w  
and K are selected to reflect the empirical values reported in 
[7] and [191. Proposition 2 has provided us with guidelines 
in the choice of the parameters for the new technology plat- 
form and software familiarity. For instance, q is assigned a 
value which is smaller than oc, so that the new maintenance 
effort is a certain fraction of the existing maintenance effort. 

There were altogether 215 cases (since the number of pa- 
rameters is 15). For each parametric combination, we de- 
termine the optimal values of TX, TN, TN - TR, and L ac- 
cording to this ‘greedy’ algorithm designed based on the 
convexity of E(T,, TN) in Proposition 3. 
MINEFFORT := a-large-real-number; 
for Tr := 0 to T do 

MINFOUND := false; 
Tn := Tr+l 
PREVIOUS := a-large-realgumber; 
repeat 

determine the total effort for maintaining the 
existing software system 

from 0 up to Tn, OLD; 
determine the total effort for maintaining the 

new software system 
from Tr up to T, NEW; 

determine the total effort for rewriting the 
software system 

with schedule (Tn - Tr), REWRITE; 
TOTAL := OLD + NEW + REWRITE; 
if TOTAL < PREVIOUS then 

PREVIOUS := TOTAL 
else begin 

YINFOUND := true: 
if PREVIOUS < MINEFFORT then 
begin 

Tr* := Tr; 
Tn* := Tn - 1; 
L* := REWRITE/(Tn* - Tr*); 
MINEFFORT := PREVIOUS; 

end: 
end; 
Tn := Tn + 1; 

until MINFOUND or Tn > T; 
end: 
keep statistics for this combination of paramdters: 

Since E(T,, TN) is convex in TX and TN, it is also convex 
in TN for a given TR. Algorithmically, it means that, for a 
fixed TR, it is not necessary to search through the entire fea- 
sible space of TN (the feasible region of TN is (TR, T)). The 
searching for the optimal TN is only carried out from 



590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996 

T xfi d + 1 to the optimal TM That is, the terminating condi- 

tiol for the repeat-loop is E(TRp d , TN) < E(T, jixat ,TpJ + 1). 

This knowledge has greatly saved’computation time from 
10 hours to 0.5 hour. 

To determine the sensitivity of a particular decision, 
such as, Ti, to a parameter, say, Q, we find the average Tis 
over all parametric combinations (2i4) for “low” and “high” 
values of q. We compare the two average T,* values. If 

T* Rco”o, < Tica,, then we conclude that Ti increases with a, 
0 

(indicated as + in our table). If they are equal, then it means 
T,* is not affected by or, (indicated as 0). Otherwise, it im- 

plies that Ti decreases with oc, (indicated as -). 
The results from this sensitivity analysis are quite con- 

sistent with those in the case of linear rewriting speed. The 
differences are due to the less productive rewriting team 
captured by the concavity in the rewriting speed. This 
lower productivity tends to lead to expanded rewriting 
schedule and smaller team size. The following observations 
are new insights. Since these results are derived by simula- 
tion, they should be generalized with caution. 

4.1 Technology Platform, Software Familiarity, 
Development, and Maintenance Quality 

Similar to the case of linear rewriting speed, software re- 
placement here occurs earlier if the existing software sys- 
tem requires more effort to maintain due to either an infe- 
rior technology platform (higher Q@,  lower software famili- 
arity (higher p0 and M), lower development quality (lower qO), 

or lower maintenance quality (higher 4). The earlier re- 
placement shortens rewriting schedule and reduces main- 
tenance overlap. Unlike the linear case where the timing of 
rewriting is not affected by these parameters, the timing of 
rewriting here becomes earlier when the existing software 
system requires more effort to maintain. This implies that a 
smaller software system will be rewritten (indicated by a 
smaller Ti) when the rewriting speed is concave. The 
smaller software size results in a smaller overall rewriting 
effort. Consequently, a smaller team size will be needed. 
However,  the system should not be rewritten too early; it 
should strike a proper balance between the rewriting effort 
and the maintenance effort for the new software system. 

