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Abstract

This paper tests a learning-based model of strategic teaching in repeated games with incomplete
information. The repeated game has a long-run player whose type is unknown to a group of short-
run players. The proposed model assumes a fraction of ‘short-run’ players follow a one-parameter
learning model (self-tuning EWA). In addition, some ‘long-run’ players are myopic while others
are sophisticated and rationally anticipate how short-run players adjust their actions over time and
“teach” the short-run players to maximize their long-run payoffs. All players optimize noisily. The
proposed model nests an agent-based quantal-response equilibrium (AQRE) and the standard equi-
librium models as special cases. Using data from 28 experimental sessions of trust and entry repeated
games, including 8 previously unpublished sessions, the model fits substantially better than chance
and much better than standard equilibrium models. Estimates show that most of the long-run players
are sophisticated, and short-run players become more sophisticated with experience.
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1. Introduction

Many transactions in the economy are conducted repeatedly by players who either
know the history of behavior by others, or anticipate future interactions. Examples include
cartels, employment relations, merchant banking relationships, long-standing corporate
rivalries, customers who are loyal to retailers, lending to customers with known credit
histories, and so forth. Game theorists model these situations as repeated games with in-
complete information and study their sequential equilibria (SE).

Two early experimental studies evaluated the accuracy of SE predictions in repeated
trust games (Camerer and Weigelt, 1988a) and entry deterrence games (Jung et al., 1994).
In these games, a long-run player is matched repeatedly with a group of short-run players.
The long-run player can be one of the two types (normal or special). The short-run players
know the proportions of the two types, but do not know which type of the long-run player
they face.

In the trust game, a single borrower B (i.e., the long-run player) wants to borrow money
from a series of 8 lenders denoted Li (i = 1, . . . ,8) (i.e., the short-run players) (cf. Kreps,
1990). A lender makes only a single lending decision (either Loan or No Loan). The bor-
rower makes a string of decisions, (either Repay or Default), each time a lender chooses
Loan.

The entry game deterrence is similar. A series of eight short-run entrants each decide,
one at a time, whether to enter or stay out in a series of periods. If the entrant enters in a
period, a long-run incumbent decides whether to fight or share.

The payoffs in the trust game imply that if the games were only one stage, the borrower
would Default; anticipating this, the rational lender would choose No Loan. Similarly, in a
one-stage entry deterrence game the entrant would enter because she would anticipate that
the incumbent would share. The special types of borrowers and incumbents have payoffs
which create a preference for repaying or fighting, respectively, rather than defaulting or
sharing.

Both experimental studies showed three empirical regularities:

(1) The basic patterns predicted by SE occur in the data: In the trust game, borrowers are
more likely to default in later rounds than in earlier rounds, and lending rates fall after
a previous default. Similarly, incumbents are more likely to share in later rounds, and
entry rates increase after sharing.

(2) There are two systematic deviations from the SE predictions: (a) There are too few
defaults (by borrowers) and too few fights (by incumbents); and (b) the predicted rates
of lending and entering increasing smoothly across rounds, while the SE predicts a
step function across periods.

(3) In the experiments, subjects played 50–100 eight period sequences. Equilibration oc-
curred across sequences (“cross-sequence learning”) and between experimental ses-
sions (experienced subjects were closer to SE than inexperienced subjects).

Camerer and Weigelt (1988a) and Jung et al. (1994) showed that the SE prediction
could be modified to explain both the basic patterns (1) and the deviation (2a) above by
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assuming that some proportion of normal-type players acted like the special types induced
by the experimenter (the “home-made prior”).

These early analyses fell short in three ways: First, the prior was inferred from the
data rather than measured separately in one-stage games. Second, the SE predictions of
trust and entry rely on two different special types of opposite behavioral kinds—one is
trustworthy (sacrificing money to help others) and the other is vindictive (sacrificing money
to harm others). Third, the modified SE model with a home-made prior cannot explain
deviation (2b) and the cross-sequence learning (3). Authors of both studies recognize that
the modified SE model cannot explain cross-sequence learning. As (Camerer and Weigelt,
1988a, pp. 27–28) note2:

“. . . the long period of disequilibrium behavior early in these experiments raises the
important question of how people learn to play complicated games. The data could be fit
to statistical learning models (e.g., Selten and Stoecker, 1986), though new experiments
or new models might be needed to explain learning adequately.”

Responding to Camerer and Weigelt’s call for new learning models, this paper develops
and estimates a learning-based model with strategic “teaching.” In the model, a fraction of
short-run players learn adaptively from experience and the rest are “sophisticated”3—they
rationally anticipate how the long-run players learn and behave. Similarly, a fraction of
long-run players are sophisticated and the rest are myopic (they act as if they are playing a
one-stage game). In repeated games with partner matching, sophisticated long-run players
have an incentive to “teach” the short-run learners what to expect. This kind of “strategic
teaching” has been proposed as a boundedly rational theory of reputation formation (see
Fudenberg and Levine, 1989; Watson, 1993; and Battigalli and Watson, 1997).4 Camerer
et al. (2002) offer the first empirical implementation of such a model using data from
repeated trust games.5

This general model both extends simple adaptive learning models, by adding sophis-
tication, and weakens equilibrium models, by adding learning. Because the model mixes
adaptive and sophisticated types, certain parameter restrictions reduce the model to bound-

2 And see Jung et al. (1994. p. 90).
3 See Selten (1991), Milgrom and Roberts (1991), and Fudenberg and Kreps (1990) for models of sophistica-

tion. Adding sophistication to adaptive learning makes sense because long-run player subjects often have a sense
that short-run players are learning. Models with sophistication also predict that players care about the payoffs
of others, and how they are matched with partners in the future (adaptive learning models do not have these
properties), consistent with experimental evidence (Partow and Schotter, 1993; Mookherjee and Sopher, 1994;
Cachon and Camerer, 1996; Andreoni and Miller, 1993). Models including sophistication have generally fit bet-
ter in matrix games, signaling games, repeated trust games, and p-beauty contest games (see Stahl, 1999; Cooper
and Kagel, 2001; Camerer et al., 2002; Ho et al., 1998).

4 In a spirit similar to ours, Battigalli (2001) shows conditions under which reputational teaching can lead to
Stackelberg payoffs for the teaching player even with two long-run players (provided one is sufficiently more
patient than the other), with weak restrictions on beliefs.

5 Their model consists solely of adaptive short run players who follow a parametric EWA model (which requires
a total of 18 parameters). They do not allow their long run players to be a special home-made type. However, the
special home-made type is estimated in the benchmark AQRE model. The models are validated on one trust game
data set from Camerer and Weigelt (1988a).
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ary cases of special interest. Purely adaptive learning is one boundary case. When all
players are sophisticated, believe all others are sophisticated, and best-respond, the model
reduces to simply another boundary case—Bayesian Nash equilibrium. We study an Agent
Quantal Response Equilibrium (AQRE) version of Bayesian Nash equilibrium. In AQRE,
players optimize noisily but update their beliefs using Bayes’ rule and anticipate accurately
what others will do (McKelvey and Palfrey, 1998).

