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 Respondents in a conjoint experiment sometimes are presented with
 successive partial product profiles. First, the authors model how respon-
 dents infer missing levels of product attributes in a partial conjoint profile
 by developing a learning-based imputation model that nests several
 extant models. The advantage of this approach over previous research is
 that it infers missing levels of an attribute not only from prior levels of the
 same attribute but also from prior levels of other attributes, especially
 ones that match the attribute levels of the current product profile. Sec-
 ond, the authors provide an empirical demonstration of their approach
 and test whether learning in conjoint studies occurs; to what extent; and
 in what manner it affects responses, partworths, and the relative impor-
 tance of attributes. They show that the relative importance of attribute
 partworths can shift when subjects evaluate partial profiles, which sug-
 gests that consumers may construct rather than retrieve partworths and
 are sensitive to the order in which the profiles are presented. Finally, the
 results show that consumers' imputation processes can be influenced by
 manipulating their prior information about a product category. This
 research is of both theoretical and practical importance. Theoretically,
 this research sheds light on how customers integrate different sources of
 information in evaluating products with incomplete attribute information;
 practically, it highlights the potential pitfalls of imputing missing attribute
 levels using simple rules and develops a better behavioral model for
 describing and predicting customers' ratings for partial conjoint profiles.

 A Learning-Based Model for Imputing
 Missing Levels in Partial Conjoint Profiles

 Conjoint analysis is perhaps the most celebrated research
 tool in marketing. It has been applied to solve a wide vari-
 ety of marketing problems, ranging from understanding
 consumer preferences, to estimating product demand, to
 designing a new product line. The method involves present-
 ing customers with a carefully chosen test set of product
 profiles from the universal set (as defined by the levels of
 the attributes) and collecting their preferences, which could
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 be ratings, rankings, or profiles, for those profiles in the test
 set. The power of the method lies in its ability to extrapolate
 customers' preferences from this test set to the universal set.
 Conjoint analysis works better when the test set is small and
 the preference task difficulty is low. Both factors can be
 influenced significantly by the number of product attributes.

 If the number of attributes is large (as for many high-tech
 durable products), a full-factorial experiment would require
 respondents to assess their preferences for many profiles,
 each consisting of many attributes. The large test set prob-
 lem can be solved by means of a fractional design (Green,
 Carroll, and Carmone 1978; Plackett and Burman 1946)
 that divides the test set among several respondents in a
 common customer segment.

 There are two ways to solve the task difficulty problem.
 The first way is to use a self-explicated conjoint analysis
 (Green 1984), in which consumers rate the importance of
 the attributes and then evaluate the attractiveness of each

 attribute level. By multiplying the normalized importance
 and attractiveness ratings, the researcher can derive a con-
 sumer's overall preference for any profile. This approach
 typically requires the respondent to answer a smaller set of

 Journal of Marketing Research
 369 Vol. XLI (November 2004), 369-381

This content downloaded from 137.132.123.69 on Wed, 07 Dec 2016 02:36:44 UTC
All use subject to http://about.jstor.org/terms



 370 JOURNAL OF MARKETING RESEARCH, NOVEMBER 2004

 questions than a full-profile judgment task does, and it
 avoids the complexity of judging a profile with too many
 attributes. However, the self-explicated conjoint analysis
 method has its own problems, including that respondents'
 attribute importance ratings are not always consistent with
 their preference decisions. That is, the experimental condi-
 tion of separating attribute and level ratings is artificial
 because real-life purchase decisions are made on whole
 products.

 The second solution is to use orthogonal subsets of all the
 attributes (Green 1974), or partial-profile conjoint analysis.
 Because profiles with a smaller number of attributes may be
 easier to rate, the partial-profile conjoint analysis approach
 decreases the difficulty of the rating task; however, it may
 increase the number of profiles needed to determine con-
 sumers' utility functions. The partial-profile conjoint analy-
 sis approach typically assumes that the attributes that are
 missing do not influence product evaluation, but several
 studies cast doubt on this assumption (e.g., Broniarczyk and
 Alba 1994; Feldman and Lynch 1988; Huber and McCann
 1982). Consequently, standard rating conjoint analysis
 methods that are applied to partial profiles may not produce
 a highly predictive utility function.

 In this article, we investigate how subjects impute miss-
 ing attribute levels when they evaluate partial conjoint pro-
 files. Our goals are to understand the dependency of ratings
 of current profiles on all available attribute information (in
 both the current and the previously shown profiles), includ-
 ing a person's prior knowledge, and to provide insights into
 how consumers may impute missing levels when evaluating
 partial conjoint profiles.

 We relax the "null effect for missing attribute" assump-
 tion and develop a probabilistic model of how respondents
 impute values for missing attributes based on their priors
 over the set of attribute levels, a given attribute's previously
 shown values, the previously shown values of other attrib-
 utes, and the covariation among attributes (both a priori and
 learned within the task itself). We conceptualize how con-
 sumers infer missing values through a pattern-matching and
 learning process. Our model assumes that consumers learn
 and update after each stimulus (partial profile) about the
 pattern underlying the product attributes, their levels, and
 the correlations between them. How are strengths of pat-
 terns formed and updated? We assume that consumers have
 prior knowledge about the patterns and use knowledge
 about the product profiles acquired through the conjoint
 task to update their strengths. It is this dynamic process of
 learning about the attribute level occurrences and covaria-
 tion among attributes that we model and focus on in this
 article.

 We call the fundamental kernel of this updating structure
 a "pattern-matching" learning model. That is, the respon-
 dent uses previously shown profiles that exhibit certain pat-
 terns among the attributes to infer the missing attribute lev-
 els in the current profile. In essence, this approach can be
 viewed as a time-varying, multiway contingency table of
 latent counts for imputation (Little and Rubin 1987). Con-
 sequently, the order in which profiles are presented matters
 in predicting preference ratings.

 We model how people rate partial conjoint profiles over
 time. Although rating-based methods may currently be less
 common than choice-based methods in practice (Wittink

 and Catlin 1989), our study is relevant for common applica-
 tions of conjoint analysis in at least three ways:1

 1. Our research can influence the way that adaptive conjoint
 analysis (ACA) is used in practice. The ACA engine (e.g.,
 Equation 2 in the ACA 5.0 Technical Report [Sawtooth Soft-
 ware 2002]) requires continuous strength of preference data,
 treated as a rating score, obtained for pairwise partial pro-
 files. Although ACA can handle up to 30 attributes, each pro-
 file should contain no more than 5 attributes, a practice that
 has been brought into question by others (e.g., Green,
 Krieger, and Agarwal 1991; Johnson 1991). Our work is
 directly applicable to the ACA engine, which selects profile
 pairs on the basis of utility balance, and if those utilities are
 influenced by the missing attributes that do not cancel across
 choice pairs because of covariation, learning, and so forth,
 the resultant partworths may be biased. Our model helps
 quantify these biases or select pairs that have the highest
 likelihood of canceling out those missing attributes.