Our  simulation results also indicate that rewriting 
should begin later if the new software system has become 
more expensive to maintain due to any of the four factors, 
This implies that a more complex software system must be 
developed. In the case of linear rewriting speed, the com- 
plex software system is developed by assigning more peo- 
ple without having to lengthen the rewriting schedule. In 
this case, however, it may be uneconomical to assign pro- 
portionately more people because of the diminishing return 
to scale. A more economical solution is therefore to expand 
both the rewriting schedule and the team size. 

4.2 User Environment 
Unlike Table 2, Table 3 indicates that TX* decreases while Ti 

increases with the initial software size 13,. In addition, both 

the rewriting schedule and development team size increase 
with 0,. Here, the impact of increasing L” to cope with a 

larger 0, is less efficient than in the case of linear rewriting 
speed because of diminishing return to scale. Thus, the 
schedule should be expanded in order to cope with a more 
complex software system. It is useful to note that our result 
on T’ is consistent with existing empirical evidence in 1191, 
[32], and 1341. They found that a larger software system gets 
replaced later (i.e., larger Ti). Our  result suggests further 
that the rewriting should begin earlier or the effort involves 
in the rewriting may be too costly for the replacement to be 
economical. 

The results for B, and ;Z are consistent with those of the 
linear rewriting speed case: the overlap between the main- 
tenance of the existing and the new software systems is 
reduced by assigning more people to rewriting when these 
parameters are larger. Note that we have an earlier rewrit- 
ing and replacement timing when 6, increases, and a later 
rewriting and replacement timing when ;E increases. This 
result appears counterintuitive. We would expect 8, and A 
to change the optimal replacement policies in the same 
way. This could be attributed to the fact that an increase in 
;1 will speed up the quality degradation process but an in- 
crease in 6, will not. 

4.3 Rewriting Effectiveness 
An increase in the superiority of the rewriting technology 
platform or productivity of the rewriting team implies that 
a more compressed schedule can be achieved more effi- 
ciently. This compression in schedule is exploited to in- 
crease the potential saving from rewriting. The simulation 
results show that this is done by starting the rewriting and 
replacement later. 

5 AN ILLUSTRATIVE EXAMPLE 
This section illustrates the application of our model to de- 
rive the optimal software replacement policies for a Cobol 
software system. The software system has an initial func- 
tional complexity of 500 FE’s (@a = 500) and the IS manager 
is interested in minimizing the total application mainte- 
nance effort over a planning horizon of 20 years (T = 240 
months). When the software system was first installed, it 
had an initial quality of -0.01 (qO = -0.01). It deteriorates in 
a step of 0.001 (4 = 0.001) for each request performed on 
the software system. The user environment generates an 
average of four requests per month (;1= 4); and each of the 
requests is assumed to entail a functional complexity of 1.2 
FP (0, = 1.2). 

The software system is currently maintained in a tech- 
nology platform with cw, = 20.3 person-hours/FE’. The level 
of familiarity of the maintenance staff with the software 
system is specified by PO = 0.005 person-hours/FP and x = 
200 person-hours. As discussed in Section 2.2, these values 
are representative of the sample of applications in [19]. 
Without replacement, the software system will require a 
cumulative maintenance effort of 142,479 person-hours 
over the planning horizon. 
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TABLE 4 
EXAMPLE PARAMETER VALUES 

TABLE 5 
EXAMPLE OPTIMAL SOFTWARE REPLACEMENT POLICIES 

Without Replacement with Replacement with 
Replacement Linear Rewriting Speed Concave Rewriting Speed 