Adding adaptive players make sense because there are behavioral differences between
sophisticated and adaptive players. Consider the lender in the trust games. Adaptive lenders
will continue lending until a default occurs, after which later lenders are less likely to lend.
A sophisticated lender, in contrast, anticipates default by assessing the probability of the
borrower being a normal (“dishonest”) type. Hence she will stop lending when the posterior
probability of dishonest type is high enough that the expected payoff from lending exceeds
not lending. This could happen even without a default in previous rounds. In short, adaptive
players react to past default behavior but sophisticated players anticipate future default
behavior.

The general model has the potential to improve the modified SE used in earlier papers,
which fell short in three ways:

First, the value of the home-made prior is measured separately, in one-stage experiments
where potential reputation effect is absent, rather than estimated from the repeated games.

Second, the model provides a unifying theory of “special types” across different games.
Both types of special-type players—trustworthy borrowers and fighting lenders—act like
Stackelberg players: They choose the strategy they would commit to, if they could, in
order to improve long-run payoffs. (This is the essence of the models of Fudenberg and
Levine, 1989). Our model derives the two different types endogenously from the game
payoff structures and a single common source: Both are special types whose behavior is
similar to that of sophisticated long-run players who maximize long-run payoffs. Even
though the impact of teaching is quite different between trust and entry games (payback in
trust game is mutually beneficial while fighting in entry game is privately beneficial), the
model captures both impacts across games with no additional parameter.

Third, although switching from SE to AQRE improves fit and explains the deviation
(2b), it cannot explain learning across sequences within an experimental session, and
learning across sessions, which the general model can. Cross-sequence learning can be
explained by allowing subjects to learn both from previous periods within an eight-period
sequence, and from previous eight-period sequences.

In this paper, we apply the general model to the 20 experimental sessions published ear-
lier on trust and entry deterrence games, and to 8 brand new sessions. The new data provide
additional replication of the basic patterns and give us more statistical power. We estimate
that more than 90% of the long-run players in both games are sophisticated. About half
of the short-run players are estimated to be sophisticated in sessions with inexperienced
subjects, but all the short-run players are estimated to be sophisticated after experience.

To verify that the general model captures the trends in the data and to understand the
impact of each feature of the model in tracking the data, we simulate the behavior of the
model under various parameter restrictions (i.e., after “disabling” features one at a time)
and compare with the data.
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The three empirical regularities discussed above can be translated into cross-round
trends and cross-sequence trends. We find that the model tracks data well in both cross-
round and cross-sequence trends: when there is a significant trend in the data, the model
picks up the trend as well.

We disable four key features of the model one at a time: cross-sequence learning, the
proportion of sophisticated lenders, the home-made prior, and the proportion of sophis-
ticated borrowers. And we find that disabling the features has significant impact on the
ability of the model to pick up the trends in the data. In some cases, the prediction of the
restricted model either does not pick up the trend at all or predicts an opposite trend.

The next section introduces the model of repeated games and reports new experiments
that measure the proportions of special types. Section 3 discusses the key differences
among equilibrium, AQRE and the proposed model. Section 4 reports estimates of the
models on three data sets from repeated trust and entry-deterrence games. Section 5 checks
the robustness of the model through simulation. Section 6 concludes.

2. A model of repeated games

We consider any two-player repeated game with incomplete information, where the
long-run player can be one of two types (or equivalently, have one of the two induced pay-
off functions) and short-run player is uncertain about long-run player’s type. In repeated
borrower–lender trust relationships, a lender is uncertain about whether a borrower is hon-
est or dishonest. In repeated incumbent-entry games, an entrant is uncertain whether an
incumbent will always fight entry or not. We refer to the honest borrowers and aggres-
sive incumbents as special types. Standard equilibrium analysis assumes both players are
sophisticated and behave according to the prediction of Bayesian Nash equilibrium.

Table 1 shows the various player segments in the proposed model. p fraction of long-
run players are induced to be special type and (1 − p) fraction to be normal type. Of
the normal type players, a fraction θ has an inherent preference for special type’s payoff
function, a fraction (1 − θ) · αB are sophisticated and a fraction (1 − θ) · αB are myopic.
A αL fraction of short-run players are sophisticated and the remaining 1−αL are adaptive.
If αL = αB = 1, the model reduces to AQRE. If αL = αB = 0, the model reduces to the
self-tuning EWA learning model.

The proposed model allows a fraction θ of long-run player’s with normal-type payoff
to act like the special-type payoff (this fraction is previously labeled as home-made prior).
Along with the fraction p of the borrower players who are induced to behave like special
types by the experimenter, the total fraction who actually behave like special types is p +
(1 − p)θ .

Earlier experiments imputed a value for the home-made prior (Camerer and Weigelt,
1988a; Neral and Ochs, 1992) or estimated it from a structural model (Palfrey and Rosen-
thal, 1988; McKelvey and Palfrey, 1992). We measured the frequency of home-made prior
in two separate experimental sessions with one-shot games with random rematching (using
the same subject pools used in the early trust experiments). In these games, there is no
reputational incentive for behaving like special type players. The measured rate of those
behaviors is then used to constrain their frequency in the repeated game estimation.
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In a typical experimental session, subjects are randomly assigned fixed roles of bor-
rower, or lender (e.g., 11 subjects are divided into 3 borrowers and 8 lenders). In a single
sequence, a borrower B is randomly chosen to play in all the periods of an eight-period
supergame (the other borrowers sit and watch). In addition, the borrower may be payoff-
induced to be an honest type with probability p where p is set by the experimenter a priori.
A borrower type remains the same for all 8 periods of the sequence. Each lender Li plays
in exactly one of the 8 stage games in each supergame in a random position each time
(the position of a particular lender-subject in each sequence is unknown to the borrower).
The entire eight-stage supergame is repeated in a series of sequences (typically 50 to 100
sequences).

We model the choice probabilities of each segment f (f assumes a value of a for
adaptive learner and a value of s for sophisticated player) of players at time t . In specifying
the probability, we adopt the logistic approach in which lenders of segment f attach an
attraction value A

j
L(f, k, t) to each strategy j in a given round t of a sequence k. Similarly,

borrowers of segment f ′ (f ′ assumes a value of m for myopic player, a value of s for
sophisticated player, and a value of h if the borrower behaves like an honest type) have an
attraction value A

j
B(f ′, k, t) to each strategy j in a given round t of a sequence k. Below,

we will discuss how A
j
L(f, k, t) and A

j
B(f ′, k, t) are determined for each segment of the

players in Table 1.

2.1. Adaptive lenders

Recall that lenders play only once in each sequence. Yet they clearly respond to the
experiences of the other players, which they only observe. So we assume “observational
learning”: Players can learn from previous rounds in a sequence and from previous se-
quences. Consider round 7 in sequence 14. The round 7 lender who is deciding what to
do saw what happened in the previous 6 rounds of sequence 14, and learned about the
attractiveness of lending from what happened in those rounds. But the lender also knows
what happened in the upcoming (7th) round of the previous sequences 1–13—a glance at
the past—and learned about whether she should loan in round 7 from those previous round
7 experiences. We call the latter effect cross-sequence learning.

Within-sequence learning can be modeled by standard learning theories. We use a “self-
tuning” EWA model of Ho et al. (2004) for its parsimony (with only 1 parameter) and
versatility (it has predicted reasonably accurately in other games). (Other adaptive models
could be used in its place as well.)

Returning to our example, the strategy loan for a lender before period 7 of sequence
14 is influenced by two sources of experience—the attraction of loan after period 6 of
sequence 14, and the experience after choosing loan in period 7 of sequences 1–13. These
influences are captured by differentially updating the attractions of the strategies.

