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In standard models of iterative thinking, players choose a fixed rule level from a

fixed rule hierarchy. Non-equilibrium behavior emerges when players do not perform

enough thinking steps. Existing approaches, however, are inherently static. This pa-

per introduces a Bayesian level-k model, in which level-0 players adjust their actions

in response to historical game play, while higher level thinkers update their beliefs on

opponents’ rule levels and best-respond with different rule levels over time. As a conse-

quence, players choose a dynamic rule level (i.e., sophisticated learning) from a varying

rule hierarchy (i.e., adaptive learning). We apply our model to existing experimental

data on three distinct games: p-beauty contest, Cournot oligopoly, and private-value

auction. We find that both types of learning are significant in p-beauty contest games,

but only adaptive learning is significant in the Cournot oligopoly, and only sophisti-

cated learning is significant in the private-value auction. We conclude that it is useful

to have a unified framework that incorporates both types of learning to explain dynamic

choice behavior across different settings.

1 Introduction

Over the past few decades, evidence accumulated from laboratory and field experiments has

shown that players’ actual behavior may significantly deviate from equilibrium in a system-

atic manner. That is, despite non-trivial financial incentives, subjects frequently do not play

equilibrium. For example, the first round offer in sequential bargaining games often nei-

ther corresponds to the equilibrium offer nor is accepted immediately (Binmore, Shaked and
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Sutton, 1985; Ochs and Roth, 1989); centipede games often proceed to intermediate stages

rather than end immediately (McKelvey and Palfrey, 1992); the unique Nash equilibrium

is not instantly chosen in private-value auctions (Goeree et al., 2002); many players do not

choose the unique iterative dominance solution in dominance solvable games such as the

p-beauty contest or Cournot oligopoly games (Fouraker and Siegel, 1963; Nagel, 1995; Stahl

and Wilson, 1994, 1995; Ho et al., 1998; Costa-Gomes et al., 2001; Bosch-Doménech et al.,

2002; Costa-Gomes and Crawford, 2006; Costa-Gomes and Weizsäcker, 2008).

These games have been extensively studied because they capture the essence of various

settings in the real world. The p-beauty contest game, for example, parallels the stock mar-

ket in that investors make their investment decisions not based on what they believe the

company’s fundamental value is but rather on what everybody else in the market assesses

it to be. The Cournot oligopoly game closely resembles the competitive behavior of firms

in commodities markets such as petroleum, electricity, chemicals, cement, sugar and rice.

Auctions are widely used in a variety of settings such as government procurement auctions,

mineral rights sales, U.S. treasury bills and online advertising platforms (McAfee and McMil-

lan, 1987). As a consequence, studying the choice dynamics and interactions among players

in these games can shed light on how decision makers actually behave in real life.

To explain non-equilibrium behavior in these games, cognitive hierarchy (Camerer et al.,

2004) and level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes et al., 2001;

Costa-Gomes et al., 2009; Costa-Gomes and Crawford, 2006; Crawford, 2003; Crawford and

Iriberri, 2007b) models have been developed; for a comprehensive review, see Crawford et al.

(2013). These models assume that each player chooses a fixed rule from a fixed rule hierarchy.

The rule hierarchy is defined iteratively by assuming that a level-k rule best-responds to a

lower level rule (e.g., level-(k − 1) where k ≥ 1) and by specifying a priori a fixed level-0

rule (e.g., uniform randomization among all possible strategies). Non-equilibrium behavior

emerges when players do not perform enough thinking steps.1

Let us illustrate how to apply these models using the p-beauty contest game. In the p-

1The level-k models have also been used to explain non-equilibrium behavior in games with asymmetric
information (e.g., Camerer et al., 2004; Crawford and Iriberri, 2007a.; Crawford et al., 2009; Brocas et al.,

2010; Östling et al., 2011; Brown et al., 2012). Goldfarb and Yang (2009) and Goldfarb and Xiao (2011)
apply the cognitive hierarchy model to capture heterogeneity in the abilities of firms or managers, and use
it to predict a firm’s long-term success in oligopolistic markets.
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beauty contest game, n players simultaneously choose numbers ranging from 0 to 100. The

winner is the player whose number is the closest to the target number, defined as p times the

average of all chosen numbers, where 0 < p < 1. A fixed reward goes to the winner; in the

case of a tie, it is divided evenly among winners. This game is dominance-solvable and the

unique number that survives the iterative elimination process is 0. To apply the standard

level-k model, assume that the level-0 player randomizes over all possible choices between 0

and 100, and thus chooses 50 on average. Best-responding to level-0 opponents, the level-1

player seeks to hit the target number in order to maximize the payoff. Specifically, the level-1

player chooses x∗ = p · x
∗+(n−1)·50

n
as a best response to level-0 opponents, taking into account

the player’s own influence on the group mean.2 Proceeding iteratively, a level-k player will

choose
(
p·(n−1)
n−p

)k
·50, which converges to 0 as k increases. In other words, higher level players

choose smaller numbers and these choices converge to 0, the unique Nash equilibrium.