Total Cumulative Effort 
(person-hours) 142,479 71,264 84,759 

T; (month 54 43 
2-i; (month) 66 50 

L' (person-hours/month) 383 2677 
Saving person-hours) 71,215 57,720 

The IS manager can potentially reduce this total mainte- 
nance effort by rewriting the software system with a superior 
technology platform such as a 4GL. Jones found that the 
development productivity in a 4GL software development 
environment ranges from eight person-hours/FP to 16 per- 
son-hours/FP [19]. Since the average value in this range is 
approximately 12 person-hours/FP, we set ai to this value. 
This productivity value is also used to compute the values 
of m and K. They are 0.083 FP/person-hour. The IS man- 
ager could also use this opportunity to impose strict quality 
control during the rewriting to ensure a high development 
quality for the new software system such that q1 is -0.005. 
The quality of the new software system will deteriorate at a 
rate of 0.0005 (8, = 0.0005). The programming staff are as- 
sumed to be equally familiar with the new software system 
so that h and 34 have the same values as W and x (i.e., a = 
0.005 and 34 = 200). Finally, c  takes the value 31.5 
FP/month, which we obtained in regressing S(L) against L 
using a data set in 1191 and w takes a value of 0.9 171. 

The parameter values are summarized in Table 4. 
Using this set of parameters, we derive the optimal timing to 

start rewriting (Ti), the optimal timing to replace the old soft- 
ware system (TA), the optimal size of the rewriting team (L”), 
and the potential saving derivable from the replacement using 
Propositions 1-3. These results are summarized in Table 5. 

Note that the timings of replacement in both the linear 
and concave rewriting speed cases (66th and 50th month 
respectively) are consistent with the empirical observations 
made in [19], [25], and [33] that a software system is gener- 
ally replaced after five to seven years. 

Fig. 2 depicts the growth pattern of the cumulative 
maintenance effort of the software system with replacement 
(for both linear and concave rewriting speed) against that 
without replacement. This example clearly illustrates that a 
substantial investment is required for rewriting the soft- 
ware system and the payoff for doing so may take a long 
time to realize. In the linear case, it takes about 20 months 
after replacement to “break-even” the additional effort 
spent in rewriting. In concave case, it takes 65 months to do 
so. This implies that an IS manager may inappropriately 
choose to continue maintaining the existing software system 
over replacing it if he or she does not plan sufficiently further 
ahead. However,  as our model shows, the potential saving in 
effort derivable from an optimal replacement policy could be 

highly substantial over the entire planning horizon (50% in 
the linear case and 40.5% in the concave case). 

6 DISCUSSION 
As the trend of high maintenance cost is likely to continue, it 
is imperative that more research effort be directed at under- 
standing and analyzing the means to control this cost. Gode, 
Barua, and Mukhopadhyay’s model [16] represents a first 
attempt to formalize the tradeoffs between software mainte- 
nance and replacement. We have extended their research in 
[lOI by providing a more realistic model that took into ac- 
count the user environment and the schedule of rewriting. 

This paper attempts to contribute to this line of research 
by explicitly modeling the software degradation process and 
by considering a more general problem scenario. By model- 
ing the software degradation process, we show that rewriting 
a software system with a superior technology platform alone 
may not be able to reduce maintenance cost sufficiently to 
make it economical. It should be done in conjunction with 
proper control over the quality of the new software system 
both during development and during maintenance to har- 
ness the full benefits of software replacement. 

By investigating a more general problem setting, we are 
able to derive the manpower staffing requirements for re- 
writing and the optimal rewriting schedule. These extensions 
allow us to develop a deeper understanding of the compli- 
cated tradeoffs underlying software replacement and main- 
tenance. For instance, previous research shows that an infe- 
rior existing technology platform should lead to an earlier 
replacement. Our  results show that this should be accompa- 
nied by a later rewrite, if the rewriting team is productive, SO 

that the rewriting schedule is as small as possible. 
In summary, our model yields the following managerial 

implications. 