The strength of cross-sequence learning is parameterized by a parameter τ . If τ = 0
there is no cross-sequence learning; if τ = 1 experience in upcoming periods of previous
sequences is just as important as experience in the previous period of the current sequence.
The data will tell us how strong cross-sequence learning is through the value of τ .



J.-K. Chong et al. / Games and Economic Behavior 55 (2006) 340–371 347
The updating of the attraction for an adaptive lender A
j
L(a, k, t) occurs in 2 steps. The

idea is to create an “interim” attraction for round t , B
j
L(a, k, t), based on the attraction

A
j
L(a, k, t − 1) and payoff from the round t , then incorporate experience in round t + 1

from previous sequences, transforming B
j
L(a, k, t) into a final attraction A

j
L(a, k, t). The

exact specification of the attraction updating is as follows:

(1) Learning across rounds within a sequence:

B
j
L(a, k, t) = φ(k, t) · N(k, t − 1) · Aj

L(a, k, t − 1)

M(k, t)

+ [δj (k, t) + [1 − δj (k, t)] · I (j, sL(k, t))]πL(j, sB(k, t))

M(k, t)
, (1)

M(k, t) = φ(k, t) · N(k, t − 1) + 1, (2)

where φ(k, t) and δ(k, t) are functional parameters and N(k,0) = 1, as specified
in Ho et al. (2004) (see Appendix A for further details).6 The initial attraction
A

j
L(a, k,0) = A0 (No Loan/Not Enter) for the strategy j = No Loan (Not Enter) is

estimated. I (j, sL(k, t)) is the indicator function that equals 1 if strategy j is the cho-
sen strategy sL(k, t) of lender L in round t of sequence k, and equals 0 otherwise.

(2) Learning in a coming round from previous sequences:

A
j
L(a, k, t) = φ(k, t)τ · M(k, t) · Bj

L(a, k, t) + τ · δ(k, t)π̂
j
L(k, t + 1)

N(k, t)
, (3)

N(k, t) = φ(k, t)τ · M(k, t) + τ, (4)

where we assume that the learning about an upcoming round t from previous se-
quences is driven by the average payoff in the round t’s in all previous sequences
(i.e., π̂

j
L(k, t + 1) = ∑k−1

m=1 πL(j, sB(m, t + 1))/(k − 1)).

The attraction at the end of time period t then determines the predicted adaptive lender’s
choice probability at t + 1 according to the logit rule,

P̂
j
L(a, k, t + 1) = eλa

L·Aj
L(a,k,t)∑

j ′ eλa
L·Aj ′

L (a,k,t)
. (5)

6 In Camerer et al. (2002), adaptive short run players follows a parametric EWA model with a fixed set of
parameter estimates. Having a fixed set of learning parameters restricts model flexibility. It seem reasonable to
assume that the adaptive player relies less on her past learning experience when she senses that her past experience
does not help (lending no longer seems that attractive when more defaults are happening). The reliability of past
experience does deteriorate in later rounds when default happens more often. Having fixed parameters hinders
this learning flexibility.
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2.2. Sophisticated lenders

The sophisticated lender rationally anticipates the action of the borrower and maximizes
her own expected payoff in each period. Let the lender’s belief about the overall fraction
of honest types at sequence k and end of time t be r(k, t). Then, the remaining fraction
(1 − r(k, t)) of borrowers are either myopic or sophisticated. Their combined predicted

probability of choosing strategy j ′ at t + 1 is as follows: P̂
j ′
B (d, k, t + 1) = [(1 − αB) ·

P̂
j ′
B (m) + αB · P̂ j ′

B (s, k, t + 1)]. The expected payoff of lender for choosing strategy j is
then given by:

A
j
L(s, k, t) =

∑
j ′

[(
1 − r(k, t)

)
P̂

j ′
B (d, k, t + 1) + r(k, t)P̂

j ′
B (h)

]
πL(j, j ′) (6)

where πL(j, j ′) is the lender’s payoff for strategy j when borrower chooses j ′. P̂
j ′
B (h) is

the probability that an honest borrower chooses strategy j ′.7
If the sophisticated lender chooses loan, she updates her belief in a Bayesian manner at

the end of t + 1 using the borrower’s choice probabilities as follows:

r(k, t + 1) = P̂
j ′
B (h) · r(k, t)

P̂
j ′
B (h) · r(k, t) + P̂

j ′
B (d, k, t + 1) · (1 − r(k, t))

(7)

where j ′ is the chosen strategy.
If the lender chooses no loan, then r(k, t + 1) = r(k, t). Each lender starts at round 1

with the prior P(Honest), or r(k,1) = p + (1 − p)θ .
Updating the belief r(k, t) changes the attractions A

j
L(s, k, t) and captures learning. The

updated attraction determines the sophisticated lender’s choice probability according to the
logit rule,

P̂
j
L(s, k, t + 1) = eλs

L·Aj
L(s,k,t)∑

j ′ eλs
L·Aj ′

L (s,k,t)
. (8)

2.3. Honest borrowers

Honest borrowers always earn more from repaying (by definition). They choose accord-
ing to the stage game payoffs of honest type conditional on loan by the lender using a logit
rule as follows:

P̂
j
B(h) = eλh

B ·πH (j,Loan)∑
j ′ eλh

B ·πH (j ′,Loan)
. (9)

7 Notice that P̂
j ′

(h) does not depend on arguments k and t because the probability does not vary across periods.

B
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2.4. Myopic borrowers

Since borrowers move after the lenders do, there is nothing for a borrower to learn.
We call the borrowers who care only about immediate payoff “myopic.” The attractions of
repay and default are simply the stage-game payoffs of dishonest type conditional on loan
by the lender. They choose between those strategies using a logit rule:

P̂
j
B(m) = eλm

B ·πD(j,Loan)∑
j ′ eλm

B ·πD(j ′,Loan)
. (10)

2.5. Sophisticated borrowers

The sophisticated borrower maximizes the total expected payoff from all remaining
periods. The payoff from choosing strategy j in round t of sequence k is as follows:

A
j
B

(
s, k, t | r(k, t)

) = πB(j, j ′) + VB

(
k, t + 1 | r(k, t + 1)

)
(11)

where VB(k, t +1 | r(k, t +1)) refers to the ex ante value of the borrower for all remaining
rounds after t + 1 of the game given the lender’s posterior belief r(k, t + 1) at time t + 1.
Note that r(k, t + 1) above is determined by r(k, t) and the probability of strategy j using
Eq. (7).

The ex ante value of the borrower for future rounds can be specified recursively as
follows:

VB

(
k, t | r(k, t)

) = max
Jt

(∑
j ′

�P j ′
L (d, k, t | Jt ) ·

∑
j

P̂
j
B(s, k, t)

× [
πB

(
s
j
B, s

j ′
L

) + VB

(
k, t + 1 | r(k, t + 1)

)])
, (12)

where Jt is the sequence of future actions by the sophisticated borrower from round t + 1
until the end of the game sequence,8 Jt ≡ {jt , jt+1, . . . , jT −1, jT }. The lender’s probability

given a future path Jt is given by �P j ′
L (d, k, t | Jt ) = [(1 − αL) · �P j ′

L (a, k, t | Jt ) + αL ·
�P j ′
L (s, k, t | Jt )] where αL is the proportion of sophisticated lender.