However, standard level-k models were not designed to account for dynamic trends in ob-

served data in repeated games. In laboratory experiments, subjects’ choices are initially far

from equilibrium but move closer to it over time (Ho et al., 1998; Capra et al., 1999; Goeree

and Holt, 2001). Existing models are static, so a level-k player will always choose rule k. As

a result, these static models imply a fixed distribution of choices as the proportion of players

choosing each rule remains unchanged over time. Figure 1 compares data from the first and

last rounds of the p-beauty contest game from Ho et al. (1998). As shown, subjects’ choices

move closer to equilibrium over time, from 2% choosing zero in the first round to 13% in the

last round. A Kolmogorov-Smirnov test rejects the null hypothesis that the distributions of

choices in the first and last rounds are identical (p < 0.001). As a consequence, any model

seeking to capture this shift in behavior over time needs to be dynamic in nature.

[INSERT FIGURE 1 HERE.]

One approach to capture dynamic behavior in games is to incorporate adaptive learning

(Fudenberg and Levine, 1998; Erev and Roth, 1998; Camerer and Ho, 1999; Hück, Normann,

2Some prior research (e.g., Nagel, 1995) ignores the player’s own influence on the group average by simply
assuming that the level-1 player chooses p · 50 and the level-k player chooses pk · 50. This approximation is
good only when n is large. For example, when n = 100 and p = 0.7 the level-1 player’s exact best response
is 34.89, which is close to 35.
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and Oechssler, 1999), allowing players to adjust their behavior in response to observed his-

tory. Specifically, consider level-0 players who change their choices over time according to

some adaptive learning model (e.g., Cournot dynamics where players best-respond to their

most recent observation). As long as observed actions approach equilibrium, the choices

made by these adaptive level-0 players, as well as by higher level players, will also converge

to equilibrium. Thus, by incorporating adaptive learning, level-k models can incorporate

a varying rule hierarchy and predict convergence towards equilibrium, explaining the main

feature of the data.

However, the adaptive learning approach still assumes that each player chooses a fixed rule

over time. That is, each level-k player always thinks k steps and their choices shift towards

equilibrium as the level-0 rule converges to equilibrium. In other words, equilibration arises

from shifts in the level-0 rule (and the iterated rule hierarchy), but not from advances in the

number of levels players think.

Another way to model the equilibration process is to incorporate sophisticated learning,

i.e., allowing players to choose higher rule levels over time (Stahl, 1996, 1999, 2000, 2001;

Stahl and Haruvy, 2002; Weber, 2013; Alaoui and Penta, 2016). For example, a player

choosing a level-k rule may advance to a level-(k + 1) rule in subsequent rounds. Since the

rule hierarchy is defined by iterative best responses, choices shift closer to equilibrium as

players advance in rule levels. Thus, sophisticated learning, like adaptive learning, can also

explain the dynamic behavior observed in the data.

In this paper, we develop a structural Bayesian level-k model to incorporate both adaptive

and sophisticated learning. We refer to level-0 players as adaptive learners and higher level

players as sophisticated learners. The following sequence of events takes place in every

round. First, adaptive learners choose their level-0 actions by responding to observed game

history. Starting from the level-0 rule, we construct the rule hierarchy using iterative best

responses. Second, each sophisticated player forms a conjecture about an opponent’s rule

level by sampling from a belief distribution. Then, each sophisticated player best responds

accordingly, i.e., chooses the level-(k+1) action if the opponent’s rule level is conjectured to

be level-k. At this point, all players have chosen their actions. Next, at the end of each

round, upon observing other players’ actions, sophisticated players infer their opponents’
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actual rule levels (which may differ from their conjectures). Finally, sophisticated learners

use these inferred opponents’ rule levels to update their own belief distribution via Bayesian

updating. This concludes the chronology for this round.

In summary, level-0 players exhibit adaptive learning by changing their choices in re-

sponse to observed game history, while higher level players exhibit sophisticated learning

by updating their beliefs on opponents’ rule levels after each round in a Bayesian manner.

Since the level-0 rule varies over time, the rule hierarchy varies over time. Additionally, since

beliefs update over time, sophisticated players’ rule levels vary over time as their sampling

belief distribution changes. In this way, players choose varying rule levels from a varying

rule hierarchy.

Our model is general and applies to all games where rule hierarchies are iteratively

defined. The Bayesian level-k model nests existing non-equilibrium models such as adaptive

learning models and static level-k models as special cases. This nested structure allows us

to disentangle adaptive learning and sophisticated learning.

To examine the practical applicability of our model, we fit it to three different classes of

games: the classic p-beauty contest, the Cournot oligopoly and the private-value auction.