 2. Our research has implications for the hybrid approach pro-
 posed by Srinivasan and Park (1997) and subsequently
 extended by Ter Hofstede, Kim, and Wedel (2002). Both
 share the same data structure, in which the authors use a sub-
 set of the most important attributes, based on self-explicated
 data, in a subsequent full-profile conjoint study. Respondents
 are aware of all the attributes before they rate the profiles that
 contain only a subset of attributes. In this manner, the pro-
 files shown in the approaches are partial, and our model
 sheds light on the role of those attributes that are excluded in
 the rating task.

 3. Our study is also relevant for choice-based conjoint methods,
 despite the assumption of ignorability across pairs of not
 shown attributes (Elrod, Louviere, and Davey 1992). Con-
 ceptually, all profiles, even if they are called full, have miss-
 ing attributes that could be inferred. Therefore, despite the
 common practice of stating that "respondents were instructed
 that profiles were similar in every respect except possibly for
 those attributes shown in the profile description," it is an
 open empirical question whether respondents do or, possibly
 more important, can follow this instruction. Our model can
 verify whether subjects are able to ignore the levels of those
 attributes that are not included in the study.

 The rest of this article is composed of four sections. In
 the next section, we develop our imputation model. We then
 explain the design of our experiment. Next, we estimate our
 model on two sets of experimental data and report the
 results. In the last section, we conclude with caveats and
 provide directions for further research.

 THE IMPUTATION MODEL

 Notation and Model Setup

 We investigate how I respondents (indexed by i = 1, ..., I)
 rate a series of product profiles (partial or full) in a conjoint
 experiment. Each product profile is characterized by J
 attributes (indexed by j = 1, ..., J), and each attribute j has
 two levels. Each respondent i rates T profiles (denoted by
 Mi(t), t = 1, ... T) one by one. Respondent is rating for
 product profile Mi(t) is given by yi(t). Profile Mi(t) takes a
 level of xii(t) = 1 or 0 for attribute j. We denote whether
 attribute j is missing in the tth profile shown to respondent i

 by rij(t). If attribute j is missing in profile Mi(t), rii(t) is 0;
 otherwise, rii(t) is 1. The basic premise of our model is that

 1We thank an anonymous reviewer for pointing out the link between our
 study and these approaches.
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 respondent i does not ignore a missing attribute level but

 rather constructs an imputed value for it. Let x'ii(t) be that
 imputed value, determined as follows:

 x'ii(t)
 Note that Ixii(t) is a random variable that takes the value

 of 1 or 0 (or, in general, the possible values of xii(0), and
 the imputation modeling effort is to determine its probabil-
 ity distribution over the possible levels. If an attribute is not

 missing (i.e., rij(t) = 1), we assume that the shown attribute
 level xii(t) occurs with probability 1.

 To determine the partworths of the attributes, we postu-
 late a regression with heterogeneous coefficients given by

 (1) yi(t)
 where Rij is respondent is partworth for attribute j.

 Johnson, Levin, and their colleagues (Johnson 1987;
 Johnson and Levin 1985; Levin et al. 1986), however, sug-
 gest that subjects have different partworths for the same
 attribute when it is missing compared with when it is not.
 To control for this, we modify regression Equation 1 to
 yield the following:

 (2) yi(t)
 In Table 1, we show the model's partworths in different
 conditions. If subjects have different partworths when an
 attribute is missing, then 13/ii will be significantly different
 from O. Thus, our model nests the work of Johnson, Levin,
 and others and generalizes theirs by including the imputed
 attribute levels x'ii(t) when rii(t) = O.

 Basic Ideas

 In Table 2, we show a hypothetical example that intro-
 duces the basic ideas of our imputation model and demon-

 Table 1
 PARTWORTHS OF THE SAME ATTRIBUTE

 Attribute Level

 Attribute Shown? Yes

 No

 Table 2

 AN ILLUSTRATIVE EXAMPLE

 Time (t)

 OM  PM

 Attribute 1  Attribute 2  Attribute 3  Attribute 4

 1  0  MA*  1

 2  0  1  1  MA
 3  1  MA  1  0

 *MA = missing attribute.

 straws current extant models. There are four attributes (i.e.,
 J = 4) and three profiles, that is, Mi(1), Mi(2), Mi(3). Each
 profile has one missing attribute (denoted as MA), where
 subject i rates Mi(1), Mi(2), and Mi(3) sequentially. At time
 t = 3, xi1(3) = 1, xj3(3) = 1, and xj4(3) = O. Attribute 2 is
 missing at time t = 3, and we denote its imputed level, 1 or
 0, by x'i2(3). In a real experiment, the respondent views a
 product profile at time 3 with only Attributes 1, 3, and 4 and
 does not see "MA" for Attribute 2; we include it in Table 2
 only to describe the design.

 Assume that the subject has finished rating profiles Mi(1)
 and Mi(2) and that profile Mi(3) is the current product pro-
 file. To investigate how information from different attributes
 might influence the imputed value for Attribute 2 at t = 3,
 we divide the attributes into three types: (1) the omnipresent
 (OM) set, (2) the presence-manipulated (PM) set with pres-
 ent attributes (nonmissing PM), and (3) the PM set with
 missing attributes (missing PM). The OM attributes are
 always presented, whereas the PM attributes may or may
 not be. A PM attribute is called a "nonmissing PM attrib-
 ute" if it is not missing in the current conjoint profile and a
 "missing PM attribute" if it is missing in the current con-
 joint profile, though it may not be missing in others. In pro-
 file Mi(3), Attribute 1 is an OM attribute, Attributes 3 and 4
 are nonmissing PM attributes, and Attribute 2 is a missing
 PM attribute. Existing models use only prior information
 (values) from the currently missing PM attribute (Attribute
 2) for imputation of the missing level xj2(3). Our model
 uses all three sources: missing and nonmissing PM and OM
 attributes.

 There are several different ways to treat missing attribute
 levels. The first way is to assume that respondents ignore
 them (Green 1974). Such an assumption implies that all the
 MAs in Table 1 are filled in as 0 (the default level). For-
 mally, this assumption leads to the following prediction of
 the missing attribute level: Pr[x'i2(3) = 0] = 1 and
 Pr[x'i2(3) = 1] = O. Note that in this case, the imputation
 process of the missing levels depends on which level is
 coded as 0, a potential theoretical problem.

 An alternative approach is to assume that respondents
 impute values using all available information. That is,
 people infer the levels of the missing attributes from previ-
 ously viewed product profiles and weight each profile pat-
 tern accordingly. This latter view is consistent with the
 work of Meyer (1981), who shows that when a subject has
 no information about certain attributes, he or she does not
 ignore that attribute but rather assigns it a score equal to his
 or her adaptation level.