This future payoff term in 12 gives an incentive for the sophisticated borrower to influ-
ence the lender. That is, even if πB (repay, j ′) is lower than πB (default, j ′), the attraction
A

repay
B (s, k, t | r(k, t)) may be higher because of the consequences of choosing Repay for

VB(k, t +1 | r(k, t +1)). The idea is to make the lender want to lend in future rounds. This
is accomplished by repaying in earlier rounds (with a view to teach the lenders), so that the
sophisticated lender revises upward her prior on the borrower (through Eq. (7); cf. Kalai

8 Technically, computing the teaching borrower attractions requires evaluating all the paths Jt to find the maxi-
mum. This is computationally cumbersome in early periods (e.g., in period 8 there are 28 = 64 paths). To simplify
computation, we maximize only over paths of future borrower actions that never have repayment following de-
fault, because repayments following default are rare and usually yield lower payoffs. (This reduces the number of
paths to only nine—always repaying, plus repayment followed by defaulting in period t then always defaulting,
for each t from 1 to 8.)
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and Lehrer, 1993) and the adaptive lender improves the attraction of the lending strategy
(through Eq. (1)).

The final attraction then determines the lender’s choice probability according to the logit
rule,

P̂
j
B(s, k, t + 1) = eλs

B ·Aj
B(s,k,t)∑

j ′ eλs
B ·Aj ′

B (s,k,t)
. (13)

2.6. Likelihood and estimation

The models are estimated using 3 data sets: two trust game data sets from Camerer
and Weigelt (1988a, 1988b) and one entry deterrence data set from Jung et al. (1994). All
experimental sessions within a data set are restricted to have a common set of parameters
(except for the scale sensitivity parameters λs where each session has its own). Maximum
likelihood estimation (MLE) was used to calibrate the model on 70% of the sequences in
each experimental session, then forecast behavior in the remaining 30% of the sequences
in that session. If the model fits in-sample purely by overfitting, it will perform surprisingly
poorly out-of-sample.

The likelihood function used in estimation consists of three parts:

(1) The likelihood of observing the data of the lenders is as follows:

LL = [
(1 − αL) · ΠkΠt P̂

sL(k,t)
L (a, k, t) + αL · ΠkΠt P̂

sL(k,t)
L (s, k, t)

]
(14)

where sL(k, t) is the strategy actually chosen by lender L at time t in sequence k.
(2) For the sequences where an honest-type borrower is drawn (with probability p), the

likelihood of observing the data of the borrowers is as follows:

LH
B = Πk′′ΠtP̂

sB(k′′,t)
B (h) (15)

where k′′ are the sequences with honest types and sB(k′′, t) is the strategy chosen by
the borrower at time t in sequence k′′.

(3) For the sequences where an dishonest-type is drawn, the likelihood of observing the
data of the borrowers is as follows:

LD
B = θ · Πk′ΠtP̂

sB(k′,t)
B (h) + (1 − θ) · [(1 − αB) · Πk′ΠtP̂

sB(k′,t)
B (m)

+ αB · Πk′ΠtP̂
sB(k′,t)
B (s, k′, t)

]
(16)

where k′ are the sequences with dishonest-type draws and sB(k′, t) is the strategy
chosen by the borrower at time t in sequence k′.

Finally, the total likelihood of observing all the data is given by LL · LH
B · LD

B .

2.7. Measuring the home-made prior θ experimentally

Earlier trust and entry experiments showed that even when the induced fraction of hon-
est borrowers or fighter types is zero, there is a substantial repayment and fighting in finite
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games (even in the last period). Inspired by the “gang of four” model of Kreps and Wil-
son (1982), Camerer and Weigelt (1988a) suggested this was due to the presence of an
endogenous fraction of subjects who, despite monetary incentives to default, simply pre-
ferred to act reciprocally and repay—a “home-made prior” of reciprocal types. Palfrey and
Rosenthal (1988) used the same idea to explain contribution in public goods games.9

In Camerer et al. (2002), the home-made prior θ is estimated from the data as part
of fitting a QRE model. The resulting estimates were high—from 0.5 to 1—compared to
the values around 0.1–0.2 suggested by early experiments. This probably means the QRE
model needs to overestimate θ in order to make up for some other basic misspecification.

Since the home-made prior is intimately tied to the extent of repaying or fighting, it is
important to estimate it precisely and plausibly. By definition, honest or aggressive types
will repay or fight even in one-shot games (their behavior springs from preferences, not
strategy). Therefore, we recently measured θ by conducting two experimental sessions of
one-shot games, reproducing the original experimental conditions10 from repeated games
as closely as possible while generating enough data for a reliable estimate.

One session used the most common payoff structure in trust games and the other ses-
sion used the most common structure in entry games (see Table 2).11 Each session used 12
subjects playing two blocks of 6 rounds in a fixed-role protocol (as in the original experi-
ments). In each block of six rounds, each borrower was matched with each lender once in
a “zipper” design. Each borrower therefore plays the same lender twice, but never knows
which lender she is playing. A total of 72 single-shot games were played in each experi-
mental session.

Since the crucial behavior is repayment by borrowers, we used the “strategy method”
in which borrowers chose whether to repay or default before knowing whether they re-
ceived a loan. (Otherwise, repayment decisions are only observed when lenders lend, which
severely limits the number of such decisions.)

Dollar payments were those used in the original experiments, adjusted upward for in-
flation.12 In trust games there were 17 repayments (26%) and in entry games there were
11 fight choices out of 72 (18%). These percentages are close to the 17% figure originally
imputed by Camerer and Weigelt (1988a).

Because these samples are modest in size, θ may not be estimated too precisely. There-
fore, the estimation below restricts θ , as estimated in the repeated games, to lie in a 95%
confidence interval of the values measured in the one-shot experiments. These intervals are
(0.19,0.29) for trust and (0.11,0.20) for entry.

9 More recently, this intuition has been formalized in models of social preference used to explain contribution
(and punishment) in public good games, reciprocity, rejections of ultimatum offers, and so forth (e.g., Fehr and
Gächter, 2000 and Camerer, 2003, Chapter 2).
10 The original experiments were run in 1986 and 1990 respectively.
11 The lender’s payoff used was −50 when the borrower reneges. This payoff is identical to trust data sessions
6–8 where p = 0.1 and new trust data sessions 1–7 where p = 0.1. The entrant’s payoff used was 80 when the
weak monopolist fights in market-entry games. This corresponds to market entry game sessions 1–3 (inexperi-
enced) and 6 (experienced) where p = 1/3.
12 The original experiments were in 1986 and 1990, so we adjusted payments by the GDP deflator, increasing
them by 50 and 23% respectively.
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Table 2
Payoffs for the borrower–lender trust games and the entry-deterrence games

Payoffs in the borrower–lender trust game, Camerer and Weigelt (1988a)

Lender
strategy

Borrower
strategy

Payoffs to
lender

Payoffs to borrower

Normal (X) Honest (Y)

Loan default −100* 150 0
repay 40 60 60

No loan no choice 10 10 10

Payoffs in the entry-deterrence game, Jung et al. (1994)

Entrant
strategy

Incumbent
strategy

Payoffs to
entrant

Payoffs to incumbent

Normal (X) Fighter (Y)

In fight 80 70 160
share 150 160 70

Out no choice 95 300 300

Note: ∗ Loan-default lender payoffs were −50 in sessions 6–8 and −75 in sessions 9–10.

