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Abstract

For most ¯rms, new product development is the engine for growth and pro¯tability. A ¯rm's

new product success depends on its ability to manage the product development process in

a way that employs scarce resources to achieve the goal of the ¯rm as well as the speci¯c

project's objectives. Simple and measurable performance metrics have been proposed and

applied in order to monitor and compensate the development teams. In this paper, we develop

a modeling framework in order to analyze the implications of setting managerial priorities

for three commonly used new product performance metrics: 1) time-to-market, 2) product

performance, and 3) total development cost. We model new product development as a `product

performance production' process that requires scarce development resources. Setting a target

for development teams for each of these performance metrics can constrain this performance

production process and thereby a®ect the other performance metrics. We model the constrained

process as a restricted case of a general process which does not have such constraints.

We benchmark each constrained process against the optimal, unrestricted process with respect

to the level of the resource intensity employed during the development process, the time-to-

market, and the performance level of the new product at launch. We show that an overly

ambitious time-to-market target leads to an upward bias in resource intensity usage and a

downward bias in product performance (i.e., evolutionary product innovation.) In addition, our

results suggest that the target time-to-market approach may ignore the e®ect of cannibalization

and thus can perform suboptimally if a signi¯cant degree of cannibalization in the existing

product market is expected. Given a target product performance, we show that the coordination

between marketing and R&D is easier because the resulting development resource intensity and

time to market decisions becomes separable. However, an overly ambitious product performance

target leads to an upward bias in the development resource intensity and a delayed product

launch that misses the window of opportunity. Finally, we show that the target development

cost approach can lead a downward bias in product performance and a premature product

launch. The above analyses are performed for a monopolistic ¯rm and they are extended to

passive and active competitive environment.

Key Words: New product development, product performance, time to market, development

costs, performance metrics
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1 Introduction

For most ¯rms, new product development is strategic because it can signi¯cantly a®ect their

competitive position in the marketplace. A ¯rm's new product success depends on its ability to

employ scarce development resources to deliver high-performance products in a timely fashion.

E®ective management of the development process is di±cult due to its underlying complexity

and the wide range of product performance criteria that it can in°uence. Three critical deter-

minants of new product success that are directly a®ected by the management of timing and

resources are: 1) time-to- market, 2) product performance, and 3) total development cost (Clark

and Fujimoto, 1991). These determinants of new product success, however, are interrelated and

they may con°ict. Firms must consider potential tradeo®s among them. In Cohen, Eliashberg,

and Ho (1996), we introduce a model for studying the tradeo® between time-to-market and

product performance. In this paper, we extend our previous work by allowing the level of de-

velopment resource to vary with time and we develop a more general modeling framework that

simultaneously considers the potential tradeo®s among all three determinants of new product

success.

Indeed, Clark and Fujimoto (1991) empirically show that the three crucial determinants of new

product success are time to market, product performance and development resources. (For a

comprehensive review of other determinants of new product success, see Krishnan and Ulrich

(2000)). Previous research has considered only tradeo®s among a subset of these determi-

nants. The economics R&D race literature assumes that the level of product performance is

¯xed and examines the tradeo® between time-to-market and development resources (Kamien

and Schwartz, 1982; Reinganum, 1989). This tradeo® exists because `crashing' a project costs

money (Mans¯eld, 1988). Time-to-market has also been an active area of research in mar-

keting (see, for example, Mahajan, Muller, and Kerin, 1984; Wilson and Norton, 1989; Lilien

and Yoon, 1990). This stream of research, however, often does not consider explicitly product

development-related issues. For example, it is often assumed that the development cycle and

investment are negligible. Our model aims to integrate these separate streams of literature.

We conceptualize new product development as a `product performance production' process

that requires scarce development resources. Under a control-theoretic formulation, the level of

development resource intensity and time-to-market are control variables that can signi¯cantly

in°uence the product performance (the state variable), which in turn a®ects the market share
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and life-cycle pro¯ts.

In practice, many ¯rms focus their attention primarily on one or two of the success determi-

nants; few place equal emphasis on all three. In mature industries, for example, managers

tend to focus primarily on the total development cost. Start-up ¯rms with limited development

budget may also want to focus on the total development cost. In high-tech industries, on the

other hand, new product evaluation is more likely to be based on product performance and the

time-to-market (e.g., computer equipment). Most ¯rms set strategic targets for one of these

metrics in order to control the new product management process. We use our model to study

the implications of setting such managerial targets for each of the three determinants of success.

Setting a target on time-to-market has become a commonplace strategy because of the increas-

ingly compressed product life-cycles in many industries. For example, in response to competitive

pressures, Ingersoll-Rand recently set the time-to-market for all of its new products under de-

velopment in its industrial tools division to be one year (Cohen and Ho, 1996). We believe

that the time factor must be put into context and that a short time-to-market must be weighed

against its associated costs and potential impact on product performance. In industries where

there are natural product introduction times (model year and season), ¯rms may have less

freedom to choose time-to-market. Examples include automobiles (beginning of the year), toys

(Christmas season), and apparel (fashion season). In these cases, multiple targets can be set

and studied using the proposed model.

A product performance target is often derived from a market share target. An ambitious prod-

uct performance target can shape the development process in a way that leads to a revolutionary

product introduction. For instance, Eastman Kodak sets product performance target to ensure

market leadership by requiring their new product development teams to deliver a ¯xed incre-

ment of superiority relative to the best product in the market (Ho, 1993). The same approach

can be also used by followers in a product market who wish to catch up with the leader. This

approach may also be relevant in situations where ¯rms race to overcome a certain technology

barrier in order to develop a better new product (e.g., a new drug for a certain disease). It is

certainly a chief metric in situations where product safety and liability are at stake (e.g., drugs,

airplanes).
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Setting a target for total development cost can be a result of an internal budget allocation

process. In situations where development funds are limited, new product development teams

may be directed to manage the development process in a manner that will not exceed the de-

velopment cost budget. This approach is particularly common when the primary input to the

development process is engineering labor input and the required engineering know-how is so

specialized that it is impossible to hire additional people with the required know-how. In such

cases, the development cost is constrained by the availability of the engineering personnel. It

is also observed often in developing entertainment products such as movies.

The implications of setting speci¯c managerial priorities on these critical determinants are un-

clear. We study the e®ect of setting a target on each of the determinants by modeling the

resulting development process (with the targets) as a restricted case of a more general uncon-

strained development process. We benchmark the constrained development process against the

globally optimal (unrestricted) process with respect to the level of resource intensity employed

during the development process, the time-to-market, and the performance of new product at

launch. We employ pro¯tability as the common goal. Systematic deviations from the uncon-

strained process are highlighted so that ¯rms who use the constrained processes can become

aware of their potential impact.

The paper is organized as follows. In Section 2, we introduce the model formulation and

validate the underlying model assumptions. Section 3 provides conditions to characterize the

optimal policy under unconstrained development process and the three constrained development

processes. Section 4 discusses the results and outlines future research directions.

2 Model Formulation

Figure 1 illustrates the basic problem scenarios (see Cohen, Eliashberg, and Ho, 1996 for a de-

tailed justi¯cation and applicability of such scenarios). There is a ¯xed window of opportunity,

T , beyond which the product has no value. This window of opportunity is divided into two

broadly de¯ned stages: the Development stage and the Marketing stage. The ¯rm is assumed

to have an existing product with performance A . At time T , a new product with performance0 P

A(T ) is launched. It is assumed that the new product completely replaces the existing prod-P
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uct. The ¯rm's objective is to maximize pro¯t from existing and new products over the time

window T . There are two strategic decisions, 1) choice of launching time, T , and 2) selectionP

of a level of development resources over time, X(t), to achieve an appropriate level of product

performance, A(T ). These decisions are linked, since a high level of development resourcesP

will give rise to a faster development process. Under the setup illustrated here, a day spent in

the Development stage means a delay of one day in the Marketing stage for the new product.

[ INSERT FIGURE 1 HERE ]

The level of development resources is measured in dollars. It is the strategic development

decision. During the development stage, the development team improves the performance of

the product. Enhancements in performance are achieved by climbing a \performance ladder."