1) Avoid complete rewrite when the application concerned is 
large. We have shown that it may not be economical to 
rewrite a large application because much of the effort 
will be expen&d on redeveloping the initial software 
functionality. In this case, an IS manager may con- 

20. The reader should be cautioned, however, that there are circum- 
stances where complete rewrite is necessary despite the software size. For 
example, a software system written in an Assembly language may need to 
be rewritten entirely if it is to be done in conjunction with the installation of 
a new hardware system that supports a different Assembly language. 
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- - - With 

Fig. 2. Cumulative maintenance effort over t ime of a software system without replacement vs. with replacement under two rewriting scenarios 
(linear and concave writing speed). 

sider other means,  such as  downsizing (or off loading) 
the software system so that it is possible to partially 
rewrite the software system in the future (see future 
research direction below). Results from case studies 
suggest  that this is a  promising avenue for reducing 
maintenance cost [30]. 

2) Organize programming staff by  application. As explained 
earlier, rewriting a  software system with better tech- 
nology platform and  tighter quality control a lone are 
insufficient to obtain the maximal gain from rewrit- 
ing. It is equally important to ensure that the mainte- 
nance  staff is familiar with the new software system 
so that the effort per  maintenance request  on  the new 
software system is as  small as  possible. One  possible 
way to accomplish this is to assign the same pro- 
grammers who rewrite the software system to its 
maintenance. This application-oriented approach has  
been  adopted by  some companies [33]. 

3) Compress the vewriting schedule as  much as  possible. Our  
model  indicates that the rewriting schedule should be  
as  compressed as  possible in order to reduce the du-  
plication of maintenance during rewriting. This 
should be  accompl ished without sacrificing the soft- 
ware quality by  assigning more product ive staff to 
rewriting ( instead of pressuring the staff to complete 
as  soon as  possible, for example).  Thus  the rewriting 
team should be  composed of staff who are familiar 
with the software system to be  rewritten. Another 
way is to adopt  proven technology platform which 
will ease  the effort of rewriting. 

4) Impose strict quality control in maintenance. W e  have 
shown that a  large deterioration rate in code quality 
of the new software system (i.e., high 4) may elimi- 

nate the intended savings from rewriting because the 
maintenance effort for the new software system may 
increase so quickly that its cumulative effort may be  
greater than expected.  Thus,  it is important for an  ap-  
plication manager  to lay down systematic mainte- 
nance  procedures for the new software system while 
planning for the replacement of the existing software 
system. 

In summary,  when planning for software replacement,  
an  application manager  must consider both the short-term 
issues such as  the technology platform to be  adopted,  the 
composit ion of the rewriting team, and  the quality of the 
new software system as well as  long-term issues such as  
plans and  procedures for controll ing the quality of mainte- 
nance  over  the planning horizon. 

Our  model  has  opened  up  several new research possibili- 
ties. The  first two are currently being pursued by  the authors. 