 There are two common ways to model how consumers
 make inferences about missing attribute levels. The first
 way is based on the so-called recency effect (Lynch and
 Srull 1982); people assume that the missing attribute level
 is the last level of the same attribute they saw. According
 to such a model, in Table 2, Attribute 2 in profile MO)
 takes level 1 (following the level of Attribute 2 in profile
 Mi(2)). Formally, we have Pr[x'i2(3) = 0] = 0 and
 Pr[x'i2(3) = 1] = 1.

 The second commonly used imputation approach is the
 averaging model (Yamagishi and Hill 1981); people impute
 the missing attribute level by averaging all the previously
 shown levels of the missing attribute. For example, in Table
 2, this yields Pr[x'i2(3) = 0] = 1/2 and Pr[x'i2(3) = 1] = /2.

 High: x'ii(t) = 1

 lij

 Pij

 Low: x'ii(t) = 0

 13%;

 0

 13%;
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 In imputing the missing values, the recency and averag-
 ing models make strong assumptions about the similarity
 between the current and previous profiles. The recency-
 based model assumes that the current profile is similar only
 to the most recently shown profile and is dissimilar from the
 rest.2 The averaging model assumes that the current profile
 is equally similar to all the previously shown profiles. How-
 ever, we expect that some previously shown profiles are
 more similar ("count more" in imputing) to the current pro-
 file than others.

 These models use only prior data from Attribute 2 to
 impute x'i2(3). By doing so, they ignore two important
 pieces of information. First, there is the complete set of pat-
 terns shown to the subjects [Mi(1), Mi(2)], not just the val-
 ues for Attribute 2 [xj2(1), xj2(2)]. Some of these patterns
 might occur more frequently, so their values for Attribute 2
 might be more salient and memorable. Second, levels of
 other attributes from the current profile (i.e., Mi(3)) might
 be diagnostic about the missing level. For example, if
 Attribute 1 is negatively correlated with Attribute 2, as in
 Table 2, a respondent might infer a 0 for Attribute 2 from a
 1 in Attribute 1. Such a correlation structure could be based

 on people's long-term memory or learning in the conjoint
 task. Huber and McCann (1982) show that people use their
 belief about the correlation structure between price and
 quality to infer the missing price or quality when either one
 is missing. Broniarczyk and Alba (1994) also show that
 consumers' intuitions (priors) influence their inference
 making. Our model captures these covariances, as well as
 the priors they already have, in a parsimonious way.

 As do existing models, our imputation model derives
 probabilities that the missing PM Attribute 2 in profile
 Mi(3) takes a value of 1 or O. The parameterization of the
 probabilities is based on the work of Hoch, Bradlow, and
 Wansink (1999), who describe a similarity measure
 between a pair of categorical objects (conjoint profiles in
 this research), and Camerer and Ho (1998, 1999) and Ho
 and Chong (2003), who describe how learning and memory
 decay occur over time. The two basic concepts we use here
 are what we call "pattern matching" and "experience count"
 (EC). We combine them to yield our imputation model,
 which defines the probabilities over the missing attribute
 levels.

 We develop three potential classes of models (Figure 1)
 to demonstrate how the generality of our model is built
 sequentially, using varying information sources. The model
 in Figure -1, Panel A, uses only previously shown informa-
 tion about the missing PM attribute (i.e., j = 2) to impute
 missing levels. It is a natural extension of the recency and
 averaging model that allows for decay. The imputation is
 based on historical levels of Attribute 2 (0 in profile Mi(1)
 and 1 in profile Mi(2)), but the more recent level (1 in pro-
 file Mi(2)) may be more influential. To capture the recency
 effect in a decay-weighed averaging model, we introduce a
 decay parameter, X,2 (0 < -. 1; the subscript denotes
 Attribute 2). We also introduce the EC concept (Camerer
 and Ho 1999), such that Nii(tI/) denotes respondent is latent
 EC of attribute j at time t, taking level 1.

 2Note that if Mi(2) were the first profile and Mi(1) were the second pro-
 file, the prediction of the recency model would be reversed; that is,
 Pr[x'i2(3) = 1 = 0]. The averaging model, however, would give the same
 prediction.

 Ni2 (310) =
 1

 I

 OM  PM

 Time
 Attribute 1  Attribute 2  Attribute 3  Attribute 4

 1 1  MA  1

 A...)t 1
 0 2  1  MA

 1  0 3  MA  1

 Figure 1
 THREE CLASSES OF MODELS

 A: IMPUTING FROM MISSING PM ONLY

 Ni2 =

 Ni2(311) =

 B: IMPUTING FROM MISSING AND NONMISSING PM

 PM OM
 Time

 Attribute 1

 1  1

 Attribute 2  Attribute 3

 MA ,

 Attribute 4

 1

 2

 3

 0  ,40
 1 1

 MA

 0 MA
 )

 1

 Ni2 (311)

 C: IMPUTING FROM OM, MISSING PM, AND NONMISSING PM

 OM  PM

 Time
 Attribute 1  Attribute 2  Attribute 3  Attribute 4

 1  1 1  MA

 0 2  1  MA

 I

 MA 1  0 3  1

 Ni2(3(0) =

 Ni2(311) =

 As illustrated in Figure 1, Panel A, Ni2(310) =k22 because
 Mi(1) has an observed level of 0 for Attribute 2 at time 1
 (i.e., xj2(1) = 0). If x'i2(3) were to be imputed as 0, X2 would
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 have a power of 2 because there are two periods of time dif-
 ference between profile Mi(1) and profile Mi(3), during
 which they would match on PM Attribute 2. Similarly,
 Ni2(311) = X2 because Mi(2) has x12(2) = 1 and would match
 with x'i2(3) if it were to be imputed as a 1. Therefore, the
 probability that fi2(3) takes level 1 or 0 is as follows:

 The averaging model is a special case of this class of mod-
 els in which 2.,2 = L The recency model has Ad2 0, with
 Pr[x'i2(3) = 1] ---> 1 and Pr[x'i2(3) = 0] ---> 0.
 The more general model in Figure 1, Panel B, uses infor-

 mation from both the missing and nonmissing PM attributes
 (Attributes 3 and 4). That is, in addition to using informa-
 tion from Attribute 2 itself, we use possible conditional
 match patterns between profiles on the nonmissing PM
 attributes. Because we assume that the missing attribute lev-
 els are not used for imputation,3 we only need to check
 whether there is a match between [xi3(3)] and [x13(2)] and
 between [xi4(3)] and [x14(1)]. Because [xj3(3)] and [x13(2)]
 match, we expect Mi(2) to influence imputation more than
 Mi(1) on Mi(3). We add another decay parameter, X3 (0 <
 A,3 1), to capture this reinforcement. Consequently,
 Ni2(311) becomes 2k,2 + k3, whereas Ni2(310) stays the same.
 The probability that x'12(3) is imputed as 1 or 0 now
 becomes:

 Note that Pr[x'i2(3) = 1] becomes larger, compared with
 Figure 1, Panel A, because Mi(2), compared with Mi(1), is
 more similar to Mi(3) than when we consider only the miss-
 ing PM attribute.