3. Special cases

To provide a context on which the empirical results can be discussed, we first contrast
several key characteristics of the SE, AQRE, adaptive learning, and the general models.

The delicate logic of the repeated-game equilibrium can be illustrated with the trust
game. Table 2 shows payoffs in the Camerer–Weigelt repeated trust game. Recall that a
single borrower is drawn to play an 8-period sequence. Her type (either honest or dishonest)
is drawn randomly using a commonly-known prior and communicated only to the borrower
herself. The borrower then plays a sequence of stage games with eight lenders who play
once each in random order.

In each stage game, the lender can choose not to lend (then both earn 10 currency units)
or can choose to lend. Lenders prefer to lend if the borrower will repay, yielding 40 for the
lender. But if the borrower defaults the lender earns −100.13 A dishonest borrower earns 60
if she repays, and 150 if she defaults. Honest-type borrowers have the same payoffs except
a default pays 0. Note that in the subgame after receiving a loan, the myopic dishonest bor-
rower prefers to default while the honest borrower prefers to repay. The probability that an
borrower had honest-type payoffs in a particular sequence was varied across experimental
sessions from 0.33 to 0.

The SE is computed from the last period backward (see Camerer et al., 2002 for de-
tails). In the last period, risk-neutral lenders lend if their perceived P(Honest) is above
a threshold γ = 0.79. Anticipating this, normal borrowers mix in period 7 by repay-
ing with enough probability to make the lender’s updated P(Honest) = 0.79 in period 8,
which makes lenders indifferent. Guessing accurately how borrowers will mix the lender’s
P(Honest) threshold in period 7 is γ 2. The same argument works by induction back to pe-

13 In sessions 4–6, the lender’s default payoff was −50. In sessions 7–8, it was −75.



J.-K. Chong et al. / Games and Economic Behavior 55 (2006) 340–371 353
riod 1. In each period the lender has a threshold of perceived P(Honest) which makes her
indifferent between lending and not lending. The path of these threshold P(Honest) values
is simply γ 9−n in period n. When the updated P(Honest) in period t is above the threshold
in the period t + 1, the lender always lend and normal borrowers always repay in period t .
After that phase, lenders mix and borrowers default with increasing probability if they get
a loan.

Besides this sharp restriction on equilibrium lending and default, Bayesian updating
and optimization impose two more very strong restrictions: Since only normal borrowers
default, after a default the borrower’s type is revealed and players should neither lend nor
repay after that. And after a later period in which there is no loan, the borrower misses an
opportunity to improve her reputation, so players should neither lend nor repay after that
period.

Jung et al. (1994) ran a ‘chain-store’ entry deterrence game with payoffs as shown in
Table 2. With these parameters, the sequential equilibrium is very much like the one in the
trust game: Fighting for a couple of periods (and entrants wisely staying out) followed by
mixing, with an increasing tendency to share toward later periods.

The SE predicts that many events have zero probability (e.g., lending after a default).
But these events are actually observed occasionally, so the likelihood function blows up
unless some notion of error or trembling is added to the model. AQRE (McKelvey and
Palfrey, 1998) adds trembling toward better-responses (noisily best-respond), and assumes
that the agents understand the likely trembling that other players are doing. A home-made
prior θ is also included into the AQRE model (because this proved useful in fitting data in
the earlier analyses).

The AQRE model is implemented with four parameters—three different response sensi-
tivities (λ’s) for sophisticated lenders, honest borrowers, and sophisticated borrowers (since
there are no adaptive lenders and myopic borrowers), and a perceived prior belief of lenders
about P(honest) or P(aggressive) (restricted to be within the confidence interval determined
by the new one-shot game data mentioned above). AQRE is a plausible benchmark and fits
many other data sets well (e.g., McKelvey and Palfrey, 1998; Goeree and Holt, 1999; Ho
et al., 1998). However, it is noteworthy that even in the agent-based form, AQRE estimation
in these data is much more computationally challenging than in any previous applications
to extensive-form games, which have all used much simpler games with fewer nodes (see
Camerer et al., 2002 for details).14

The general model relaxes the key AQRE assumptions that all players Bayesian-update
belief and predict accurately the likely actions of others. The model allows for the exis-
tence of the strategically un-sophisticated players (those who learn adaptively or respond
myopically). If αL = αB = 1, the general model reduces to AQRE.

The general model also nests a self-tuning version of the experience-weighted attraction
model that has been used to fit and predict a wide range of experimental data (Camerer and

14 QRE is computationally nightmarish with 64 strategies because solving it requires solving a system of 64
simultaneous equations with Bayesian updating between nodes. Rather than using a distribution over all 28 = 64
supergame strategies, players choose a distribution of strategies at each node (as if each node is controlled by
a separate “agent”); hence the modified AQRE. The model can then be approximated by computing beliefs and
expected payoffs at each node using backward induction, which is a convenient shortcut.
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Ho, 1999; Ho et al., 2004). If αL = αB = 0, all lenders are adaptive and borrowers are
either honest or myopic. We do not report results of this special case because all three data
sets use a fixed matching protocol for the long-run player and the parameters αL and αB are
generally greater than 0.5, indicating the existence of a significant portion of sophisticated
players.

4. Data and results

This paper fits the general and AQRE models to experimental data from three sources.
The first is eight experimental sessions of a repeated borrower-lender trust game reported
by Camerer and Weigelt (1988a). The second is a previously unpublished sample of eight
more sessions of the same game (with prior P(honest), p = 0.10) in which players also re-
port beliefs about whether the borrower will default if there is a loan (Camerer and Weigelt,
1988b).15 These data are called “new trust” games. The third is 12 sessions of an entry-
deterrence game from Jung et al. (1994). Eight of the sessions use inexperienced subjects
(participating in that particular game for the first time) and four use experienced subjects
who returned for a second session playing the same game. There are a total of 28 experi-
mental sessions, roughly 2000 8-period sequences and 26,000 choices.16

4.1. Trust games

Typical patterns in the old trust data can be seen in Fig. 1 (pooling across all sessions to
reduce sampling error). Periods 1, . . . ,8 denote periods in each sequence. The figures show
relative frequencies of not lending (all data) and default (conditional on lending, for dis-
honest borrowers only), assuming there was no default earlier in the sequence. Sequences
are combined into ten-sequence blocks (denoted “sequence” in the figures) and average
frequencies are reported from those blocks.

Two patterns in the data are of primary interest. First, what is the rate of lending across
periods (and how does it change across sequences)? Second, how do borrowers respond to
loans in different periods (and how do these responses vary across sequences)? Figure 1
shows that lenders start by generally making loans (i.e., low frequency of no-loan) in early
periods, then learn to rarely lend (i.e., high frequency of no-loan) in periods 7–8. Bor-
rowers rarely default in early periods, but frequently default in periods 7–8. The pattern
of increasing default in later periods is particularly dramatic in later sequences so there is
cross-sequence learning. Figure 2 shows frequencies for the eight new trust sessions. The
general pattern of results is similar to that in Fig. 1 although No Loan and Default choices
are more common in earlier periods.