Let the performance of the product at time t be A(t). The key relationship in our model

framework is the speed of performance improvement. Speci¯cally, we de¯ne speed of increment

for performance as follows:

dA(t) ®_= A(t) = K ¢X(t) ; (2.1)
dt

where

X(t) = level of development resource at time t,

® = resource productivity parameter,

K = constant of proportionality for speed of performance improvement. It is

proportional to the level of capital investment in the development technology.

There are diminishing returns to resource input, and thus 0 < ® < 1. Equation (2.1) is in-

spired by previous models assuming that research productivity is measured by rate of research

output (e.g., number of patents per year) and is driven by resource intensity (see for example,

Griliches, 1994). The performance improvement function is of the Cobb- Douglas form. In Ho

(1993) and Cohen, Eliashberg and Ho (1997), we provide empirical evidence for such functional

form, drawn from automobile, packaged software, and packaged goods industries. It suggests

that the Cobb-Douglas form is a reasonable approximation for relating the speed of performance

improvement to variation in the rate of resource input (in particular engineering labor input).
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Some research suggests that selecting a target for the development team m (either time to mar-

ket, product performance, or total development cost) may generate the following psychological
1bene¯ts (Foster et al. 1985a, 1985b, Cooper, 1994, Cooper and Tanaka, 1997) :

1. Setting a target may lead to higher awareness, peer-pressure, visibility, and motivation so

that the members of the development team become more productive.

2. Selecting a target may lead to a higher `e®ective' resource intensity because members of

the development teams work harder via over-time in order to meet the target.

Capturing these psychological bene¯ts would entail a good speci¯cation of how the resource

productivity parameter changes over time (i.e., ® becomes ®(t)). We are not aware of an

empirically well-grounded speci¯cation. Consequently, we leave this for further research.

Based on (2.1), the performance of the new product at time t is:

R t ®A(t) = A + K ¢X(s) ds: (2.2)0 0

2Assuming for a moment that the level of resource is ¯xed (X(t) = X), equation (2.2) implies

that the speed of performance improvement is invariant with time. That is, performance of the

new product at its launching time, A(T ), increases linearly with time to market, T :P P

®A(T ) = A +K ¢X ¢ T : (2.3)0P P

In order to investigate the empirical validity of (2.3), four project managers at a company site

were asked to provide estimates for the expected time to market under a number of hypothetical

product performance levels given a ¯xed development resource level (for details on data collec-
3tion, see Ho, 1993). Table 1 provides the managers' estimates. Data have been normalized to

1A reviewer has pointed out that the e®ects of the metrics may actually be felt over time so one should

consider multiple new product generations in order to fully capture their bene¯ts. Clearly, our model captures

only the `steady- state' or `equilibrium' behavior.
2In the analyses of the optimal policies (section 3), we prove formally that such a stationary policy of employing

the level of resource is indeed optimal.
3The questionnaire was constructed after several rounds of structured interviews with the project members.

Each project manager was asked to provide six estimates for the revised time to market given the same level of

resources. To obtain more accurate estimates, project managers were probed about the reduced or additional

development associated with the revised new product performance level. Our methodology is similar to that of

Mans¯eld (1988).
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4the values of current targets.

[ INSERT TABLE 1 HERE ]

Figure 2 shows the results of regressing T against A(T ). The statistical signi¯cance of theP P

parameter estimates is indicated by asterisk and the standard error is given in the parentheses.

Given the statistically signi¯cant parameter estimates for T and the high adjusted R-squaredP

values across all projects (from 0.83-0.98), it appears that product performance and time-to-

market are linearly related, at least in terms of managers' expectations, for the range or product

performance of interests. In summary, the results of this anecdotal study provide some empirical

support for performance improvement equation (2.3).

[ INSERT FIGURE 2 HERE ]

The ¯rm's market share is a function of both its own product performance and the product

performance of its competition. A reasonable market share function, frequently used in the

marketing literature, is the attraction model (Bell, Keeney, and Little, 1975). The attraction

model has been employed extensively in marketing and has received empirical support (See

Cooper and Nakanishi, 1988 for a good review). The net revenue rate at time t for the ¯rm

that develops and introduces the new product is the product of the product category demand

rate, the pro¯t margin, and and the ¯rm's market share:

8 A0>> R ¢ ; 0 · t < T ;> 0 P>> A +A0 c<
R(t) = (2.4)>>> A(T )> P> R ¢ ; T · t < T;: 1 PA(T ) +AcP

where
4This helps to ensure con¯dentiality of the data. Moreover, the project managers appeared more comfortable

at providing data that used current targets as reference points.



7

R(t) = net revenue rate at t for the ¯rm,

R = product category net revenue rate for the existing product,0

R = product category net revenue rate for the new product,1

A = performance level of the existing product,0

A(T ) = performance level of the new product,P

A = competitive product performance level during the time horizon.c

The cumulative development costs of the new product at time t are:
Z t

TC(t) = X(s)ds: (2.5)
0

The ¯rm's cumulative pro¯t at time t is determined as follows,

T¦(t) = TR(t)¡ TC(t); (2.6)

where TR(t) and TC(t) are total revenues and costs at time t, respectively. The total revenue

function is given by:
Z t

TR(t) = R(s)ds: (2.7)
0

where R(:) is given in (2.4). The ¯rm's decision set is4 = fX(t); T g. We de¯ne the cumulativeP

pro¯t function, T¦(±; T ), as the total pro¯t, by end of the window of opportunity, with decision

± 2 4. The ¯rm's decision problem can be stated as

¤ ¤ ¤ ¤maxT¦(±; T ) = TR(± ; T )¡ TC(± ; T ) = T¦ (± ; T ): (2.8)
±²4

The combination of equations (2.1) through (2.7) generates an explicit representation of the

¯rm's cumulative pro¯t by the end of time horizon. This substitution yields:

[G1]
·

A0¤ ¤T¦ (± ; T ) = max R ¢ ¢ T0 P
±²4 A +A0 c #R ZT ®P TPA + K ¢X(s) ds0 0+R ¢ ¢ (T ¡ T )¡ X(s)ds : (2.9)R1 PTP ® 0A + K ¢X(s) ds+A0 c0
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The optimization problem [G1] can be reformulated as a an optimal control problem with state

variable, A(t), and two control decisions, X(t) and T (Kamien and Schwartz, 1982). In optimalP

control terminology, the salvage term, ©(T ;A(T )) is de¯ned as follows:P P

A A(T )def 0 P©(T ;A(T )) = R ¢ T + R ¢ ¢ (T ¡ T ): (2.10)0 1P P P PA +A A(T ) +A0 c P c

The optimization problem [G1] becomes:

[G2]
Z TP

max T¦(X(t); T ) = ¡X(t)dt+ ©(T ;A(T )) (2.11)P P P
0

®_subject to A(t) = K ¢X(t) ; (2.12)

A(0) = A ; ¯xed; (2.13)0

T ; A(T ); are free: (2.14)P P

3 Analyses of Optimal New Product Development Policies

3.1 The Unconstrained New Product Development Process

The ¯rst proposition concerns the structure of the optimal level of resource intensity in an

unconstrained development process (i.e., no restrictions on controls).

¤ ¤Proposition 1 : The optimal level of resource intensity is time invariant, i.e, X (t) = X ; 8t.

Proof: See Appendix.
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The intuition behind this result is based on two observations. First, the performance produc-

tion process exhibits diminishing return to scale (i.e., the speed of performance improvement

is strictly concave in the resource intensity). Thus, the average of the speeds of performance

improvement at any two resource intensity levels is strictly smaller than the speed of perfor-

mance improvement at the average of the two resource intensity levels. Second, the performance

of the new product before launch has no implication on the life-cycle pro¯ts. That is, for a

given level of product performance at launch, the evolution of the product performance during

development does not matter as long as it begins with the same initial product performance.

These two observations explain the above structural (stationarity) result.