 The model in Figure 1, Panel C, uses all of the available
 information from both the PM and OM attributes to impute
 the missing level. Following the same procedure, the ECs
 are Ni2(310) = + Xi and Ni2(311) = A,2 + X3 . The correspon-
 ding probabilities become

 The most general model, Figure 1, Panel C, has two desir-
 able properties: First, it uses all available information in the
 previously shown and current profiles in a sensible way.
 Furthermore, the model highlights the potential pitfalls of
 the averaging and recency models. For example, it implies

 3This is an assumption/limitation of our approach that we discuss subse-
 quently as an area for further research.

 that these simpler models would yield the same prediction
 if Mi(3) were to take any of these patterns { [1, MA, 1, 1],
 [1, MA, 1, 0], [1, MA, 0, 1], [1, MA, 0, 0], [0, MA, 1, 1], [0,
 MA, 1, 0], [0, MA, 0, 1], [0, MA, 0, 0]}, which seems very
 unlikely. Second, it enables respondents to apply different
 weights to different attributes, depending on their
 preference.

 General Formulation

 In general, the pattern matching between two profiles can

 be formally defined as follows: Assume rij(t) = 0 and the
 level of attribute j at time t for respondent i is to be imputed.

 For each possible level of x'jj(t), we consider all previously
 shown profiles (t' < t) that have attribute j of the same value

 (i.e., xii(e) = x'ii(t)). That is, we find all t' in which the indi-
 cator function I[xii(e), xii(t)] = 1. In addition, we set I[xii,
 x.., (e)] equal to 1 for those profiles Milt) that have a
 match along a different attribute j' with the current profile
 Milt) but also on the missing PM attribute j. We call this a
 conditional match-up model, because the pairs of profiles
 must match on the missing PM attribute for it to be added to
 the EC.

 It is also important to note the following properties of our
 pattern-matching approach: (1) We do not match profiles
 based on imputed values of previous attributes or, in the
 case in which more than one attribute is missing, imputed
 values of the missing PM attribute(s) j' # j. (2) The way we
 match a given pattern is binary (yes it matched/no it did
 not). Although a metric-based degree of matching model is
 possible, we chose a binary Hamming metric approach
 because it is parsimonious, easy to describe, and cognitively
 simple.

 Let Nij(ti/j) denote the latent EC of respondent i for attrib-
 ute j to take level lj at time t. With attribute j as the missing
 PM attribute, our model for Nii(ti/j) in complete generality
 is given by

 (3) Nii(ti/j)
 = prior count + (missing PM count

 + [nonmissing PM attribute + OM attribute count]},

 where Nii(011i) denotes the prior count of person i on attrib-
 ute j, level lj at time 0, and 0 < ition 1 is the decay param-
 eter for person i relating attribute j' (j' = 1, = J) to j. In
 addition, Nii(011i) allows for the possibility of prior knowl-
 edge of the marginal frequency of attribute levels and prior
 correlation between attribute levels.

 In our experimental results, we fit a fairly general
 (reduced-form) version of the model (Equation 3) with the
 following set of specifications for This version corre-
 sponds to Table 3, an example with digital cameras in which
 j = { 1, 2, 3, 4} are PM attributes (delay between shots, stor-
 age media, maximum resolution, and camera size) and j =
 {5, 6} are OM attributes (price and mini-movie).

 Pr[x2(3)

 Pr

 Pr
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 Table 3

 DIGITAL CAMERA ATTRIBUTES

 Attribute Delay Between Shots Storage Media Maximum Resolution Camera Size Price Mini-Movie

 Level 0 Four seconds Floppy disk 800 x 600 SLR* $239 No
 Level 1 Two seconds Removable memory 1024 x 768 Medium $159 Yes

 *SLR = single-lens reflex camera, larger than "medium."

 =
 Note that 246 is included in the model, as we describe sub-
 sequently, because of a prior manipulation of the covariance
 between price and maximum resolution.
 This structure defines the entire imputation process for
 partial-profile conjoint designs as a time-varying latent con-

 tingency table with counts, Nii(ti/j), given in Equation 3.
 Thus, Pr[x'ii(t) = /.J]' J = 1 or 0, is given by

 0 0
 That is, the probability that a given attribute level is
 imputed when the attribute is missing is its proportion of
 the total EC for that attribute. Because N..(tit) incorporates
 information across patterns to reinforce each pattern and
 allows for differing importance across time, this model sat-
 isfies our basic pattern-matching and reinforcement require-
 ments. When multiple attributes are missing, we assume
 independence of counts to derive the joint probability of the
 missing pattern; however, the counts correlated as attribute
 levels that occur together have counts that will be updated
 together and prior counts that are related.

 We denote the vector of imputed values at time t by a row
 vector x'i(t) = [x'ii(t), x'i2(t), x'i2(t), x'jj(t)]. For a conjoint
 design with J attributes, in which each attribute has two lev-
 els, the imputed value vector x'i(t) may assume one of the
 K = 2-1 possible potential profiles. We denote these potential
 profiles by Zk (k = 1, 1, K), and we determine the proba-
 bility that x'i(t) equals potential profile Zk as follows:

 (5) Pr[xi(t)
 Heterogeneity

 We allow the rate of information decay for a specific
 attribute pattern to be individual and attribute specific and
 recognize that considerable heterogeneity is likely to exist
 across people in their decay attribute imputation parame-
 ters, Aim (m = 1, 1, J). In addition, the basic parameters of

 the conjoint model, the individual conjoint intercepts ai, the

 attribute partworths 13ii and 13'ii, and the residual variances
 may contain considerable heterogeneity yet share common-
 alities across the population of inference. To account for
 this heterogeneity in a coherent fashion, we nest our model
 in a Bayesian framework (Gelfand and Smith 1990). From
 Equation 2, we have the following:

 (t)
 We use an AR(1) (first-order autoregressive) model to cap-
 ture the potential correlation of error terms over time (that
 is, people may anchor somewhat on the previously provided
 rating):

 (6) i(t)

 where ui(t) N(0, a?). In addition, we assume Ei(0) = 0, V i.
 Prior and hyperprior specifications for the conjoint
 parameters (V i, j) are given by4

 yi
 and prior specification for the attribute decay parameters,
 0 < A.im 1, is given by

 (7) ?Lim

 We assume that the prior ECs of each respondent follow
 a Poisson distribution with parameters varying by respon-
 dents and attribute levels:

 ay],

 with slightly informative priors on Ci and (pi. We note that
 N(g, 62) denotes a normal distribution with mean and
 variance 02; U(g, h) a uniform distribution with a lower
 bound g and an upper bound h; Inv - r(.,.) an inverse
 gamma distribution with corresponding parameters; and