1) Study the efect of maintenance backlogs. Our  analysis 
has  assumed that all maintenance requests are ful- 
filled. In many  situations, not all the maintenance re- 
quests can be  satisfied. Some maintenance requests 
must be  shelved for more urgent ones.  In addition, 
some requests are not serviceable due  to technological 
constraints [25]. Our  model  indicates that deteriorat- 
ing quality may not be  enough  to justify software 
replacement.  Maintenance backlogs is another  im- 
portant reason that an  aged  software system is re- 
placed. W h e n  an  aged  software system is rewritten, 
not only the quality of the software system is im- 
proved, all the backlogs can also be  incorporated into 
the new software system. Our  model  can be  extended 
for studying the effect of backlogs by  breaking the 
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expected number of maintenance requests, A, into ful- 
filled and unfulfilled ones and assigning a penalty 
cost to each unfulfilled request. By applying similar 
optimization methods, we can study how backlogs af- 
fect the software replacement policies. 
Model an application as a collection ofsubmodules to study 
the economic impact of partial rewriting. We have sug- 
gested that partially rewriting a software system may 
be a more viable alternative to controlling the esca- 
lating maintenance effort of a large application. As 
many existing applications are complex, economic 
analysis of this strategy is imperative. We plan to de- 
velop a model of maintenance of an application as a 
collection of subsystems. We will model each incom- 
ing request as having certain probabilities of affecting 
the different subsystems, and modeling each sub- 
system as having different functional complexity and 
quality and thus require different effort per mainte- 
nance request. The timings of rewriting and replace- 
ment for each submodule can then be determined. 
Study the trade-off between development effort and initial 
software quality. We have modeled the initial quality of 
a software system explicitly, and analyzed how it may 
save the maintenance effort of a software system 
throughout its operational period. However, it is well 
recognized that greater effort must be expended to 
develop a higher quality software system. Therefore, 
a more general model for the economics of software 
maintenance should explicitly model the tradeoff 
between the saving in effort due to better quality 
software system and the development effort that is 
required to achieve a high level of quality. 
Study interactions among applications in a portfolio. We 
have assumed a single application in our model. In 
many real-life situations, however, a system manager 
has to wrestle with a portfolio of applications 1331. In 
these situations, the manager must decide how to al- 
locate a common pool of programmers to different 
applications. The scarcity of programmer resources 
gives rise to backlogs and frequent switching of pro- 
grammers from a system to another (which in turn af- 
fects their familiarity with the software system). These 
represent interesting extensions to our model. 

APPENDIX 

PROOF OF PROKSITION 1. The cumulative effort of mainte- 
nance can easily shown to be: 

E(TpT7.g) = (a,, + P&, - ?‘09,,)%?~ + 
(PO% + Yo~o)%lTv2 

2 

+ (a, + P@o - Y191) M,(T - TR) - y&$~,T,(T - TR) 

8, + emaT, c 
+ m - ,(Tv - TV.). 

Sinceif n&i>m@, 
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and 

WRJN) = 

G 
(cA,~, + yo6,)aze, > 0. 

Also 

Thus, E(TR, TN) is convex in TR and TN, and the first 
order conditions are necessary and sufficient. 

The K-T conditions for optimality are given by 

(19, - PP,)%nT; - (a1 + PFo - ~19$3, 

(Poe, + Y~~,)~~~,G + (a0 + Poe0 - Yo90)ae, - G  - P = 0; 

p(T; - T;) = 0, 

where p is a Lagrangean constant. If 

y,G,Til + 01, + P& - Y191 + 010 + PO00 - Yo90 

YA - PPm file, + ~~6, ’ 

p=O,Ti >Ti,and 

YAT 
Ti = ty16, - p,e,) + 

(01~ + Plea - ~~9~) e,a+c 
(~~6, - ple,)a - m(YA - Pl%)~2em ’ 

and 

T; = 
C a, + Poe0 - ~~9~ 

m(p,O, + yo6,)~e, - (Poem + yo60)a * 

Ifp>OthenTi=TGand 

T; = T; 

= Y,W - [(ao + Poeo - ~090) - (al + P@o - ~191)] - ,‘n 

[(poem + ~~6,) + (~3 - mJ]a 

Table A shows the results of sensitivity analysis of 
the variables Ti, Ti, TG - Ti, and L* with respect to 
the various parameters, x. 

CONDITIONS: 

D’ If /lo0m90 + a,6, + ~090So > &, then Ti, TA - Ti in- 

creases and L* decreases with x, else TG, Ti - T,* de- 

creases and L” increases with x. 

0’ If plem9+ + $ + + 6, > filem6,a2T + a,6,a + pleo61a, m 
then Ti increases; Ti - Ti decreases and L* increases 

with x, else Ti decreases; Ti -T; increases and L* 

decreases with x. 
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TABLE A 

I I Tech. staff 1 Develop. Mad. Rewriting 1 

o3 If (mazp,y,6,T + mac+p, + ma@3, - map,y,q, - aB,)e; 
-2cp,B, + cy@, > 0, then Ti increases; Ti - Ti de- 

creases with Q,, else Ti decreases; Ti - Ti increases 

Poem40 + aoso + Poeoao > &( 
m 

* 
dT, dy, > 0 and Ti increases with x. It is obvious that 

with B,. 