Estimation results from these games show that our Bayesian level-k model describes subjects’

dynamic behavior better than its special cases but in different ways across the three games.

Specifically, both types of learning are significant in p-beauty contest games, while only

one type of learning is dominant in the other two games: adaptive learning in the Cournot

oligopoly, and sophisticated learning in the private-value auction. Overall, we find that it is

crucial to have a unified framework that incorporates both types of learning.

The rest of the paper is organized as follows. Section 2 sets up the preliminaries. Section 3

formulates the Bayesian level-k model and its special cases. Sections 4, 5 and 6 illustrate the

empirical results from applying our model to the existing experimental data on the p-beauty

contest, the Cournot oligopoly and the private-value auction, respectively. Section 7 is the

conclusion.
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2 Preliminaries

2.1 Notations

We begin with notations. We consider the class of n-player games. Players are indexed by

i (i = 1, 2, . . . , n). Player i’s strategy space is denoted by Si and the set of mixed strategies

is denoted by 4Si. Players play the game repeatedly for a total of T rounds. Player i’s

best response correspondence, given how she anticipates opponents acting, is denoted by

BRi(·) : (4S1 × · · · × 4Si−1× 4Si+1 × · · · × 4Sn) → 4Si. Player i’s choice observed at

time t is denoted by xi(t) ∈ Si and the vector of all players’ choices at time t, excluding

player i’s choice, is denoted by x−i(t) = (x1(t), . . . , xi−1(t), xi+1(t), . . . , xn(t)).

2.2 Rule Hierarchy

Players choose rules k ∈ Z0
+ = {0, 1, 2, . . .} from iteratively-defined discrete rule hierarchies,

and choose actions corresponding to these rules. Each player has a rule hierarchy, and each

rule hierarchy is iteratively defined such that a level-(k + 1) rule is a best response to the

opponents’ level-k rules (Stahl and Wilson, 1994; Nagel, 1995; Ho et al., 1998; Crawford et

al., 2013). In symmetric n-player games, all players’ rule hierarchies are identical, but they

may not be in general.

Let ki(t) be player i’s chosen rule and a
ki(t)
i (t) ∈ 4Si be the action corresponding to rule

ki(t) under player i’s rule hierarchy at time t. At each time t, a
ki(t)
i (t) is iteratively defined

from the level-0 rule’s action, a0i (t), which will be described in detail below. We further take

a Bayesian approach to model how player i chooses ki(t) and how a0i (t) varies over time as

the game evolves.

2.3 Iterative Best Response

Each player i has a conjecture about which rule level opponents will choose at time t (we

elaborate on how this conjecture is formed in the next section). We denote player i’s con-

jectured rule at time t by di(t). Hence, player i expects all opponents j (∀j 6= i) to choose

action a
di(t)
j (t) that corresponds to rule di(t) at time t. Player i best-responds by choosing

6



the strategy yielding the highest payoff as:

a
di(t)+1
i (t) = BRi(a

di(t)
1 (t), . . . , a

di(t)
i−1 (t), a

di(t)
i+1 (t), . . . , adi(t)n (t))

If such best response is unique, a
di(t)+1
i (t) ∈ 4Si is a pure strategy and player i chooses

xi(t) = a
di(t)+1
i (t). However, if there are multiple strategies with the highest expected payoff,

a
di(t)+1
i (t) ∈ 4Si is defined as a mixed strategy with equal probability weights on these

multiple strategies. That is, player i randomly chooses xi(t) among her indifferent best

responses with equal probability.

In a symmetric game, we have a0i (t) = a0(t) for ∀i. This implies that all players who

best respond with the same rule level have identical choices, i.e., ak+1(t) = ak+1
i (t) =

BRi(a
k(t), ak(t), . . . , ak(t)). As a consequence, in a symmetric game, all players’ rule hi-

erarchies are identical.

3 Bayesian Level-k Model

This section develops a structural model with both sophisticated learning and adaptive

learning. We allow players to be heterogeneous (adaptive vs. sophisticated). Specifically,

a fraction α of the players are level-0, adaptive learning players, and the remaining 1 − α

fraction are higher level, sophisticated players. Below we describe the choice dynamics of

these two types of players in our model.

3.1 Adaptive, Level-0 Players

With probability α, players are level-0 and learn adaptively. We incorporate adaptive learn-

ing by allowing this α fraction of level-0 players to change their choices over time. That is,

adaptive, level-0 player i chooses a0i (t) in round t. The functional form of a0i (t) depends on

the type of adaptive learning dynamics we use and can be specified independently of our

model. As a0i (t) varies over time, since a rule hierarchy is iteratively defined, the choices of

all higher-level players will also change even if players choose fixed rule levels over time.