 4We are aware that a more general setup would be to allow the Ps to fol-
 low a multivariate normal distribution with nonzero, off-diagonal covari-
 ances. The current setup avoids overparameterization of the model. It is
 commonly used in economics literature (e.g., Berry, Levinsohn, and Pakes
 1995).
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 Beta(a, b) a beta distribution with parameters a, b. To com-
 plete the model specification, we placed slightly informa-

 tive hyperpriors on 6a2, 6_432, and (Tie, j (inverse gamma
 distribution: Inv - F(.001, .001)); 13i and 13j, V j (normal dis-
 tribution: N(0, 1000)); and (am, bm) (uniform distribution:
 U(0, 1000)). Sensitivity analyses indicate that the results
 were not affected by the exact choice of uninformative
 hyperprior values.
 To summarize, let the imputation model parameters be

 denoted by row vectors Xj = [Xi] , Xi2, ..., kid (the length of
 i varies with different models as described in the experi-
 mental section) and the conjoint parameters by j3i
 Rig...., 13i61 and fri = [13'ii, 13%2, ..., 'Yid. Given Pr[x'1(t) =
 Zk] from Equation 5, the likelihood function is as follows:

 (8) Pi,
 That is, we integrate the conjoint regression model with
 respect to the imputation model by sticking in the consid-
 ered value for attribute j to person i for all possible profiles
 and weight them by their probability of being the imputed
 corresponding level. We use the notation [Ei(t)14] to
 emphasize that the value of Ei(t) is conditional on profile Zk.
 Although there are 26 potential profiles in our study, at each
 time t, only two profiles have nonzero Pr[x'i(t) = Zk] in the
 one-missing attribute case, and only four do in the two-
 missing attributes case.

 We derived inferences from all models by obtaining pos-
 terior samples using a Markov chain Monte Carlo sampler.
 We performed all computation using the software package
 WinBUGS (Bayesian inference using Gibbs sampling;
 Spiegelhalter et al. 1996).5 The results reported in the
 experimental section are the posterior means we obtained
 from aggregating the draws of three runs of the sampler
 from different starting points with a burn-in period of 6000
 draws and a total run length of 10,000 draws. We assessed
 convergence using the F-test approach of Gelman and
 Rubin (1992).6

 EXPERIMENT

 We designed an experiment to provide a basic demon-
 stration of our model for rating conjoint data with missing
 attributes. Our interest is in providing not only a demonstra-

 5To assess the ability of our most general model (Model 6) to recover
 the true underlying model structure, we ran a simulation study using syn-
 thetic data. The simulation results indicate that the model is able to recover

 the underlying conjoint regression coefficients (ai, pij, 13'ij, and yi) very
 accurately and the imputation parameters (Xs) with reasonable accuracy.
 Details are available from the authors on request.

 6Because of the complexity of the model, the lack of familiarity that
 readers may have with the WinBUGS software program, and a desire for
 other researchers to apply our model easily, we have included an annotated
 version of the WinBUGS code for our most general model in an online
 appendix (see http://mktgweb.wharton.upenn.edu/ebradlow/research_files.
 htm).

 tion of our approach but also a preliminary understanding of
 the following questions:

 .Do people use missing attributes and their levels to evaluate
 products?

 .If yes, do they infer missing attribute levels from all the infor-
 mation they learn about the product profiles, and do they rein-
 force patterns?

 We assume that a consumer has minimal prior informa-
 tion about the product, though we estimate this as given in
 Equation 7. Therefore, we are able to impose a prior struc-
 ture that varies across respondents in a systematic way.
 First, through a learning process, we create a prior for each
 respondent by controlling the products that he or she sees in
 a learning phase. Second, we ask participants to rate prod-
 ucts with (or without, in the control group) missing attrib-
 utes. Another control group, which worked on a self-
 explicated conjoint task, acts as a second baseline.

 Stimulus

 We selected digital cameras for this experiment because
 we wanted a relatively new product category for which the
 frequency of attribute levels and the correlation structure of
 the attributes are mostly unknown. Therefore, we could
 manipulate the frequencies and impose a prior as we
 desired. According to our demographic questions, less than
 10% of our subjects owned digital cameras or claimed to
 have extensive prior expertise. We chose digital cameras
 with six attributes as the full-profile task because our
 research indicated that digital cameras could be described
 well using six features. A summary of the digital camera
 attributes we used are listed in Table 3. In our experimental
 condition, all attributes are simplified to have two realistic
 levels. This product setup provides a stylized empirical test
 of our model.

 Experimental Groups

 The experiment was designed to run on a university net-
 work. A total of 130 undergraduate students from a large
 East Coast U.S. university participated in the experiment.
 Subjects were obtained from six sections of a large class;
 these sections were assigned randomly, as follows: one sec-
 tion each to receive the self-explicated and full-profile (zero
 missing) cases and two sections each to receive the one-
 missing and two-missing-attributes cases. This assignment
 resulted in four groups of 17, 23, 47, and 43 respondents,
 respectively.? Group size differences were due to different
 section sizes and the participation rate of students in those
 sections. Across the conditions, less than 10% owned digital
 cameras, 40% were women, and 60% were men.

 The experiment was composed of two phases: learning
 (prior) and rating. In the learning phase, we provided the
 subjects with text information about digital cameras and
 their attributes and then showed them 20 digital camera pro-
 files listed in a single table. We controlled the subjects' pri-
 ors by manipulating the digital camera profiles they saw in
 the learning phase. In the rating session, we asked the sub-
 jects to rate, on a 0-9 Likert scale, the attractiveness of dif-
 ferent digital cameras (some with partial product profiles,
 depending on the treatment condition).

 7We note that a better design would have been to assign people ran-
 domly, not sections. In Study 2, we use random assignment.
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 Learning Phase

 In the learning phase, we showed all subjects 20 digital
 camera profiles. The priors of the subjects before the rating
 phase were manipulated by the learning phase profiles. The
 purpose of this learning phase manipulation is twofold.
 First, if the relationship between, for example, price and
 maximum resolution (as we describe next) can be influ-
 enced by showing subjects profiles of a given structure,
 then managerial practice suggests that prior manipulations
 of this type could be valuable. Second, we wanted to test
 our model for a given attribute correlation. For example, as
 we manipulated the priors between digital camera price and
 maximum resolution, we wanted to test whether A6 affects
 the EC for resolution when it is missing. (Note that price is
 never missing because it is an OM attribute.)
 We assigned each subject randomly to 1 of 11 prior coin-

 cidence structures that represented a different level of coin-
 cidence between price and maximum resolution (the coinci-
 dences between other attributes remained orthogonal).
 Specifically, subjects were assigned to read a table with a
 specific coincidence value (between 0 and 10) between
 price and maximum resolution. For example, a coincidence
 value of 10 indicates that among the 10 profiles that have
 low price ($159), all have low resolution (800 x 600); a
 value of zero would indicate that among the 10 profiles that
 have low price ($159), all of them have high resolution
 (1024 x 768). Such a coincidence structure could affect
 Pr[x'ii(t) = li] if the learning phase carries over to the rating
 phase. That is, we empirically test our ability to manipulate
 the rating phase data by covarying price and maximum res-
 olution at the 0, 1, ..., 10 levels in the learning phase and
 then by estimating X.i6 in our model and finding its correla-
 tion with the subject's prior manipulation.
 To ensure that subjects followed and attended to all infor-

 mation in the table of 20 learning profiles provided, we
 asked them to count five of the pairwise coincidences after
 they had read the tables. Among the five questions, one
 asked the subjects to count the coincidence between the
 price $159 and maximum resolution 800 x 600 (the manip-
 ulated coincidence), whereas the other four questions were
 randomly chosen to ask the subjects to count other coinci-
 dences. The sequences of these questions were randomized
 so as not to bias the results. Subjects' responses to these
 questions suggested that they had paid attention to the coin-
 cidence counts.