The same result can be generalized to a new product development process that has multiple

stages as long as the performance improvement over stages are additive in nature. Here, it

can be shown that the level of resource intensity at each of the development stages should be

constant across time if it is diminishing return to scale but di®erent stages can have di®erent

levels of resource intensity (see Ho, 1993).

Having established formally that the optimal level of resource intensity is time invariant simpli-

¯es the mathematical derivations greatly. Since resource intensity is stationary (i.e., X(t) = X),
R T ® ®Pwe have A(T ) = K ¢X(t) dt = A +K ¢X ¢T . Consequently, we can express the salvage0P P0

®term (©(T ;A(T )) in terms of X and T explicitly. Substituting A(T ) = A + K ¢X ¢ TP P P P 0 P

into equation (2.10), we have:

®A A +K ¢X ¢ T0 0 P©(T ;X) = R ¢ T + R ¢ ¢ (T ¡ T ): (3.1)P 0 P 1 P®A +A A +K ¢X ¢ T +A0 c 0 cP

The second proposition characterizes the globally optimal policies.

Proposition 2 : Under the unconstrained development process, the optimal level of resource
¤ ¤intensity (X ) and time to market (T ) are jointly characterized by following optimality con-P

ditions:

¤ ® ¤R ¢A 1 A +K ¢ (X ) ¢ T +A1 c 0 c¤ ¤ ¤P¢ (T ¡ T ) = ¢ [ ] ¢ [X ¢ T ]; (3.2)P P¤ ¤¤ ® ¤ ®A +K ¢ (X ) ¢ T +A ® K ¢ (X ) ¢ T0 cP P
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¤ ® ¤A +K ¢ (X ) ¢ T A 1¡ ®0 0 ¤PR ¢ ¡R ¢ = X ¢ : (3.3)1 0¤¤ ®A +K ¢ (X ) ¢ T +A A +A ®0 c 0 cP

Proof: See Appendix.

The above optimality conditions can be interpreted as follows. The ¯rst optimality condition

(3.2) speci¯es a condition relating to the competitive's cumulative net revenue after product

launch. It states that the resource intensity and time to market should be chosen such that the
¤competitive's cumulati

ve net revenue after product launch (during the time window T ¡ T )

P
¤ ¤(the left-hand-side) is equal to a factor times the total development cost (X ¢ T ) (the lastP

term of the right-hand- side). This factor is the ratio of the total product performance in
¤ ® ¤the market after launch (A + K ¢ (X ) ¢ T + A ) to the product of the increase in the0 cP

¤ ® ¤¯rm's product performance (K ¢ (X ) ¢ T ) and its resource productivity parameter (®). ThisP

optimality condition suggests that a compression of product life-cycle (i.e., a decrease in T ) will
¤ ¤be accompanied by either a lower total development cost (i.e., a smaller X ¢ T ) or a lowerP

¤ ® ¤level of product performance improvement (i.e., a smaller K ¢ (X ) ¢ T ). For a ¯xed level ofP

resource intensity, this means an early and more evolutionary product innovation.

The second optimality condition (3.3) relates the increase in the ¯rm's net revenue rate after

product launch (the left-hand-side) to the optimal resource intensity. It states that the former

is a factor times the latter and the factor is the ratio of one minus the resource productivity

parameter and the resource productivity parameter. Consequently, a ¯rm that has an attractive

existing product (high A ) will have a lower optimal resource intensity and a longer time to0

market. In other words, an attractive existing product reduces the need for the ¯rm to rush to

market by employing a higher level of resource intensity.

Another way to interpret the two optimality conditions is to apply Dorfman-Steiner (1954)

theory on static monopolistic optimization. Recalling the de¯nition of the salvage term in

equation (3.1), the elasticities of the net revenue with respect to the decision variables (time to
±© ±©
© ©market (T ) and resource intensity (X)) are given by e = and e = , respectively.P T X±T ±XP P

XTP
±© ±©¤ ¤At optimality, = X and = T . Thus, the two elasticities are identical and given byP±T ±Xp¤ ¤X ¢TP . That is, at optimality, the elasticities are both equal to the total development cost¤ ¤©(T ;X )P

per unit of net revenue.
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^3.2 The Target Time-to-Market (T ) Development ProcessP

The target time-to-market development process is equivalent to setting T equal to or less thanP

^a particular value T , in problem G2. We consider the interesting case where the ¯rm sets anP
¤^ambitious (accelerated) target for time-to-market (i.e., T < T ).P P

Proposition 3 characterizes the optimal level of the development resource under the target
Ttiming development process. It is denoted as X .

Proposition 3 : Under the target time-to-market development process, the optimal level
Tof development resource (X ) is characterized by the following optimality condition:

T ® ^R ¢A 1 A +K ¢ (X ) ¢ T +A1 c 0 cP T^ ^¢ (T ¡ T ) = ¢ [ ] ¢ [X ¢ T ] (3.4)P PT ® T ®^ ^®A +K ¢ (X ) ¢ T +A K ¢ (X ) ¢ T0 P c P

Proof: See Appendix.

Unlike the unconstrained development process, the target timing development process has only

one optimality condition. This optimality condition is similar to the optimality condition (3.2)
¤^except we have the term T instead of T . If the ¯rm sets an ambitious target for time toP P

¤ T ¤^market (which is common in practice) so that T < T , it can be shown that X > X andP P
T ¤ 5A(T ) < A(T ). Thus we expect to see a systematic upward bias in the development resourceP P

intensity and a more evolutionary product performance under the target timing development

process.

T ¤ T ¤Comparing X with X , we note that X is not a function of R and A , whereas X is.0 0

This suggests that the target time-to-market development process can be seriously °awed in

situations when the ¯rm has an existing product that has a high net revenue rate. That is, the

target time-to-market development process fails to account for the cannibalistic e®ect of new

product on the existing product.

5 D^It follows from the fact that the left-hand-side is decreasing in T and increasing in X and the right-hand-P

D^side is increasing in T and decreasing in X .P
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Indeed, Cohen and Ho (1996) investigated strategies of several new product launches by an

industrial equipment ¯rm. They observed that a short time to market target across all product

launches can be problematic. This is so because the approach fails to account for di®erences in

market characteristics especially the degree of success of the existing products. Consequently,

the new product launches did not meet the ¯rm's expectation of success.

Similarly, we can interpret the above optimality condition using the concept of elasticity. The
±©
©elasticity of the net revenue with respect to resource intensity (X) is given by e = . AtX ±X
X

T ^X ¢T±© P^optimality, = T and hence the elasticity is given by .P T^±X ©(T ;X )P

^3.3 The Target Performance (A) Development Process

The target performance development process is equivalent to constraining the state variable
^A(t) to be equal to or greater than a ¯xed value, A, in problem G2. We consider the interesting

¤^case of A ¸ A(T ) where the ¯rm sets an ambitious performance target.P

Proposition 4 : Under the target performance development process, the optimal level of
PerfPerfresource intensity (X ) and time to market (T ) are given by the following closed-formP

expressions:

^ AA 0R ¢ ¡R ¢1 0^ A +Ac0A+APerf cX = ; (3.5)1( ¡ 1)®

1 ®^(A¡A ) ¢ ( ¡ 1)0Perf ®T = : (3.6)P ^ AA 0 ®K ¢ [R ¢ ¡R ¢ ]1 0^ A +A0 cA+Ac

PerfIn addition, total development cost, TC, as a function of the optimal time to market TP
when the size of the development team is chosen optimally, is given as follows:

1Â¡A0 ®[ ]KTC = : (3.7)1¡®Perf
®[T ]P

Proof: See Appendix.
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The structure of the optimal new product development policy is interesting. Given a product
PerfPerf^performance target A, the strategic decisions X and T become separable. In otherP

PerfPerfwords, X is not a function of T and vice versa. This suggests that once a strategicP
^target level of performance (A) is chosen, the timing and level of resource intensity decisions

can be decentralized. In this respect, the target performance development process has an edge

over other development processes because it requires less coordination between the marketing

and R&D functions.