15 See Camerer and Weigelt (2005) for discussion of the beliefs.
16 Subjects in the trust games were either MBA students at NYU (in the original data) or undergraduates at the
University of Pennsylvania (in the new trust data). They were paid an average of $18 for a 2 1

2 -hour session. In-
structions are available in Camerer and Weigelt (1988a). Subjects in the entry-deterrence games were University
of Pittsburgh undergraduates. See Jung et al. (1994) for design details. Each session had 48–101 eight-period se-
quences. In each trust session, there were 11 subjects, three borrowers and eight lenders. In each entry-deterrence
session, there were 7 subjects, three monopolists and four entrants.
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(a) Empirical frequency for No Loan

(b) Empirical frequency for default conditional on Loan (Dishonest borrower)

Fig. 1. Frequency plots for the data from Camerer and Weigelt (1988a).
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(a) Empirical frequency for No Loan

(b) Empirical frequency for default conditional on Loan (Dishonest borrower)

Fig. 2. Frequency plots for the unpublished trust data from Camerer and Weigelt (1988b).
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8b) Jung et al. (1994)

Inexperienced
subjects

Experienced
subjects

5847 2232

−2246.97 −1345.76
−2418.43 −1345.76
342.91 0.00

0.68 0.55
0.66 0.55

2866 1072

−1341.15 −553.11
−1425.53 −553.11

0.63 0.60
0.61 0.60

old for significant χ2 test is 12.59 at 5% for 6 degrees of
Table 3
In-sample and out-of-sample performance of the general model and AQRE model

Data set Camerer and Weigelt (1988a) Camerer and Weigelt (198

In-sample calibration1

Sample size 5757 3820
Log-likelihood
The general model AQRE −2919.43 −2007.20

−3218.52 −2094.17
Log-likelihood ratio2 598.18 173.93
Average probability
The general model AQRE 0.60 0.59

0.57 0.58

Out-of-sample validation
Sample size 2894 1882
Log-likelihood
The general model AQRE −1425.16 −947.25

−1525.69 −989.44
Average probability
The general model AQRE 0.61 0.60

0.59 0.59

Notes. Calibrated on all observations for 70% of the subjects instead of 70% observations of all subjects. Thresh
freedom.
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How well the models capture these patterns can be judged in two ways:

(1) overall statistics measuring fit (log-likelihood); and
(2) reported parameter values.

Table 3 summarizes log-likelihoods (LL) for in-sample calibration and out-of-sample val-
idation. The general model performs significantly better in-sample and out-of-sample than
the AQRE in both old (1988a) and new (1988b) trust data. The fact that the per-period
log-likelihoods are similar in calibration and validation suggests that the general model
does not overfit (if it did, validation would have a larger negative log-likelihood). The gen-
eral model seems to improve a little on AQRE by allowing a sizeable fraction of adaptive
learners, which AQRE does not.17

Table 4 gives estimated parameter values.18 The estimated percentages of sophisticated
lenders αL are 43 and 63%, respectively, for old and new trust data. The corresponding per-
centages of sophisticated borrowers are 100 and 95% for old and new trust data, suggesting
that virtually all the long-run borrowers are teaching.

4.2. Entry-deterrence games

Now we turn to the Jung et al. data on entry-deterrence. Since they ran experiments both
with inexperienced subjects and experienced subjects, we can see whether subjects grow
more sophisticated when they repeat an entire experimental session.

Equilibrium predicts rates of entry and sharing to start low and rise as the end of a se-
quence draws near. Actual entry and sharing by inexperienced subjects are far too frequent
in early periods but there is some convergence toward early entry-deterrence across the
experimental session (see Fig. 3). Inexperienced entrants just didn’t quite figure out how
much it pays to fight entry in early periods.

Figure 4 shows data from experienced subjects. The correspondence of behavior to
equilibrium is much more dramatic. In the first sequence block, players often enter in the
first 3 periods, but they quickly learn early entry is rarely met with sharing, and they stay
out in early periods of later sequences.

17 Note also that the model is almost as accurate when all sessions are pooled, with common parameters, as
when fit statistics from session-specific estimation are totaled up, although 40 fewer parameters are estimated
when data are pooled. (See our 2004 working paper for details of session-by-session estimation.) This is a big
hint that the parameter estimates are quite stable across sessions for the teaching model. Our earlier working
paper reports two other comparisons. Allowing φ, δ, and κ to be free parameters (common within each data
set) and estimating them, rather than deriving them from functions as self-tuning EWA does, improves out-of-
sample accuracy slightly in hit rate and likelihood in most data sets. Fixing the home-made prior θ to zero
hurts the likelihood substantially in two data sets and gives hit rates less than chance (below 50%) except in the
inexperienced entry game data.
18 Keep in mind that in self-tuning EWA φ, δ and κ are not estimated, they are functions of the data. The aver-
aged functional values of φ, δ and κ are quite consistent across sessions. They are also in the ballpark of the values
estimated in parametric EWA (see Ho et al., 2004), except that the functional φ is always too high (0.76–0.77
compared to unconstrained estimates of 0.45 and 0.25). The fact that pooling across sessions degrades overall fit
only a little, and parameters are consistent across the new and old trust data sets, is encouraging. See our working
paper for details.
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(a) Empirical frequency for entry

(b) Empirical frequency for sharing conditional on entry (Weak incumbent)

Fig. 3. Frequency plots on inexperienced subjects from the entry data from Jung et al. (1994).
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(a) Empirical frequency for entry

(b) Empirical frequency for sharing conditional on entry (Weak incumbent)

Fig. 4. Frequency plots on experienced subjects from the entry data from Jung et al. (1994).
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Summary statistics in Table 3 shows that the general teaching and AQRE models are
about equally accurate for experienced subjects. With 100% of the borrowers and lenders
sophisticated (αL = αB = 1), the general model reduces to AQRE. For inexperienced sub-
jects, the general model is much more accurate than AQRE, reflecting the presence of
adaptive lenders.

Table 4 shows estimated parameter values. The estimated fractions of sophisticated
players are smaller for inexperienced subjects (αL = 0.67, αB = 0.91) than for experi-
enced subjects (αL = αB = 1). This increase in sophistication is also observed by Stahl
(1999) in matrix games, Camerer et al. (2002) in a dominance-solvable (p-beauty contest)
game, and Cooper and Kagel (2001) in signaling games. This seems to be a robust finding,

Table 4
Parameter estimates

Data set Camerer and
Weigelt (1988a)

Camerer and
Weigelt (1988b)

Jung et al. (1994)

Inexperienced
subjects

Experienced
subjects

The general model

Adaptive lender
Functional φ 0.76 0.77 0.78 0.76
Functional δ 0.15 0.16 0.19 0.34
τ 0.94 0.68 0.35 0.12

A0 (No Loan/No Entry) −2.09 −1.52 −1.63 0.39
λa

L 11.40 5.89 3.90 3.70

Sophisticated lender
αL 0.43 0.63 0.67 1.00
λs

L 7.75 8.19 5.41 6.53

Myopic borrower
λm

B 2.66 3.76 5.62 3.10

Sophisticated borrower
αB 1.00 0.95 0.91 1.00
λs

B 5.87 8.45 2.90 1.36
θ 0.28 0.28 0.18 0.17

Honest borrower
λh

B 27.32 24.76 5.70 6.30

Agent-based quantal response equilibrium (AQRE)

Sophisticated lender
αL 1.00 1.00 1.00 1.00
λs

L 6.31 5.37 4.76 6.53

Sophisticated borrower
αB 1.00 1.00 1.00 1.00
λs

B 3.84 4.76 3.28 1.36
θ 0.27 0.28 0.16 0.17

Honest borrower
λh

B 26.70 25.89 2.75 6.30

Notes. All sessions in a data set are pooled to produce a common set of estimates except for the scale parameters
like the λs which are session-specific. The estimates reported here are averages. Standard errors are reported in
our working paper.
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and a sensible one—players come to realize how others are learning after they play the
same game in two consecutive sessions.