 Rating Phase

 In the rating phase, the design is orthogonal. In the one-
 or two-missing-attributes group, one or two of four PM
 attributes are removed from the designed conjoint cards,
 respectively. We fixed two attributes to be OM because we
 wanted to determine the impact of imputation of missing
 levels on observed attribute partworths. We used a
 Plackett-Burman design (Green, Carroll, and Carmone
 1978; Plackett and Burman 1946) to create the profile
 cards. The sequences in which the profile cards were shown
 were generated randomly and varied across respondent.
 Each subject saw 24 profiles in the rating phase. Debriefing
 questions after the experiments provided evidence that the
 subjects noticed that attributes are missing and used them in
 their ratings. Response time was recorded, which could be
 used as a proxy for the difficulty of the task. Each response

 time was the time (in seconds) between subjects' keying in
 of successive rating score responses. An analysis of the
 response time data across missing attribute conditions (0, 1,
 and 2) indicates that respondents in the two-missing-
 attributes case spent considerably less time than did respon-
 dents in either of the other two cases (p < .01 ), correspon-
 ding to an average of 31 seconds less across the 24 profile
 rating tasks. No significant differences were found in
 response time between the zero- and one-missing-attribute
 conditions.

 RESULTS

 We used the first 20 profiles for each subject to calibrate
 the model and the last 4 as holdouts for validation. We esti-

 mated a total of six models with differing degrees of gener-
 ality, grouped into four categories: (1) prior models; (2)
 imputation based on missing PM attributes only; (3) impu-
 tation based on missing and nonmissing PM attributes; and
 (4) imputation based on the OM attribute (price), missing,
 and nonmissing PM attributes. In Table 4, we show these
 models and their relationships for both the one- and two-
 missing-attributes cases. We estimated the models using the
 Bayesian hierarchical structure described in the "Hetero-
 geneity" section.

 In Table 5, we show the relative performance for the six
 models. We also show results for the three extant models

 (ignore, recency, and averaging), as well as one model in
 each of the three classes (Models 4, 5, and 6). For each
 model, we report the log of the marginal likelihood as com-
 puted by the log of the harmonic mean of the likelihood val-
 ues (Congdon 2001, p. 475) and the mean absolute errors
 (MAE), both in-sample and out-of-sample. Using all three
 measures, our models (Models 4-6) perform better than
 prior models (Models 1-3). Specifically, Models 4-6 con-
 sistently perform better as more information is used for
 imputation.

 Imputation Based on Missing PM Attributes

 As we discussed previously, the extant models assume
 that subjects ignore the missing attribute, use the most
 recent occurrence of a missing attribute, or compute the
 average of all past occurrences. Of Models 1-3, the averag-
 ing model (Model 3) performs better in terms of log-
 marginal likelihood and in-sample and out-of-sample MAE.
 Model 4 relaxes the assumptions of Model 3; it allows a
 separate X for each missing PM attribute, which decays
 geometrically.

 Compared with the averaging model, Model 4 performs
 better in terms of the log-marginal likelihood, in-sample
 MAE, and out-of-sample MAE. Such results suggest that
 the relaxation of allowing for heterogeneous geometric
 decay helps in terms of model performance and better cap-
 tures the actual rating process when missing attributes exist.

 Imputation Based on Missing and Nonmissing PM
 Attributes

 The preceding models assume that subjects impute a
 missing level of an attribute using only information within
 that PM attribute. A natural extension is to account for

 covariation from the nonmissing PM attributes. In Model 5,
 we assume that each attribute takes a different X when it is

 present and when it is missing; however, the value of X is
 assumed to be common across all PM attributes when they
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 Table 4

 DESCRIPTION OF MODELS

 1  -1285  .807  1.366  -1232  .861  1.382

 2  -1245  .778  1.386  -1187  .823  1.390

 3  -977  .733  1.314  -685  .500  1.381

 4  -904  .694  1.310  -580  .461  1.360

 5  -884  .602  1.292  -513  .459  1.341

 6  -782  .580  1.281  -356  .434  1.300

 MAE

 Out-of-
 Sample Model  In-Sample

 Log-Harmonic
 Mean of

 Likelihood

 Log-Harmonic
 Mean of

 Likelihood
 Out-of-

 In-Sample  Sample

 MAE

 Table 5

 PERFORMANCE OF DIFFERENT MODELS

 One Missing  Two Missing

 A Values of OM
 Attributes

 A Values of PM Attributes

 Missing PM

 Mini-

 Price Movie
 Nonmissing

 Size PM

 Reso-

 Storage lution Delay Model Category  Model

 Number of
 Individual-

 Level

 Parameters

 Prior Models  1S  12

 2t  12

 3  12

 Imputed based on missing PM  4  14

 Imputed based on missing and
 nonmissing PM  5  17

 Imputed based on OM and
 missing and nonmissing PM  6  18

 SIgnore/missing model.
 tRecency model.
 tAveraging model.

 are nonmissing. As we indicate in Table 5, Model 5 fits bet-
 ter than Models 1-4 in terms of log-marginal likelihoods,
 in-sample MAE, and out-of-sample MAE.

 Imputation Based on OM Attribute, Missing, and
 Nonmissing PM Attributes

 To test fully whether subjects use all information when
 inferring missing attribute levels, in addition to the last set of
 models, we add price (the OM attribute) to impute the miss-
 ing level of maximum resolution. Recall that we manipulated
 the correlation structure between price and resolution in the
 learning phase. Model 6 extends Model 5 by allowing price
 to be used in the imputation process for missing maximum
 resolution levels. This relaxation improves the log harmonic
 mean likelihood, as well as the in-sample and out-of-sample
 MAE. The results suggest that subjects use OM attributes to
 infer missing attribute levels; whether this inference goes
 beyond price is an open question. Model 6 outperforms Mod-
 els 1-3 significantly by all the measures we consider in Table
 5. Specifically, Model 6 decreases the out-of-sample MAE
 by 4.1%, 5.3%, and 6.5% over Models 1-3, respectively, in
 the one-missing-attribute case and by 1.6%, 3.0%, and 5.9%,
 respectively, in the two-missing-attributes case.