¤ Perf ¤ 6^If A > A(T ), then X > X . Thus there is systematic upward bias in the developmentP

resource intensity under the target performance development process. Note that the optimal
Perfresource intensity under the target performance development process X is a not a func-

tion of K, whereas it is under the unconstrained development process (compare equations (3.2)

and (3.5)). This suggests that the development resource intensity under the target performance

development process can be seriously biased when the level of capital investment in the develop-
Perf ¤ment technology changes rapidly. From equation (3.6), it can be easily shown that T > TPP

under most combinations of parameters. Thus, the target performance development process

may lead to delayed product launches that miss the window of opportunity.

Proposition 4 has several implications that can be obtained via standard comparative statics

analyses. It implies that the optimal resource intensity should be larger if the target level of
^product performance (A) is high. Put di®erently, a revolutionary new product should be ac-

companied by a more intense development resource strategy. The optimal resource intensity

increases with the product category net revenue rate of the new product market (R ). Also, it1

increases with the labor productivity parameter (®). It decreases, however, with the product

category net revenue rate of the existing product R , and the performance level of the existing0
Perfproduct (A ). The optimal time-to-market, T , decreases with the product category net0 P

revenue rate of the new product market (R ), the labor productivity parameter (®), and the1

constant of proportionality for speed of performance improvement (K). It increases with prod-

uct category net revenue rate of the existing product R .0

6 Perf ¤ ¤^This follows directly from equation (3.5). Note that X = X if A = A(T ).P
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Since 0 < ® < 1, total development cost, TC in (3.7), is a decreasing convex function of time

to market. This result links our work with the economics/R&D race and PERT/CPM liter-

atures. The R&D race literature assumes that ¯rms pursue a ¯xed performance target and

that development cost is convex in time to market. The PERT/CPM literature shows that for

a given R&D project complexity, and if each separate project activity has a linear time-cost

tradeo®, then total development cost is a convex function of time to market (Fulkerson, 1961;

Rosenbloom, 1964). Proposition 4 provides an analytical basis for this convex cost relationship.

The target performance is frequently employed by companies where product liability is crucial

to the company's reputation and survival (e.g., pharmaceutical, aircraft manufacturing). This

extreme emphasis on performance involves numerous and rigorous product testing that lead to

extended time to market. This often leads to less than optimal pro¯tability. The gap between

actual and optimal pro¯tability represents the cost of insurance the ¯rm bears to protect itself

from a product liability suit.

^3.4 The Target Development Cost (TC) Process

R TPThe approach is similar to the globally optimal procedure [G2] except that the term X(t)dt0
^is constrained to be equal to or less than TC. We consider the interesting case of a limited

¤ ¤^budget where TC < X ¢T (i.e., under spending). Indeed, Ming and Eliashberg (2000) observeP

under-spending behavior on product development in the pharmaceutical industry.

Proposition 5 : Under the target development cost process, the optimal level of resource
D Dintensity (X ) and time to market (T ) are characterized by the following optimality condi-P

tions:

® D 1¡®^A +K ¢ (TC) ¢ (T ) A0 0PR ¢ ¡R ¢1 0D® 1¡®^ A +AA +K ¢ (TC) ¢ (T ) +A 0 c0 cP
® D ¡® D^K ¢ (TC) (T ) ¢ (T ¡ T ) R ¢ A1 cP P= (1¡ ®) ¢ [ ] ¢ [ ]; (3.8)

D D® 1¡® ® 1¡®^ ^A +K ¢ (TC) ¢ (T ) +A A +K ¢ (TC) ¢ (T ) +A0 c 0 cP P
^TCDX = : (3.9)DTP

Proof: See Appendix.
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The optimality condition (3.8) relates the increase in the ¯rm's net revenue rate (the left-hand-

side) to that of the competitive's net revenue rate (the last term of the right-hand-side) after

product launch. The former is a factor of the latter and the factor is the product of one mi-

nus resource productivity parameter and the ratio of maximal allowable increase in the ¯rm's
® D ¡® D D ® D^product performance (i.e., K ¢ (TC) ¢ (T ) ¢ (T ¡T ) = K ¢ (X ) ¢ (T ¡T )) and the totalP P P

product performance in the market after launch.

¤ ¤ D ¤ D ¤^If limited budget is available (TC < X ¢ T ), then either X < X or T < T must beD P P P
D ¤ D ¤true. If the former is true (X < X ), then A(T ) < A(T ) is true for most combinations ofP P

D ¤ D ¤parameters. However, if T < T , it is necessary that A(T ) < A(T ). Thus, the new productP P P P

launch under the target development cost process tends to be premature with evolutionary

product innovations.

4 Competitive Scenarios

A limitation of the analyses discussed so far is that we do not explicitly capture competition.

There are two ways to model competition under our modeling set up. The ¯rst way is to capture

an increasingly competitive environment by replacing A with A (t) where A (t) is increasingc c c

in t. This is the case where the underlying ¯rm is not explicitly competing with any particular

¯rm in an increasing performance norm industry. The second way is to model the new product

launch as a truly competitive game. Here we focus on the leading ¯rm. We analyze how the

¯rm will have to take into account her action on a follower. Both scenarios are discussed next.

4.1 Passive Competitive Scenarios

We model a non-stationary environment where the industry performance norm gradually in-

creases over time such that A (t) = A + ¯ ¢ t. Under this scenario, the ¯rm's pro¯t functionc c0

becomes for decision vector ± = fT ;Xg is:P

Z Z ®T TP A A +K ¢X ¢ T0 0 PT¦(±; T ) = R ¢ dt+ R ¢ dt¡X ¢ T0 1 P®A +A + ¯ ¢ t A +K ¢X ¢ T +A + ¯ ¢ t0 T0 c0 0 P c0P
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R ¢A A +A + ¯ ¢ T0 0 0 c0 P= ¢ ln( )
¯ A +A0 c0

® ®R (A +K ¢X ¢ T ) A +K ¢X ¢ T +A + ¯ ¢ T1 0 P 0 P c0+ ¢ ln( )¡X ¢ T : (4.1)P®¯ A +K ¢X ¢ T +A + ¯ ¢ T0 P c0 P

The next proposition characterizes the globally optimal policies.

Proposition 6 : Under the unconstrained development process and a non-stationary com-

petitive environment such that A (t) = A +¯ ¢ t, and if ¯ is small enough, the optimal level ofc c0
¤ ¤resource intensity (X ) and time to market (T ) are jointly characterized by following optimalityP

conditions:

2 ¤ 2R ¢ (A + ¯ ¢ T ) ¯ ¢ (T ¡ T )1 c0 ¤ P¢ (T ¡ T )¡P¤ ¤ ¤¤ ® ¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T 2(A +K ¢ (X ) ¢ T +A + ¯ ¢ T )0 c0 0 c0P P P
¤ ® ¤ ¤1 A +K ¢ (X ) ¢ T +A + ¯ ¢ T0 c0 ¤ ¤P P= ¢ [ ] ¢ [X ¢ T ]; (4.2)P¤¤ ®® K ¢ (X ) ¢ TP

¤ ® ¤A +K ¢ (X ) ¢ T A 1¡ ®0 0 ¤PR ¢ ¡R ¢ = x ¢ : (4.3)1 0¤ ¤ ¤¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T A +A + ¯ ¢ T ®0 c0 0 c0P P P

Proof: See Appendix.

Comparing the above optimality conditions with those given in equations (3.2)-(3.3) for the

stationary competitive environment, we note the following similarities and di®erences:

1. The two sets of optimality conditions are similar except for an extra term associated with

the increasingly competitive case in the ¯rst optimality condition.