D4 If 2 < 2c 
om["(",+P,~~-Y,q~)-~l' then Ti increases with A, else 

Ti decreases with A. 

o5 If (mAz&yIG,T + mha,P, + mJ&e, - mADIY1ql - a,o,)e: 
-2@,e, + cy16, > 0, then L” increases with 0,. 

Ti - Ti also increases but L” decreases with x. 

IMPLICATION 5. Ti increases, Ti - Ti decreases and Lx in- 

creases with ,L$ and TG is independent of pi. 

PROOF. Obvious from the expressions for Ti, Ti, TG - Ti, 
and L”. 

Based on the expressions for Ti, TG , and L”, the re- 
sults presented in the entries of the sensitivity analy- 

IMPLICATION 6. Ti is independent of ‘/1. If j31emq1A + $ 

sis table can be proven as follows: +$ > &e,G$T + a,6,;1 t p1e06,a, then l-i in- 
m 

IMPLICATION 1. TG, TG - Ti decreases and L” increases with creases; Ti - Ti decreases and L” increases with x, 

oc, and Ti is independent of q. else Ti decreases; TG - Ti increases and L* decreases 

PROOF. Obvious from the expressions for Ti, Ti, Ti - Ti, with z. 

and L”. PROOF. 

IMPLICATION 2. Ti increases, Ti - Ti decreases and L* in- dT* 

creases with ai and Ti is independent of oc,. 
-= 
dy: 

-p16,e,a2T + plemqla - a,6,a - pleo6,a t J$ + 2 

(YA - eiJ*a~ 
PROOF. Obvious from the expressions for T,*, TG, TG - Ti 

and L”. 
Therefore, if plemqla + $ + f 6, > p,e,6,2T + 

* 

IMPLICATION 3. Ti, Ti - Ti decreases and L” increases with 
@,A + p,Bo6,il, 2 > 0 and the results follow. 

PO and T,* is independent of PO. IMPLICATION 7. Ti increases, Ti - T,* increases and L” de- 

PROOF. Obvious from the expressions for Ti, Ti, Ti - Ti, 
and L”. 

IMPLICATION 4. Ti is independent of x. If poe,qo + a,6, 
c6, 

+Poeo60 > mae, ’ then TG, Ti - Ti increases and L” 

decreases with “/o, else Ti, TG - T,* decreases and Lx 

increases with x. 

PROOF. It is obvious that Ti is independent of x  from the 
expression of T,*. For TG, since 

LIT; -= 
dYcl 

creases with q. and T,* is independent of qo. 

PROOF. Obvious from the expressions for Ti, TA, Ti - T;, 
and L”. 

IMPLICATION 8. Ti decreases, TG - Ti increases and L” de- 

creases with 91 and TG is independent of 91. 

PROOF. Obvious from the expressions for Ti, Ti, Ti - TX*, 
and L*. 

IMPLICATION 9. Tc decreases, TG - Ti decreases and ‘z* in- 

creases with 4 and T,* is independent of 6. 

PROOF. Obvious from the expressions for T,*, TA, TG - Ti, 
and L*. 

IMPLICATION 10. T; increases, TG - Ti decreases and L” 

icreases with S, and TG is independent of 4. 

PROOF. From the optimality condition, 

Therefore if 
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Differentiate w.r.t. 6, gives 

-y,a%,T + yla%,T; + (~~6, - pp,)a%, g = 0, 
1 

The result of T’ - Ti follows from the results of Ti 
and Ti. 

For I,*, since 

or 

dT; 
d6,= 

Yl(T - q 

(Y14 - PP,) ’ O. 

Therefore the results follow. 