 We also performed a more detailed analysis at the indi-
 vidual level between the estimated effect X,i6 (price and
 maximum resolution) and the prior manipulated covariation
 between price and maximum resolution (0, 1, ..., 10). First,

 we note that 246 is significantly different from zero (the
 [2.5%, 97.5%] percentile of its posterior is [.151, .315] in
 the one-missing-attribute case and [.628, .863] in the two-
 missing-attributes case), suggesting significant effects
 overall. Second, analysis at the individual level (without
 shrinkage) indicates a significant effect in the one-missing-
 attribute case (correlation = .345, p = .017) and insignifi-
 cance in the two-missing-attributes case between the prior
 manipulation and ki6. Overall, these findings suggest that
 the subjects' priors can be manipulated to influence the way
 they infer missing attributes, but to what extent remains an
 open empirical question.

 We provide the average and the standard deviations of the
 best-fitting model (Model 6) ? values in Table 6. The esti-
 mated A, values are different in the one- and two-missing-
 attributes cases, which is not surprising; when different
 numbers of attributes are missing, the weights that reflect
 how information from nonmissing attributes is used change
 accordingly.

 Note that all the 2 values are significantly larger than 0
 and smaller than 1, thus indicating that the actual imputation
 procedure is different from the pure effect of Models 1-3.

 Estimated Partworths and Priors

 In Table 7, we report the mean and standard deviation of
 the partworths of Model 6, the best-fitting model. Elements

 13'ii (j = 1, ..., 4, V i) are the partworths of the attributes

 Ail = XI2 = 243 = ki4 "--> o

 1

 Xil  242  243  ki4

 Ai I  ki2  243  Ai4  245

 ki 1  242  243  ki4  245  246
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 Table 6

 AS OF THE BEST-FITTING MODEL (MODEL 6)

 Missing PM
 Nonmissing

 PM

 OM

 (Price) Model Values  Delay Storage  Resolution Size

 .240  .977  .247

 .067  .018  .046

 .070  .697  .743
 .061  .074  .070

 One missing Average .306 .095 .829
 S.D. .056 .066 .044

 Two missing Average .981 .429 .032
 S.D. .012 .091 .018

 Notes: S.D. = standard deviation.

 when they take level 0 and are present (compared with tak-
 ing level 0 and not being present, or being imputed as a
 zero); pi; + (3'i; (j = 1, ..., 4, V i) are the partworths of the
 attributes when they take level 1 and are present (compared
 with taking level 0 and not being present). To compare our
 results with traditional conjoint partworths, therefore, we
 note that with all attributes present and the "low"-level
 attributes coded as zero (as is standard), the partworths rep-
 resent the difference in utility between the high- and low-
 attribute levels. To align with our case, the traditional part-

 worths from our model are 13ii = 1, ..., 4, V i), that is, the
 effect of being high when shown less the effect of being low
 when shown.

 As we mentioned previously, we get a bonus, in that we
 can assess the effect of imputed versus not imputed attribute
 levels in our conjoint design, in addition to level 1 (high)
 versus level 0 (low) effects. In our model, these are the part-

 worths iYij. We find that all elements elements 1, ..., 4, V i)
 have a 95% posterior interval that does not contain 0, which
 means that when an attribute is present, it is given signifi-
 cantly greater weight. This finding is consistent with extant
 research (Johnson 1987; Levin et al. 1986; Louviere and
 Johnson 1990; Meyer 1981). Alternatively, we note that the
 combined tests (present or not, levels 1 or 0) for each of the
 attributes suggest that it is not the attribute level inferred but
 the presence of the attribute that influences the weight put
 on the attribute. We believe this is an interesting area for
 additional study.

 In Table 8, we report the relative importance of (tradi-
 tional) partworths, such as when a high level is shown ver-

 sus when a low level is shown, from both Model 6 and the
 case when there are no missing attributes. Although we
 observe relatively high stability in the rankings (e.g., stor-
 age and size are always last, resolution is always most
 important, and the other three are relatively close in impor-
 tance), there are changes in the magnitude of the relative
 importance of the partworths. The finding that partworths
 themselves are biased (compared with the full-profile con-
 dition) is consistent with extant research (Johnson 1987;
 Levin et al. 1986; Louviere and Johnson 1990). However,
 becasue we also find that the relative rankings stay fairly
 stable, there is prima facie evidence that similar rating pro-
 cesses are occurring. In the two-missing-attributes case,
 when fewer attribute levels are available for imputation, the
 more important attributes in the zero-missing-attributes case
 become less important, and the less important ones become
 more important. Thus, there is a regression effect in part-
 worths when subjects evaluate partial profiles when less
 information is provided.

 We note that a way to interpret the observed changes in
 partworths is that consumers construct rather than retrieve
 utilities. Because the set of all available information

 changes with successive profiles, the utilities can change,
 even for identical profiles, if they appear at different points
 in time. This view is not new and has been established by
 consumer researchers (Bettman and Zins 1977; Payne,
 Bettman, and Johnson 1992).

 Finally, we report on the model results with regard to the
 carryover effect from ones rating's error, ci(t - 1), to another

 and from the priors Nii(011i). The AR(1) carryover effect is

 Table 7

 AVERAGE AND STANDARD DEVIATION (S.D.) OF THE PARTWORTHS OF THE BEST-FITTING MODEL (MODEL 6)

 Table 8

 COMPARISON OF RELATIVE IMPORTANCE OF PARTWORTHS

 Coefficients  Delay  Storage  Resolution  Size  Price  Mini-Movie  Intercept

 Mean  1.328  .046  1.384  .092  .829  1.296  .592

 S.D.  .124  .182  .133  .144  .124  .158  (.426)
 Mean  .844  .745  .876  .737

 S.D.  .117  .145  .124  .136

 Mean  1.001  .565  1.267  .469  1.000  1.085  .526

 S.D.  .004  .177  .088  .150  .004  .130  (.140)
 Mean  1.196  1.238  1.168  1.119

 S.D.  .065  .106  .063  .063

 Model

 One missing  Pi;

 I3ij

 Two missing  Pi;

 Iij

 Model

 None missing
 One missing, Model 6 (I3ij)
 Two missing, Model 6 (Pii)

 Delay  Storage  Resolution  Size  Price  Mini-Movie

 .126  .029  .317  .056  .198  .275

 .267  .009  .278  .018  .167  .261

 .186  .105  .235  .087  .186  .201
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 statistically significant with a mean of y a .1 (in both the
 one- and two-missing-attributes cases), which suggests that
 people anchor somewhat on previous values. This result
 also suggests that the order in which previous profiles are
 presented influences subjects' ratings of a current profile.
 None of the estimated prior parameters Ci (i (i 1, ..., 47)

 or coj (j = 1, ..., 6) is significantly different from zero
 according to the [2.5%, 97.5%] percentile of their posterior
 draws in the one-missing-attribute case, an indication that
 the subjects have weak priors for the product category. Con-
 sequently, as we show in Table 9, the average values of the
 prior ECs are typically small for Model 6. These initial ECs
 thus exert minor influence on the imputation of the early
 profiles but decay quickly when more profiles are shown.
 However, some of the prior parameters become significant
 in the two-missing-attributes case. Specifically, the cos for
 resolution and size, the PM attributes people are probably
 most familiar with, are fairly significant. Thus, when less
 information becomes available, people may depend more
 on their priors to make judgments. This finding certainly
 requires further study beyond the empirical example pro-
 vided here.