2. The optimality conditions for the increasingly competitive case help to clarify those for

the stationary case. We note that the denominator in the LHS of the ¯rst optimality

condition is the total industry product performance at the end of the life cycle while the

denominator in the LHS of the second optimality condition is the total industry product

performance immediately right after the product launch. (Since they are identical in the

stationary case, there is no way to make this distinction).
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¤3. We shall focus on optimality condition (3.2). The term in the LHS is decreasing in T andP
¤ ¤ ¤X and the term in the right hand side in increasing in T and X . Since the extra termP

is strictly positive in optimality condition (4.2), the e®ect of an increasingly competitive

environment is to make both sides of the optimality condition take a lower value. This
¤ ¤can be accomplished by either a lower X or T . The optimality conditions (3.3) andP

¤ ¤(4.3) suggest that a lower T must be accomplished by a lower X (since the LHS isP
¤ ¤ ¤increasing in X and T and the RHS side is in increasing in X and is independent ofP

¤T .) Thus we expect either a

n early product launch accompanied by a lower investment

P

in resource intensity or simply a lower investment in resource intensity in an increasingly

competitive environment.

4.2 Active Competitive Scenarios

Active competitive scenarios incorporating incumbents and new entrants (e.g., Eliashberg and

Jeuland, 1986; Roy, et al, 1994, Purohit, 1994) have typically employed the Stackelberg game

set up (Stackelberg, 1934). The competitive environment of interest is one in which new product

development is undertaken by a leader L and a follower F . The leader believes that the follower

will react to the leader's choice of time to market in a best response fashion. Knowing this,

the leader then chooses a time to market that maximizes her pro¯t. The leader and the
L Ffollower may have di®erent levels of initial product performance (A ;A ) and performance0 0

L F_ _improvement functions (A ;A ). Below, we assume that both ¯rms have exogenously given

performance improvement functions (i.e., a ¯xed resource intensity X so that the decision set

4 = fT g) and that the leader has a higher speed of product performance than the followerP
L F_ _(i.e., A > A ). Figure 3 shows the total industry product performance over time under this

competitive environment. Note that we now have two discrete jumps in the total industry

performance (rather than one discrete jump in the total industry performance).

[ INSERT FIGURE 3 HERE ]

4.2.1 Leader Facing a Prepared Follower

The follower is taken to be `prepared' in the sense that it starts product development at exactly
L Fthe same time as the leader. Let the time to market of ¯rms L and F be T and T respectively.P P
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With the usual notations, leader and follower's life-cycle pro¯ts are:
L L L_R ¢ A R ¢ (A +A ¢ T )0 1 LL F 0 L 0 F LPT¦ (T ; T ) = ¢ T + ¢ (T ¡ T )L P P P P PL F L L FL_A +A A +A ¢ T +A0 0 0 0P

L L L_R ¢ (A +A ¢ T )1 0 F L LP+ (T ¡ T )¡X ¢ T ; (4.4)P PL L F FL F_ _A +A ¢ T +A +A ¢ T0 0P P
F FR ¢ A R ¢A0 10 0L F L F LT¦ (T ; T ) = ¢ T + ¢ (T ¡ T )F P P P P PL F L L FL_A +A A +A ¢ T +A0 0 0 0P

F F F_R ¢ (A +A ¢ T )1 0 F F FP+ ¢ (T ¡ T )¡X ¢ T : (4.5)P PL L F FL F_ _A +A ¢ T +A +A ¢ T0 0P P

The following lemma characterizes the prepared follower's optimal best response given a leader's
Lchoice of T .P

LLemma 1 : The optimal time to market for the follower given a T is:P

vu L L F L LL F L_ _ _R (A +A ¢T )(A +A ¢T+A +A ¢T )1u F L L L0 0 0P P _¡ (A +A +A ¢ T )t F 0 0 PR A0 0FR +X ¡1 F L LL_A +A +A ¢T0 0 PF¤ LT (T ) = (4.6)P P F_A

Proof: See Appendix.

The following proposition characterizes the optimal time to market for the leader under certain

conditions:

L_A FProposition 7 : De¯ne ½ = be the relative development capability of the leader. If A =0F_A
L F LA = 0 and R À maxfX ;X g, then the optimal time to market for the leader is:10

p¡(4½+ 1) + (2½+ 1) 4½+ 1L¤T = [ ]T (4.7)P 2(4½+ 1)½

Proof: See Appendix.

L¤It can be easily shown that T is decreasing in ½ so that the stronger the advantage of theP

leader in product development capability, the sooner is her optimal time to market. Note that

the advantage in product development capability can come from resource allocated to product

development (i.e., X) or the level of productivity in resource utilization (i.e., ®).



19

4.2.2 Leader Facing a Surprised Follower

The follower is taken to be `surprised' in the sense that it starts product development only after
Fthe leader has launched its new product. Let T be the follower's time to market measuredP

Lfrom T . The leader and follower's life-cycle pro¯ts are:P

L L L_R ¢A R ¢ (A +A ¢ T )0 1 L0 0L F L FPT¦ (T ; T ) = ¢ T + ¢ TL P P P PL F L L FL_A +A A +A ¢ T +A0 0 0 0P
L L_R ¢ (A +A ¢ T )1 L0 F L L LP+ ¢ (T ¡ T ¡ T )¡X ¢ T (4.8)P P PL L F FL F_ _A +A ¢ T +A +A ¢ T0 0P P

F FR ¢A R ¢ A0 10 0L F L FT¦ (T ; T ) = ¢ T + ¢ TF P P P PL F L L FL_A +A A +A ¢ T +A0 0 0 0P
F F_R ¢ (A +A ¢ T )1 F0 F L F FP+ (T ¡ T ¡ T )¡X ¢ T (4.9)P P PL L F FF_ _A +A ¢ T +A +A ¢ TL0 0P P

The following lemma characterizes the prepared follower's optimal best response given a leader's
Lchoice of T .P

LLemma 2 : The optimal time to market for the follower given a T is:P

vu L L F L L LL F L_ _ _R ¢(A +A ¢T )(A +A ¢(T¡T )+A +A ¢T )1u F L L L0 0 0P P P _¡ (A +A +A ¢ T )t F 0 0 PR ¢A0 0FR +X ¡1 F L LL_A +A +A ¢T0 0 PF¤ LT (T ) = (4.10)P P F_A

Proof: See Appendix.

The following proposition characterizes the optimal time to market for the leader under certain

conditions:

L_A F L F LProposition 8 : De¯ne ½ = . If A = A = 0 and R À maxfX ;X g, then the optimal10 0F_A

time to market for the leader is:

p
¡4 + 16 + 4(4½¡ 1)L¤T = [ ]T (4.11)P 2(4½¡ 1)

Proof: See Appendix.
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L¤Again, it can be easily shown that T is decreasing in ½ so that the stronger the advantage ofP

the leader, the smaller is her optimal to market.

It is interesting to compare the optimal launching times under both scenarios. The following

proposition establishes the value of \surprising" the follower:

F L F LProposition 9 : If A = A = 0 and R À maxfX ;X g, then the leader that faces a10 0

surprised follower always launches a product with higher level of performance and at a later

time than the one that faces a prepared follower.

Proof: See Appendix.

Intuitively, the leader facing a prepared follower feels a greater pressure to launch the new

product than the one who manages to surprise the competitor.

5 Discussion

We have developed a model for examining the interplay of three determinants of new product

success: 1) time to market, 2) product performance, and 3) development cost. We have applied

the model to analyze the merits and shortcomings of setting a target on each of the three new

product performance metrics commonly used in industry: (1) the time-to-market target, (2)

the product performance target, (3) the development cost target.

Our analytical results show that:

² An overly ambitious time-to-market target leads to an upward bias in resource in-

tensity usage and a downward bias in product performance (i.e., evolutionary product

innovation.) In addition, the optimal resource intensity is not a®ected by R ;A . This0 0

result suggests that the target time-to-market development process may ignore the e®ect

of cannibalization and thus can perform suboptimally if there is a signi¯cant degree of

cannibalization in the existing product market (e.g., R is large).0
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² Under the target performance development process, the coordination between market-

ing and R&D is easier because the resulting development resource intensity and time to

market decisions are separable. An overly ambitious target leads to an upward bias in

the development resource intensity. In addition, the resource intensity is not a®ected by

changes in K which capture capital investments in development technology. This result

suggests that the target performance development process may not fully re°ect the level

of development capability in its development resource intensity decision and may perform

suboptimally when there is a signi¯cant change in ¯rm's development capability. The

target performance development process also leads to delayed product launches which

miss the window of opportunity.