IMPLICATION 11. TG decreases, T;f increases, TG - Tl de- nT;(T; -T;;) - 8, 

creases and L* increases with 8,. F!? 1 

PROOF. It is obvious from the expressions for Ti, Ti, 
Ti - Ti . For L* * f * 

d(T;; - T;) 
ispositiveif$>O,$<O,andp<O. m m m 

dL * -= 
d@O 

(T;-T;)-(6$,+6$lT;) de IMPLICATION 13. Ti, (Ti - Ti) decreases and L* increases 
0 

with A. If A < 2c 
m(TG - Ti)’ 

e,[m(a,+P,e,~y,q,)~ll ’ T; increases with A, 

else Ti decreases with A. 

Since g > 0 and L IICT$‘iTR) < 0, therefore $ > 0 and PROOF. From the optimality condition for TG, 
0 0 

L” increases with Bo. qPlp, + Yc+$)a~,T; + (PO% + Yo~o)a2% s 
IMPLICATION 12. Ti decreases with 0,. If (mA2&y1GlT + 

mila,p, + dpf - m&y,q, - ap,x$ - 2cP,@, + cY+$ > 0, 
+ (a, + Po4j - Yo90)%l = 0, 

then T,* increases; Ti - T,* decreases with 0,, else T,* 

decreases; Ti - Ti increases with 0,. 

PROOF. Differentiate the optimality condition for Ti w.r.t. 

6, gives 

or 

(voe, + Yo6,)W + (~~0, + Yo6,p, g 
m 

+ (a0 + soeo - Yo90)a = 0, 

or 

dT; (woe, +Y~~,)~TG +(a0 +Poeo -yo9J -=- 
denI (Po%l + Yofio)% 

which is negative and so TG decreases with 0,. 
For T,*, since 

therefore, 2 > 0 if m 

2(p,e, +y&&J; +(Po% +Yo~o)en~ 

+ --& - (poem + yo6,p,T; = 0, 

i.e., 

dT; 
ax = -T; - 

C 

m(P,e, + Yo6,)a2c 
< 0. 

Similarly, 

and hence d(T;-T,: 7 < 0. 
For L*, 

d(T,, - T;) 
dL” dk 

-K.= m(Ti - T;)’ 

emT;(T;; -T;) - '0 
d(T; - T;) 

da 
= 

m(T; -T;) 
1. 

* * 
Since %!@d < 0 and 
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+ T;T; + T; 
C 

m(P,% + Yofio)a2.28, I 
> 0, 

therefore dL* > 0. da 
For T,“, since 

dT,*- 1 

da - (Y$, - P,%)~2 [ 
-(aI + p. - ~~9~) + A + & I m 1 

therefore if A < 8, bal+;,Cgo-ylql l-11 ’ then Tl increases 

with A, else T,* decreases with il. 

IMPLICATION 14. Ti, Ti - T,* increase with c. T,*, L" decrease 
with c. 

PROOF It is obvious from the expressions for Ti, TG, 
TG - T,*, and I”. 

IMPLICATION 15. TG, Ti -T,* decrease with m. T,*, L" in- 
crease with m. 

PROOF. From the expressions of T,* and Ti, it is obvious 
that Ti increases and TG decreases with m. 

Since Ti decreases and Ti increases, therefore 
Ti - TX* decreases with m. 

For L", 
dL * 
dm= 

' e,,Ag m(Ti -T;) -(e, + e,aT;) 
i 
(Ti - Ti) + m d'Tii ") 

1 

m2(T; -T;) 

+A 
m2 

From the optimality conditions 

dT; C 
m dm = - (poem + ~060)mAz8, ' 

dT; e,a+c 
mdm = (~~6, - pp,)mA%, 

Therefore 

PROOF 01; PROPOSITION 2. Since 

E(T,*,T;) = @ O  + Poe0 - YoYo)w,& + 
(poeti + Yo6,)a24A2 

and after some simplifications, becomes 

E(T,*, T;;) = _ he, + ~60)a2H,, TG2 

(Y14 - Plem)n’@?n - 
2 (T-T;) 