 Robustness of Results

 In our experiment, we impose a prior on subjects' beliefs
 about the relationship between price and maximum resolu-
 tion in the learning phase and subsequently measure
 whether it exists in the calibration phase. Our process of
 having people count relationships between pairs of attrib-
 utes (which would normally not be done in practice) may
 bias people toward imputing attribute levels when they are
 missing, due to priming.8 To check whether our results are
 robust to this manipulation, we ran a second study, with
 zero- and one-missing-attribute cases only, that does not
 include a learning phase; in all other ways, it was identical
 to the first study. Our goal was to demonstrate the existence
 of imputation (as in the first experiment) and replicate the
 patterns of superiority of Models 4-6 over Models 1-3.
 Specifically, 91 subjects from a large West Coast U.S.

 university, to partially fulfill requirements for a course,
 were obtained for our conjoint computer-based study of
 digital cameras with the same six attributes as in our first
 study. Subjects were randomly assigned to either the zero-
 missing-attributes case as a baseline (41 subjects) or the

 8We thank an anonymous reviewer for suggesting this and the second
 study.

 one-missing-attribute case (50 subjects). As in Study 1, the
 first 20 rating tasks were used to calibrate the model, the
 remaining 4 for out-of-sample validation. Profiles were pre-
 sented in a random order within each design.

 We present a detailed set of findings for this study in
 Tables 10, 11, and 12, but at a summary level, our findings
 are as follows: We find an identical pattern of overall fit,
 both in-sample and out-of-sample, to that for Study 1, in
 that the recency model has the worst fit, followed by the
 model that ignores the missing attributes and the averaging
 model, and then the three learning-based models. Other
 findings, such as the mean value of y = .167 and the pattern
 of relative partworths for Model 6 (the best-fitting model),
 indicate that our findings are robust overall to the learning
 phase manipulation and are replicated.

 CONCLUSION AND FURTHER RESEARCH

 We develop a learning model to describe how consumers
 impute missing levels in partial conjoint profiles. In our
 model, consumers match patterns and develop inferences on
 the basis of their prior exposures. Our model extends aver-

 Table 9

 AVERAGE OF ESTIMATED PRIORS Nii(01-)

 Models  One Missing  Two Missing

 Levels  0  1  0  1

 Delay  1.025  .931  4.198  2.461

 Storage  .194  .722  2.898  4.812
 Resolution  .422  .539  10.068  16.816
 Size  .453  .441  4.439  4.858
 Price  .967  1.004  2.062  2.006
 Mini-Movie  1.005  1.017  2.002  2.022

 Table 10

 PERFORMANCE OF DIFFERENT MODELS (NO LEARNING)

 One Missing

 Model

 Log-Harmonic
 Mean of

 Likelihood

 MAE

 In-Sample  Out-of-Sample

 1  -582  .905  1.182
 2  -599  .928  1.214
 3  -526  .866  1.182
 4  -459  .820  1.177
 5  -424  .808  1.167
 6  -414  .802  1.159

 Table 11

 COMPARISON OF RELATIVE IMPORTANCE OF PARTWORTHS (NO LEARNING)

 Model  Delay  Storage  Resolution  Size  Price  Mini-Movie

 None missing  .144  .114  .308  .026  .190  .217

 One missing, Model 6 (PO  .162  .114  .254  .028  .204  .237

 Table 12

 AVERAGE OF AS OF THE BEST-FITTING MODEL (MODEL 6, NO LEARNING)

 Missing PM

 Model Values Delay Storage Resolution Size Nonmissing PM OM (Price)
 One missing Average

 Standard Deviation
 .624 .126
 .092 .037

 .555  .037  .065  .598
 .068  .013  .027  .128
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 aging and recency models and shows that consumers may
 infer missing attribute levels using both missing and non-
 missing attribute information. We show that our best-fitting
 models outperform the prior models both in-sample and
 out-of-sample.
 The ignore model is inadequate because consumers

 appear to consider missing attribute levels. Neither the aver-
 aging nor the recency model performs significantly better
 because consumers impute missing attribute levels using
 prior levels of nonmissing attributes (PM or OM). At the
 same time, significant correlation between the manipulated
 coincidence in the learning phase and the estimated decay
 parameter provides evidence that consumers' priors could
 be influenced by communication and experience. Conse-
 quently, managers may be able to influence the overall
 attractiveness of a product to a consumer by making con-
 sumers learn prior knowledge that favors the product.
 This research has two caveats. First, the product used in

 our experiment has only six attributes, each with two levels.
 Thus, our study is best considered a demonstration of the
 potential of our imputation model for predicting preferences
 in more complicated product categories. Second, our rating-
 based conjoint experiment does not provide direct evidence
 of the applicability of our model to choice-based conjoint,
 though theoretically, such application is possible, as we
 described previously.
 We foresee at least three research opportunities:

 1. An interesting area to pursue is modeling the trade-off
 between the number of profiles and the number of attributes
 shown in each profile. From an econometrics perspective, it
 would be interesting to keep the total number of attribute lev-
 els shown fixed and determine how different combinations of

 the number of attributes and profiles lead to different levels
 of information content.

 2. We assume here a pattern-matching model in which attrib-
 utes either match or do not (0/1). A more general distance
 model can explicitly account for the relative differences
 between attribute levels. Such machinery is already in mar-
 keters' toolboxes; multiple dimensional scaling studies are
 used for such purposes. Thus, two promising areas for future
 studies would be to (a) combine conjoint analysis and multi-
 ple dimensional scaling studies to impute missing attribute
 levels and (b) create a latent perceptual mapping model for
 missing attribute levels in conjoint.

 3. As we mentioned previously and as has been shown in prior
 research, missing attributes may change the relative impor-
 tance of attributes. Although our work confirms this hypothe-
 sis, and for the most important attributes, whether this is true
 generally is unclear, and what may moderate this effect may
 be of interest. Thus, it would be interesting to conduct studies
 to determine the degree of this change and its moderating
 variables.

 In conclusion, we believe that the general theoretical
 framework presented here, as well as its empirical valida-
 tions, is a good first step that we hope will lead to a stream
 of managerially important research.
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