² Under the target development cost approach, allocating a limited budget to a new

product development project can lead to a downward bias in product performance and a

premature product launch (i.e., an evolutionary product introduction).

² A ¯rm facing a gradually increasing performance norm in her industry will lower the

investment in resource intensity.

² A leader facing a prepared follower feels a greater time pressure to launch the new product

than the one who manages to surprise the competitor.

Extensions of the work described in this paper could include explicit incorporation of risk (both

for product development and in the market). In addition, the policy implications of our results

suggest a number of testable hypotheses, which can be studied using cross-sectional procedures.

Finally, the modeling approach, presented here, can be implemented through a decision support

system in a speci¯c company context (see Cohen, Eliashberg and Ho, 1997). Application of such

a system would introduce formalism and rigor to a complex and critical management process.

6 Appendix

Proof of Proposition 1

Suppressing the time argument, the Hamiltonian of G2 is:

®H = ¡X + ¸ ¢K ¢X : (6.1)
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The necessary conditions for optimality are (Kamien and Schwartz,1992):

H = 0; (6.2)X

¤_̧ = ¡H ; (6.3)A

¤ ¤H(T ) = ¡© (T ) since T is free; (6.4)T PP PP

¤ ¤ ¤¸ (T ) = © (T ) since A(T ) is free: (6.5)A PP P

¤ ¤_ _From (6.3), we have ¸ = ¡H . Since H is not a function of A, we have ¸ = 0. Di®erentiatingAA A

(6.1) with respect to X, we obtain:

®¡1H = ¡1 + ¸ ¢K ¢ ® ¢X : (6.6)X

¤Setting (6.6) to zero and solving for X , we obtain:

1¤ ¤ 1¡®X = [¸ ¢K ¢ ®] : (6.7)

¤ ¤ ¤_Since, ¸ = 0 (i.e., ¸ is time invariant), X is time invariant. Q. E. D.A A

Proof of Proposition 2

From (6.1), we have the maximized Hamiltonian:

¤ ¤ ¤ ¤ ®H = ¡X + ¸ ¢K ¢ (X ) : (6.8)

¤ ¤ ¤ ¤Since X and ¸ are time invariant, H is also time invariant. Since H is independent of A
¤for given ¸ , the necessary optimality conditions (6.2) - (6.5) are also su±cient (Kamien and

Schwartz, 1992, pp. 221- 226).

From (6.5), we obtain:

Ac¤ ¤ ¤¸ = © (T ) = R ¢ ¢ (T ¡ T ): (6.9)1A P P¤ 2[A(T ) +A ]cP

¤ ¤Since ¸ is time invariant, it is completely determined from 0 to T by the RHS of equationP

(6.9). Substituting equation (6.9) into (6.7), we obtain the desired optimality condition (3.2).

From (6.4), we have:
¤A A(T )0¤ ¤ PH(T ) = ¡© (T ) = ¡R ¢ +R ¢ : (6.10)0 1TP PP ¤A +A A(T ) +A0 c cP
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¤ ¤H is completely characterized from 0 to T by RHS of equation (6.10) because it is timeP

invariant. Equating (6.8) and (6.10) we obtain:

¤A A(T )0¤ ¤ ¤ ® P¡X + ¸ ¢K ¢ (X ) = ¡R ¢ +R ¢ : (6.11)0 1 ¤A +A A(T ) +A0 c cP

Simplifying terms, we obtain the desired optimality condition (3.3). Q. E. D.

Proof of Proposition 3

The necessary and su±cient optimality conditions are identical to problem [G2] except that

condition (6.4) is no longer valid. The expression for optimal level of resource intensity (6.7)
Tremains the same. The revised auxiliary variable (¸ ) is:

AcT ^¸ = R ¢ ¢ (T ¡ T ): (6.12)1 P2^[A(T ) +A ]cP

TThe optimal level of resource intensity can be solved by substituting ¸ into equation (6.7). Q.

E. D.

Proof of Proposition 4

The necessary and su±cient optimality conditions are identical to problem [G2] except that

condition (6.5) is no longer valid. The expression for optimal level of resource intensity (6.7)
Perfremains the same except that the auxiliary variable (¸ ) is now di®erent. Instead of (6.5),

we have the following transversality condition:

PerfZ T ®P Perf ^1¡®K ¢ [K ¢ ¸ ¢ ®] dt = A¡A (6.13)0
0
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The above transversality condition requires that the total improvement in the level of perfor-
Perf Perf^mance from 0 to T is A¡A . The revised auxiliary variable ¸ , is found to be:0P

1¡®Â¡A1 0 ®[ ]Perf® K¢TPerf P¸ = (6.14)A K

From (6.4), we have:

^A A0Perf PerfH(T ) = ¡© (T ) = ¡R ¢ +R ¢ : (6.15)T 0 1PP P ^A +A A+A0 c c

Equations (6.7) and (6.11) become:

1Perf Perf 1¡®X = [K ¢ ¸ ¢ ®] ; (6.16)

Â A0Perf Perf Perf ®X +R ¢ = R ¢ + ¸ ¢K ¢ (X ) : (6.17)1 0^ A +AA+A 0 cc

Perf 1¡®(X )PerfFrom equation (6.16), we have ¸ = . Substituting this into equation (6.17) andK¢®
simplifying, we obtain:

^ AA 0R ¢ ¡R ¢1 0^ A +Ac0A+APerf cX = : (6.18)1( ¡ 1)®

Q QQ Q ® ^The desired expression for T can be found by substituting X into K ¢ (X ) ¢T = A¡A .0P P

This yields:

1 ®^(A¡A ) ¢ ( ¡ 1)0Perf ®T = (6.19)P ^ AA 0 ®K ¢ [R ¢ ¡R ¢ ]1 0^ A +Ac0A+Ac

^Given that the ¯rm pursues a ¯xed performance target A and chooses the optimal size of the
Perfdevelopment team X , the total development cost, TC, as a function of T is given by:P

PerfTC = X ¢ T : (6.20)P
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® ^Since a ¯xed target level of performance is pursued, we have K ¢ (X ) ¢ T = (A¡A ), or0Perf P
1Â¡A Perf0 ®X = [ ] . Substitute X into (6.20), we obtain:Perf K¢TP

^ 1A¡A0
®TC = [ ] ¢ T (6.21)PK ¢ TP

^ 11A¡A 1¡0 ®®= [ ] ¢ T (6.22)PK

To prove that TC is a decreasing convex function of T , we take the ¯rst and second derivativesP

of TC with respect to T .P

^ 11@TC A¡A 1 ¡0 ®®= [ ] ¢ (1¡ ) ¢ T (6.23)P@T K ®P
2 ^ 11@ TC A¡A 1 1 ¡ ¡10 ®®= [ ] ¢ (1¡ ) ¢ (¡ ) ¢ T (6.24)P2@T K ® ®P

2@TC @ TCNote that if ® < 1, we have < 0 and > 0. Q. E. D.2@T @TP P

Proof of Proposition 5

R TP ^In problem [G2], if ¡X(t)dt = ¡TC, we have a static optimization problem (since we know0
D D D ® D 1¡®^that X (t) = X at optimal). Substitute A(T ) = K ¢ (TC) ¢ (T ) into ©(T ;A(T )),P PP P

D Dthe objective is a function of T only. Di®erentiating ©(T ;A(T )) with respect to T , weP PP P

have:

® D 1¡® ® D ¡® D^ ^A A +K ¢ (TC) ¢ (T ) A ¢K ¢ (TC) ¢ (T ) ¢ (T ¡ T )0 0 cP P PR ¢ ¡R ¢ +R ¢ (1¡ ®)0 1 1D D® 1¡® ® 1¡® 2^ ^A +A A + (TC) ¢ (T ) +A [A + (TC) ¢ (T ) +A ]0 c 0 c 0 cP P

Setting the above expression to zero and simplifying we obtain the desired ¯rst-order condition.