A challenging test for both the general and AQRE models is whether similar parameter
values can be used to explain behavior in trust games and entry-deterrence games. These
games are opposite in incentive structure in the sense that special type behavior (repaying
or fighting) is mutually-beneficial in trust games but only privately-beneficial in entry-
deterrence. If the same general model structure and parameters can explain both games
that shows some robustness which encourages broader application. In fact, the trust and
inexperienced entry data give similar values of self-tuning EWA parameters of φ (0.76–
0.78) and δ (0.15–0.19). This is an encouraging first step towards a general learning-based
theory of different repeated games.

Many results are consistent across both games. The AQRE model predicts rather well,
but it is helped substantially by allowing the constrained home-made prior above zero. Re-
stricting θ = 0 degrades fit of AQRE a lot. In terms of overall out-of-sample fit, the general
model is always a little better than AQRE. The key difference between the two models
is that some lenders and entrants learn in the general model but they always anticipate
what borrowers and incumbents will do in AQRE. The fact that the general model gener-
ally fits and predicts better than AQRE means that weakening sophistication of ‘short-run’
players has some is empirical value. However, the two models are equivalent with expe-
rienced entry-game subjects, which shows the power of experimental experience to create
full sophistication.

5. Model robustness

We subject the general model to a stress test by checking the robustness of the model
using simulation (cf. Cooper et al., 1997). The idea of this robustness check is:

(1) to verify if the general model is able to reproduce the empirical trends exhibited by the
data, and

(2) to assess the impact of the features of the model in tracking data.

Four trends in the data emerge from the visual inspection of the Figs. 1–4. There are
two cross-round trends:

(1) the frequency of No Loan or Entry increases across rounds; and
(2) the frequency of Default or Share increases across rounds.

The other two are cross-sequence trends:

(3) the frequency of No Loan or Entry decreases across sequence in early rounds but in-
creases across sequence in later rounds; and

(4) the frequency of Default or Share decreases across sequences in early rounds but in-
creases across sequences in later rounds.



J.-K. Chong et al. / Games and Economic Behavior 55 (2006) 340–371 363
We check for the statistical significance of these visual observations.
To confirm the significance of cross-round trends in the data, we run the following

regressions on each of the four data sets across round t :

Probkt (No Loan/Entry) = aLt + bLt · t, (17)

Probkt (Default/Sharing Given Loan/Entry) = aBt + bBt · t, (18)

where t indexes round and k indexes the sequence blocks in Figs. 1–4. Both bLt and bBt

are significantly positive, confirming our visual observation of trends 1 and 2.
To check the significance of cross-sequence trends in the data, we partition each data

set into the first 4 rounds and last 4 rounds and run separate regressions for each partition
across sequences k:

Probkt (No Loan/Entry) = aLkR + bLkR · k, (19)

Probkt (Default/Sharing Given Loan/Entry) = aBkR + bBkR · k, (20)

where R = 1 represent the first 4 rounds and R = 2 represent the last 4 rounds.
We expect bLk1 < 0 and bLk2 > 0 for a significant trend 3 and bBk1 < 0 and bBk2 > 0

for a significant trend 4. We are only able to find partial confirmation of the cross-sequence
trends. Specifically, we find strong evidence of cross-sequence trend in lender’s behavior
for both the Trust data and the inexperienced entry data in the first 4 rounds of the game
(bLk1 < 0). We also find strong evidence of cross sequence trend in incumbent’s behavior
in the first 4 rounds of the game (bBk1 < 0). But the second-half cross-sequence coefficients
bLk2 and bBk2 are not significant.

Next, we investigate if these significant trends in the data are replicated by the model
prediction. We first generate the prediction of the general model by simulating choices us-
ing the parameter estimates of the general model from Table 4. For each 8-round sequence,
we produce 1000 simulated choice paths of both lenders (or entrants) and borrowers (or
incumbents). The 1000 simulated paths are averaged to produce the simulated probabili-
ties for each sequence. These simulated probabilities are subjected to the same significance
tests across periods and sequences we run for the data; slope coefficients for cross-round
and cross-sequence trends for data and the simulated model are reported below the figures.
The results for the Trust data and the inexperienced entry data are presented in Figs. 5
and 6.19 Judging from the plots and the significant estimates, the general model is able
to reproduce the significant trends in the data fairly accurately (although the estimated b.

trend coefficients are a little smaller in magnitude).
Is each key feature of the model necessary to capture the trends? We find out by “dis-

abling” each feature individually and simulating choice using the restricted models with
each feature disabled separately. There are four key features of the model: cross-sequence
learning, the proportion of sophisticated lenders, the home-made prior, and the proportion
of sophisticated borrowers. The first two are parameters driving the lender’s choices and

19 In addition, the significant cross-round effects for Camerer and Weigelt (1988b) are bLt = 0.08, bBt = 0.06
for data and bLt = 0.05, bBt = 0.04 for the model. The significant cross-round effects for the experienced subjects
in Jung et al. (1994) are bLt = 0.09, bBt = 0.11 for data and bLt = 0.07, bBt = 0.07 for the model. All are
significant at 5%.
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(a) The general model simulated frequency for No Loan

(b) The general model simulated frequency for default conditional on Loan (Dishonest borrower)

Fig. 5. Cross-sequence and cross-round effects for the trust data from Camerer and Weigelt (1988a).
Cross-sequence trends: bLk1 (data) = −0.02, bLk1 (model) = −0.01. Both are significant at 5%. Cross-round
trends: bLt (data) = 0.10, bLt (model) = 0.05, bBt (data) = 0.10, bBt (model) = 0.04. All are significant at 5%.
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(a) The general model simulated frequency for entry

(b) The general model simulated frequency for sharing conditional on entry (Weak incumbent)

Fig. 6. Cross-sequence and cross-round effects for inexperienced subjects from the entry data from Jung
et al. (1994). Cross-sequence trends: bLk1 (data) = −0.02, bLk1 (model) = −0.01, bBk1 (data) = −0.03,
bBk1 (model) = −0.01. All are significant at 5%. Cross-round trends: bBt (data) = 0.05, bBt (model) = 0.04.
All are significant at 5%.
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(a) Average probability of No Loan

(b) Average probability of default given loan (Dishonest borrower)

Fig. 7. Parameter restrictions for the trust data from Camerer and Weigelt (1988a). Lender: bLt (data) = 0.10, bLt

(model) = 0.05, bLt (τ = 0) = 0.03, bLt (αL = 0) = 0.04, bLt (αB = 0) = 0.04, bLt (θ = 0) = 0.04. Borrower:
bBt (data) = 0.10, bBt (model) = 0.04, bBt (τ = 0) = 0.03, bBt (αL = 0) = 0.04, bBt (αB = 0) = 0.00, bBt