8 a+c 
+LT+$ m 

The maintenance effort throughout the whole plan- 
ning horizon without rewriting is given by 

C,(T) = J,‘J4,go(F,(t)r Q,(t))dt 

= (a0 + PO% - Yo90)qJ + 
(PO% + Yo~o)a2% T2 

2 
Therefore, the potential saving for rewriting the soft- 
ware is 

sav = C,(T) - E(T;, T;) 

= (a0 + poOo - yoqo)?d3mT + (poem + r;,'")a2em T2 

+ (PO% + Yo~o)en T*2 
2 

+ (Yf? - PP?J2% * 2 
2 (TV- T ) R 

%I 

= 2(poe, + ~~6,) [ 
L-(ao +ooeo -~~9a!] 
maem 

aze, 
+ 2(y,6, - p,e,) y161T + i 

(a, + he0 - ~~9~) * ema + c 
a d*e, 1 

+ [(a0 - 4 + (PO - PIP0 - (~7~ - 759,)]w2 

00 --. m I3 

PROOF OF PROPOSEION 3. We can treat E(T,, TN) as the sum 
of the three functions: 

Since $- > 0, therefore g > 0. 
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i.e., E(T,, TN) =  E(T,) +  E(TN) + R(T,, TN). 
The  second partial derivatives are 

J2EPR) 
2  = (~~4 - m$*, 

ar, 

3  =  (poem + yo6,)a*, 

a’R(T,,T,) 1  1  

Jc 
=,(~-l,[“+~a~~+‘(~)2(~~-~Ri’-~ 

+ 4;4fe0 +~aT~~+~!$~~N -T,)-i 

1 
J2R(T,, T,) w ar,ar, (TN - T,)+ 

-J,~-l) [eO+~a~~-~~(‘*-iR)-~ 

Since ES, - p10,,, >  0, therefore 9  > 0  and  it is ob-  

d2E(TH) a’R(T,,T,) d2R(TJN) vious that 2, 
ar, 212  mx ar, 

are all positive. 

Let Det(H(E(T,, TN))) be  the determinant of the 
hessian of E(T,, TN). Since 

Def(ff(E&,T,))) =  

J’E(T,) 
ar,‘+ 

J’R(T,, TN) 
ar,’ 

d*E(T,) d*E(T,) d2E(Tx) d*R(T,, TN) +  d’R(T,, TN) d*E(T,) 
=-jjcy’-gy” 

ar, JG G Tiy$- 

+  ~‘X(T,,T,) d*R(T&T,) 

Jr; CJq; 

Since d’E(T ) d*E(T ) t’*R(T, ,T, ) 
2I -&’ -I 

mx ar,’ 
and  2  d2R(T~rT~) are all 

ar, 
positive and  

1  
0  

Therefore Det(H(E(TR, TN))) >  0  which shows that 
E(T,, TN) is convex and  the solution to [Gl exists and  
is unique. 

Let p  be  a  Lagrangean constant. The  K-T condit ions 
for [Gl are given by  

(T; -T;+ + p  = 0; 

1 
(a, + Poe0 - Yo90)aem + (Poe, + ~o~o)~%A + 0 - =) 

1 

8, + emaT;  

[ 1  

' 
K(T; - T;) - ' = '; 

p(T; - 7-G) = 0. 
Consider the case when Ti =  TG. W e  can see that for 
W<l 

Therefore, optimal solution cannot  occur  when 
Ti =  TG, thus the optimality condit ions cor respond to 
p  =  0  and  are given by: 

1 
O-l 8  a  *(T ;; - T ;;)1-: 

- (-$l) 8, +  8  aT; L 1  w Km (T;-T;) : 

+ (a, + plea - Y14Jae, + uv2e,T. 0 
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