Proof of Proposition 6
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Di®erentiating T¦ with respect to T and X yields the following ¯rst-order conditions:P

¤ ® ¤ ¤ ® ¤ ®R ¢ (A +K ¢ (X ) ¢ T ) K ¢ (X ) K ¢ (X ) + ¯1 0 P ¢ ( ¡ )¤ ¤ ¤¤ ® ¤ ®¯ A +K ¢ (X ) ¢ T +A + ¯ ¢ T A +K ¢ (X ) ¢ T +A + ¯ ¢ T0 c0 0 c0P P P
¤ ® ¤ ®A +K ¢ (X ) +A + ¯ ¢ T R ¢K ¢ (X ) R ¢ A0 c0 1 0 0 ¤+ln( ) ¢ + ¡X = 0 (6.25)¤ ¤ ¤®A +K ¢X ¢ T +A + ¯ ¢ T ¯ A +A + ¯ ¢ T0 c0 0 c0P P P
¤ ® ¤ ¤ ¤ ®¡1 ¤ ¤ ®¡1R ¢ (A +K ¢ (X ) ¢ T ) ® ¢K ¢ T ¢ (X ) ® ¢K ¢ T ¢ (X )1 0 P P P¢ ( ¡ )¤ ¤ ¤¤ ® ¤ ®¯ A +K ¢ (X ) ¢ T ¢ A + ¯ ¢ T A +K ¢ (X ) ¢ T +A + ¯ ¢ T0 c0 0 c0P P P
¤ ® ¤ ¤ ®¡1 ¤A +K ¢ (X ) ¢ T +A + ¯ ¢ T R ¢ ® ¢K ¢ (X ) ¢ T0 c0 1 ¤P P+ln( ) ¢ ¡ T = 0 (6.26)P¤ ¤¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T ¯0 c0P P

Simplifying equation (6.26), we have:

¤ ® ¤ ¤ ® ¤ ®R ¢ (A +K ¢ (X ) ¢ T ) K ¢ (X ) K ¢ (X )1 0 P ¢ ( ¡ )¤ ¤ ¤¤ ® ¤ ®¯ A +K ¢ (X ) ¢ T ¢ A + ¯ ¢ T A +K ¢ (X ) ¢ T +A + ¯ ¢ T0 c0 0 c0P P P
¤ ® ¤ ¤ ® ¤A +K ¢ (X ) ¢ T +A + ¯ ¢ T R ¢K ¢ (X ) X0 c0 1P+ln( ) ¢ = (6.27)¤ ¤¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T ¯ ®0 c0P P

Substituting the above equation into equation (6.25), we have:

¤ ¤ ® ¤X R ¢ (A +K ¢ (X ) ¢ T ) R ¢A1 0 0 0 ¤P¡ + ¡X = 0 (6.28)¤ ¤ ¤¤ ®® A +K ¢ (X ) ¢ T +A + ¯ ¢ T A +A + ¯ ¢ T0 c0 0 c0P P P

Simplifying, we obtain the desired optimality condition (4.3). From equation (6.27), we have:

¤ ® ¤ ¤ ® ¤ ®R ¢ (A +K ¢ (X ) ¢ T ) K ¢ (X ) K ¢ (X )1 0 P ¢ ( ¡ )¤ ¤ ¤¤ ® ¤ ®¯ A +K ¢ (X ) ¢ T ¢ A + ¯ ¢ T A +K ¢ (X ) ¢ T +A + ¯ ¢ T0 c0 0 c0P P P
¤ ® ¤ ¤ ® ¤A +K ¢ (X ) ¢ T +A + ¯ ¢ T R ¢K ¢ (X ) X0 c0 1P+ln( ) ¢ = (6.29)¤ ¤¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T ¯ ®0 c0P P

Simplifying the above equation, we have:

¤ ® ¤ ® ¤ ¤R ¢K ¢ (X ) (A +K ¢ (X ) ¢ T ) ¢ ¯(T ¡ T )1 0 P Pf ¤ ¤ ¤¤ ® ¤ ®¯ (A +K ¢ (X ) ¢ T ¢A + ¯ ¢ T )(A +K ¢ (X ) ¢ T +A + ¯ ¢ T )0 c0 0 c0P P P
¤ ¤¯ ¢ (T ¡ T ) XP+ln(1 + )g = (6.30)¤ ¤¤ ®A +K ¢ (X ) ¢ T +A + ¯ ¢ T ®0 c0P P
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¤¯¢(T¡T )PIf ¯ is small enough such that ¿ 1, we can approximate ln(1 +¤ ¤¤ ®A +K¢(X ) ¢T +A +¯¢T0 c0P P
¤ ¤ 2 ¤ 2¯¢(T¡T ) ¯¢(T¡T ) ¯ ¢(T¡T )P P P) by ¡ . Simplifying,¤ ¤ ¤ ¤ ¤ ¤¤ ® ¤ ® ¤ ® 2A +K¢(X ) ¢T +A +¯¢T A +K¢(X ) ¢T +A +¯¢T 2(A +K¢(X ) ¢T +A +¯¢T )0 c0 0 c0 0 c0P P P P P P

we obtain the desired optimality condition (4.2).

Proof of Lemma 1

LThe optimal time to market for the follower for a given T can be determined as in PropositionP
L L L_1 with A = A +A ¢ T . Thus we have the following optimality condition:c 0 P

F F L L L_ _R ¢ A 1 A +A ¢ T +A +A ¢ T1 c 0 0F¤ F FP P(T ¡ T ) = ¢ [ ] ¢ [X ¢ T ]P PF F¤ L L FF L F_ _ _®A +A ¢ T +A +A ¢ T A ¢ TF0 0P P P

The proposition follows directly from solving the above expression.

Proof of Proposition 7

L F F LIf A = A = 0 and R À maxfX ;X g, then equation (4.6) becomes:10 0

q
F¤ L LL LT (T ) = ½ ¢ T (½ ¢ T + T )¡ ½ ¢ T (6.31)P P PP P

L_A F¤ Lwhere ½ = . Substituting T (T ) into equation (4.4) and simplifying, we obtain:F P P_A

q
L L L L LL LT¦ (T ) = R ¢ [2 ½T (½T + T )¡ 2½T ¡ T ]¡X ¢ T : (6.32)1L P P P PP P

q
L L LL LT¦ (T ) is concave in T because ½T (½T + T ) is concave in T . Thus the ¯rst orderL P P PP P

Lcondition is necessary and su±cient. Di®erentiating T¦ with respect to T and setting theL P

¯rst derivative to zero, we obtain the following ¯rst-order condition:

2 L L2½ ¢ T + ½ ¢ T XPq = 2½+ 1 + ¼ 2½+ 1 (6.33)
RL L 1½ ¢ T ¢ (½T + T )P P

Simplifying the expression, we have the following quadratic expression:

2 L 2 L 2(4½ + ½)(T ) + (4½ ¢ T + T )T ¡ ½ ¢ T = 0: (6.34)P P
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L¤Solving the quadratic equation we obtain the required expression for T .P

Proof of Lemma 2

LThe optimal time to market for the follower for a given T can be determined as in PropositionP
L L L L_1 with A = A + A ¢ T and has the time window of (T ¡ T ). Thus we have the followingc 0 P P

optimality condition:

R ¢A1 c L F¤(T ¡ T ¡ T )P PF¤ L LF L_ _A +A ¢ T +A +A ¢ T0 0P P
F F L L L_ _1 A +A ¢ T +A +A ¢ T0 0 F FP P= ¢ [ ] ¢ [X ¢ T ] (6.35)PFF_® A ¢ TF P

The proposition follows directly from solving the above expression.