(θ = 0) = 0.05.
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(a) Average probability of entry

(b) Average probability of sharing given entry (Weak incumbent)

Fig. 8. Parameter restrictions for inexperienced subjects from the entry data from Jung et al. (1994). Incumbent:
bBt (data) = 0.05, bBt (model) = 0.04, bBt (τ = 0) = 0.03, bBt (αL = 0) = 0.03, bBt (αB = 0) = 0.00, bBt

(θ = 0) = 0.03.

the last two are driving the borrower’s choices. The details of the simulation and the trend
significance regression analysis are the same as before. The plots and regression results are
reported in Figs. 7 and 8. The figures combine all sequences so several parameter config-
urations can be put on a single 3-D graph. The general findings benchmarked against data
are:
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(1) disabling cross-sequence learning results in less Loan initially and more Loan in later
rounds (the cross-round trend has a lower slope bLt and higher intercept aLt than the
general model). There is obviously more learning in the data than within-sequence
learning. We also see more default in later rounds in response to this lender behavior
(i.e., the slope bBt when τ = 0 is lower than in the general model). In entry game,
there is more entry and less sharing in later rounds (i.e., the slope bBt when τ = 0 is
lower than the general model).

(2) disabling sophisticated lenders (αL = 0) results in a flatter rise in No Loan frequency
across rounds (i.e., bLt with αL = 0 is lower than the general model) and a steep
drop in entry rate across rounds (which is going against data trend). The restricted
model predicts a lower default and more sharing pattern than the data. This shows that
allowing no sophisticated lenders harms fit.

(3) disabling the sophisticated borrowers (αB = 0) results in a flat default and sharing rate.
This suggests that there are non-myopic borrowers. It predicts a flatter rise in no loan
across rounds than the data (bLt is too low).

(4) disabling the home-made prior (θ = 0) results in substantially overprediction of default
and sharing rate (they are higher than both the data and the general model prediction
in every round, i.e. aBt is higher). This provide strong evidence of the Special home-
made type. It results in a flatter rise in no loan rate (bLt is lower) and an almost flat
entry rate.

In general, disabling each of these four features, one at a time, shows that each of the
features contribute to the ability of the general model to describe subjects’ behavior. The
simulations also indicate that each feature indeed captures the right part of the behavior
that feature is meant to capture.

6. Conclusion

Many empirical learning models implicitly assume that players do not realize others
are learning. This paper adds “sophisticated” players who do realize others are learning,
in repeated games with incomplete information. Sophisticated players who know they are
playing a repeated game have an incentive to take actions which are costly in the short-run,
but which “teach” learners what to expect, in a way that benefits the teachers. Including
teaching effects extends learning models to the many domains in which economic relation-
ships are long-lasting.

This paper applies a precise model of sophisticated teaching to finitely-repeated exper-
imental games of trust and entry-deterrence, with incomplete information about players’
types (some are induced to be honest or to fight entry). Earlier experiments have shown
that some features of behavior in these games are approximated by very complex and del-
icate equilibria (Camerer and Weigelt, 1988a; Jung et al., 1994). But it is unlikely that
players approximate the equilibria by introspection, and their comparative static predic-
tions are often wrong (Neral and Ochs, 1992). A boundedly rational model of learning is
one answer to the question of how people can approximate hyperrational Bayesian equi-
libria.
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By including several learning types, the model both adds sophistication to adaptive
learning, and adds learning to an AQRE model. Lenders and entrants either learn adaptively
(using a self-tuning functional EWA rule) or sophisticatedly anticipate what borrowers and
incumbents will do. Borrowers and incumbents are either myopic, always behave in a
special way (trustworthy or fighting entry), or teach strategically.

A key difference between the proposed model and equilibrium is that the players build
reputations in AQRE (“this guys seems honest”), but the learners’ strategies have reputa-
tions (“entry is dangerous”) in the proposed model. The proposed model is also a partial
equilibrium one, because some adaptive players do not fully anticipate what others will
do.

The general model was fit to 28 sessions of data from both repeated trust and en-
try games. Both models reproduce most of the basic trends in the data, particularly
increasing default and market-sharing in later periods of a sequence, and some cross-
sequence learning. The key parameter in the general model is the fraction of strate-
gic teachers, αB . This figure is reliably estimated to be about 0.91 for inexperienced
entry-game subjects and close to 1 for trust games and experienced entry-game data.
The fact that αB rises with subject experience corroborates other findings. The AQRE
model generally fits reliably worse than the general model, which is an indication
that adding a learning component to equilibrium models helps explain how people be-
have.

A key point is that the same model can account for quite different behavior in these
games: Borrowers in trust games behave in an honest way that is mutually-beneficial,
while aggressive incumbents benefit only themselves. The same model explains both be-
cause the two behaviors emerge endogenously from the same kind of interaction between
teaching and payoffs.

Finally, we subject the general model to a stress test to check the model robustness.
Relying only on parameter estimates, the general model is able to simulate behaviors that
match the significant trends found in the data. Furthermore, we show that this descriptive
ability degrades significantly when any of the four key features of the model is turned
off.

In future research, it would be useful to endogenize some of the parameters of most
interest (particularly the rate of sophistication αB ). The model could also be applied to
games and markets where the interaction of sophistication and adaptive learning is inter-
esting (e.g. inflation-setting, see Sargent, 1999; and price bubbles, see Smith et al., 1988;
Camerer and Weigelt, 1990; and Lei et al., 2001).
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Appendix A. Self-tuning EWA model specification

Ho et al. (2004) developed a self-tuning EWA model in which the fixed parameters
φ and δ are replaced by functions of data which self-adjust across games and over time.
These functions determine parameter values for each player, each round and each sequence,
which are then plugged into the EWA updating equation to determine attractions.

The function φ(k, t) is designed to detect change in the learning environment. It takes
the differences in corresponding elements of two frequency vectors, squares them, and
sums the squares over strategies. The change-detection function φ(k, t) is

φ(k, t) = 1 − 0.5

(∑
j

[∑t
σ=t−W+1 I (s

j
B, sB(k, σ ))

W
−

∑t
σ=1 I (s

j
B, sB(k, σ ))

t

]2)

where W is the minimal number of equilibrium strategies. s
j
B denotes the j th strategy of

borrower and the term (1/W)
∑t

σ=t−W+1 I (s
j
B, sB(k, σ )) is the j th element of a vector

that simply counts how often strategy j was played by the borrower in the W periods from
t − W + 1 to t , and divides by W . The term (1/t)

∑t
σ=1 I (s

j
B, sB(k, σ )) is the relative

frequency count of the j th strategy over all t periods.
The parameter δ is the weight on foregone payoffs. Presumably this is tied to the atten-

tion subjects pay to alternative payoffs, ex post. Subjects who have limited attention are
likely to focus on strategies that would have given higher payoffs than what was actually
received, because these strategies present missed opportunities. To capture this property,
define

δj (k, t) =
{

1 if πL(s
j
L, sB(k, t)) > πL(k, t),

0 otherwise,

where πL(k, t) is the actual payoff lender received in round t of sequence k. Subjects
reinforce chosen strategies (where the top inequality necessarily binds) and all unchosen
strategies with better payoffs (where the inequality is strict) with a weight of one. They
reinforce unchosen strategies with equal or worse payoffs by zero.
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