Proof of Proposition 8

L F F LIf A = A = 0 and R À maxfX ;X g, then equation (4.10) becomes:10 0

q
F¤ L LL L LT (T ) = ½ ¢ T (½ ¢ T + (T ¡ T ))¡ ½ ¢ T ; (6.36)P P PP P P

L_A F¤ Lwhere ½ = . Substituting T (T ) into equation (4.8) and simplifying, we obtain:F P P_A

q
L L L L LL L LT¦ (T ) = R ¢ [2 ½T (½T + (T ¡ T ))¡ 2½T ¡ T ]¡X ¢ T : (6.37)1L P P P PP P P

L LT¦ (T ) is concave in T as long as ½ > 1. Thus the ¯rst order condition is necessary andL P P
Lsu±cient. Di®erentiating T¦ with respect to T and setting the ¯rst derivative to zero, weL P

obtain the following ¯rst-order condition:

2 L L(2½ ¡ 2½)T + ½ ¢ T XP = 2½+ ¼ 2½ (6.38)L L L R½T (½ ¢ T + T ¡ T ) 1P P P
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Simplifying the expression, we have the following quadratic expression:

L 2 L 2(4½¡ 1)(T ) + 4T ¢ T ¡ T = 0: (6.39)P P

L¤Solving the quadratic equation we obtain the required expression for T .P

Proof of Proposition 9

If ½ > 1, then
p p¡4 + 16 + 4(4½¡ 1) 1(4½+ 1) + (2½+ 1) 4½+ 1

<
2(4½¡ 1 2(4½+ 1)½

Thus, Proposition 9 follows.

References

[1] Bell, D., Keeney, R. and Little, J. `A Market Share Theorem,' Journal of Marketing Re-

search, Vol. 12 (August), pp. 265-275, 1975.

[2] Clark, K. and Fujimoto, T. Product Development Performance: Strategy, Organization,

and Management in the World Auto Industry, Harvard University Press, 1991.

[3] Cohen, M. and Ho, T-H. `Ingersoll-Rand: New Product Development Process and Strat-

egy,' MBA Teaching Case, The Wharton School, 1996.

[4] Cohen, M., Eliashberg, J. and Ho, T-H. `New Product Development: The Performance

and Time-to-Market Tradeo®,' Management Science, 42, 2, 173-186, Jan.-Feb. 1996.

[5] Cohen, M., Eliashberg, J. and Ho, T-H. `An Anatomy of a Decision Support System for

Developing and Launching Line Extensions,' Journal of Marketing Research, 34, 117-120,

February 1997.

[6] Cooper, L. G. and M. Nakanishi. Market Share Analysis: Evaluating Competitive Market-

ing E®ectiveness. Kluwer Academic Publishers, Boston, 1988.

[7] Cooper, R. `Nissan Motor Co. Ltd.: Target Costing System,' Harvard Business School

Case, 1994.



30

[8] Cooper, R. Tanaka, T. `Toyota Motor Corp.: Target Costing System,' Harvard Business

School Case, 1997.

[9] Dorfman, R. and Steiner, P. `Optimal Advertising and Optimal Quality,' American Eco-

nomic Review, Dec. 1954, p. 834.

[10] Eliashberg, J. and Jeuland, A. `The Impact of Competitive Entry in a Developing Market

Upon Dynamic Pricing Strategies,' Marketing Science, 5, 1 (Winter), 20-36, 1986.

[11] Foster, R. N., Linden, L. H., Whiteley, R. L. and Kantrow, A. M. `Improving the Return

on R&D-I,' Research Management, 28-29, Jan-Feb, 1985a, 12-17.

[12] Foster, R. N., Linden, L. H., Whiteley, R. L. and Kantrow, A. M. `Improving the Return

on R&D-II,' Research Management, 28-29, Mar-Apr, 1985b, 13-22.

[13] Fulkerson, D. `A Network Flow Computation for Project Cost Curves,' Management Sci-

ence, 7:167-178, 1961.

[14] Griliches, Z. `Productivity, R&D, and the Data Constraint,' American Economic Review,

84(1), 1-23, 1994.

[15] Ho, T-H. `Product Design Strategy Analysis: The Marketing-Manufacturing Interface',

Unpublished Dissertation, University of Pennsylvania, 1993.

[16] Kamien, M. and Schwartz, N. Market Structure and Innovation, Cambridge University

Press, 1982.

[17] Kamien, M. and Schwartz, N. Dynamic Optimization, North-Holland, 1992.

[18] Krishnan, V. and Ulrich, K. `Product Development Decisions: A Review of the Literature,'

Working Paper, University of Texas at Austin, 2000.

[19] Lilien, G. and Yoon, E. `The Timing of Competitive Market Entry: An Exploratory study

of New Industrial Products,' Management Science, 36, 5, 565-585, 1990.

[20] Mahajan, V., Muller, E. and Kerin, R. `Introduction Strategy for New Products with

Positive and Negative Word-of-Mouth,' Management Science, 1984.

[21] Mans¯eld, E. `The Speed and Cost of Industrial Innovation in Japan and the United States:

External vs. Internal Technology,' Management Science, 34(10):1158-1170, 1988.



31

[22] Ming, D. and Eliashberg, J. `Structuring New Product Development Funnel in the Phar-

maceutical Industry,' University of Pennsylvania Working paper, 2000.

[23] Purohit, D. `What Should You Do When Your Competitors Send in the Clones,' Marketing

Science, 13, 4 (Fall), 392-411, 1994.

[24] Reinganum, J. F. `The Timing of Innovation: Research, Development, and Di®usion,' in

Schmalensee, R. and Willig, R. D. (Eds.) Handbook of Industrial Organization, Chapter

14, pp. 849-908, 1989.

[25] Rosenbloom, R. S. `Notes on the Development of Network Models for Resource Allocation

in R&D Pojects,' IEEE Transactions on Engineering Management, pp. 58-63, June 1964.

[26] Roy, A. Hanssens, D. M. and Raju, J. S. `Competitive Pricing by a Price Leader,' Man-

agement Science, 40, 7 (July), 809, 823, 1994.

[27] Stackelberg, H. von. Marktform und Gleichgewicht, Vienna: Julius Springer, 1934.

[28] Wilson, L. and Norton, J. `Optimal Entry Timing for a Product Line Extension,' Marketing

Science, 8(1):1-17, Winter 1989.



A0

TP T Time

Product
Performance

A(TP)

Existing Product

New Product

Development Marketing

Figure 1 The Firm's Product Performance in the Market Over Time



•  Project Alpha:

   A(Tp)  = -0.0684       +        0.8694  Tp
                   (0.1287)                (01177)**               
                   (Adj R-sq = 0.90)

•  Project Beta

    A(Tp)  = -0.2631       +        0.8320  Tp
                    (0.1361)                (0.1490)**
                    (Adj R-sq = 0.83)

•  Project Gamma

  A(Tp)  =  0.3714       +         0.5714  Tp
                     (0.0425)**            (0.0369)**
                     (Adj R-sq = 0.98)

•  Project Delta

  A(Tp)  =  0.5121       +          0.4322  Tp
                     (0.0497)**             (0.0408)**
                     (Adj R-sq = 0.95)

**  statistically significant at 1% level

Figure 2: The Relationship Between Product Performance and Time to Market
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Figure 3: Total Industry Product Performance Over Time
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Alpha Beta Gamma DeltaProject

0.7 Ax

0.8 Ax

0.9 Ax

1.0 Ax

1.1 Ax

1.2 Ax

1.3 Ax

0.80 Tα

0.90 Tα

0.95 Tα

1.00 Tα

1.10 Tα

1.25 Tα

1.50 Tα

Ax, Tx are realized/expected project outcomes of project x. Project managers were asked to provide subjective 
estimates  of what the time to market would be if product attraction was revised to a different level given that 
the level of development resource was held fixed.

0.50 Tβ

0.60 Tβ

0.90 Tβ

1.00 Tβ

1.00 Tβ

1.10 Tβ

1.10 Tβ

0.60 Tγ

0.80 Tγ

0.90 Tγ

1.00 Tγ

1.30 Tγ

1.50 Tγ

1.60 Tγ

0.60 Tδ

0.70 Tδ

0.80 Tδ

1.00 Tδ

1.30 Tδ

1.60 Tδ

1.90 Tδ

Tp Tp Tp TpA(Tp)

Table 1: Time to Market Estimates Under Different Levels of Product Performance for        
               Four Projects at an Industial Equipment Firm