Incorporating non-sophisticated, adaptive players into the Bayesian level-k model this

way allows us to nest any adaptive learning model as a special case. In addition, it empirically
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controls for the potential existence of adaptive learning and hence determines the respective

roles of adaptive and sophisticated learning in describing players’ choice dynamics.

3.2 Sophisticated Player’s Conjecture of Opponents’ Rule

With probability 1− α, players are higher level players (level 1 or above) and learn sophis-

ticatedly. Each sophisticated player has a belief distribution over rule levels opponents will

choose. We denote player i’s belief distribution at the end of time t by Bi(t) = (B0
i (t), B

1
i (t),

B2
i (t), . . .), where Bk

i (t) is player i’s conjectured probability of opponents choosing rule k.

From Bi(t), player i samples a single rule di(t+ 1) ∈ {0, 1, 2, . . .} with probability B
di(t+1)
i (t)

at the beginning of time t + 1.3 Player i then conjectures that all opponents will choose

rule di(t+ 1) and that opponent j (∀j) will choose action a
di(t+1)
j (t+ 1) at time t+ 1.

Player i then best-responds to this prediction by choosing xi(t+1) according to a
di(t+1)+1
i (t+

1) as defined in Section 2.3. Hence, player i’s chosen rule is exactly one level higher than

the sampled rule from the belief distribution on the opponents’ rule level. Since the lowest

rule level that players can sample is 0, sophisticated players always choose rules of level 1 or

higher.

We highlight a key simplifying assumption in our model. We assume that given the belief

distribution (of opponent rule levels), sophisticated players sample a rule from the distribu-

tion and best respond to the sampled rule, instead of directly best responding to the belief

distribution. This assumption ensures that the best response belongs to the rule hierarchy

(since it is exactly one level above the sampled rule level). In contrast, best responding to a

distribution of rule levels may yield an action that falls outside the rule hierarchy.4 Hence,

our assumption confers both internal consistency and analytical tractability.

3In a two-person game, the single-rule sampling assumption is reasonable. In an n-player game, players
might sample multiple rules, e.g., one sampling for each opponent. If this is indeed the case, a player
samples for each opponent from a separate distribution (updated differently for each opponent). Prior
research suggests that this is unlikely to be true. In fact, opponents’ choices are often found to be perfectly
correlated and players tend to treat opponents as a single aggregate player (Ho et al., 1998).

4In the cognitive hierarchy (CH) model (Camerer et al., 2004), rules are iteratively defined as best
responses to a belief distribution over lower rules. However, a similar definition is not feasible in the Bayesian
level-k model since the belief distribution dynamically changes for each player following the player’s own
learning path, while it is static in the CH model for players of all levels.
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3.3 Sophisticated Player’s Bayesian Belief Updating

In the Bayesian level-k model, sophisticated players update their beliefs over time. Specifi-

cally, at the end of round t (t ≥ 1), player i observes her opponents’ choices, x−i(t), infers

what common rule level corresponds to these choices in round t, and updates her belief

accordingly.

Each player maintains a probability distribution over discrete rule levels that opponents

may choose and updates it every round in a Bayesian manner. Let player i’s initial prior

belief about opponents’ rule levels be Bi(0) = (B0
i (0), B1

i (0), B2
i (0), . . .) before the game

begins. We operationalize this initial prior using a set of rule counts Ni(0) = (N0
i (0),

N1
i (0), N2

i (0), . . .) such that Bk
i (0) =

Nk
i (0)∑

k N
k
i (0)

. Belief updating is then equivalent to updating

these rule counts based on observed chosen rules. Let player i’s rule counts at the end of

round t be Ni(t) = (N0
i (t), N1

i (t), N2
i (t), . . .) where Nk

i (t) denotes player i’s cumulative rule

count for rule k. Then, Bk
i (t) =

Nk
i (t)∑

k N
k
i (t)

. In a symmetric game, players have common priors,

i.e., Bi(0) = B(0) and Ni(0) = N(0), ∀i.

After the game play in time t, upon observing all other players’ choices x−i(t), player i

infers the probability each rule level could give rise to these observed choices x−i(t) and

updates her rule counts accordingly. Specifically, the probability that all opponents’ choices

x−i(t) result from a rule k, P k
−i(t), is given by:

P k
−i(t) =

Bk
i (t− 1) ·

∏
j 6=i fj(xj(t) | akj (t))∑

k B
k
i (t− 1) ·

∏
j 6=i fj(xj(t) | akj (t))

where fj(xj(t) | akj (t)) represents the probability density of opponent j choosing xj(t) given

that the opponent is conjectured to choose rule k and action akj (t). This probability density

has a straightforward definition whether akj (t) is a pure strategy or a mixed strategy over

multiple best responses as in Section 2.3. For example, if akj (t) is a pure strategy and

fj(xj(t) | akj (t)) = N (xj(t) | akj (t), σ) is a normal distribution with mean akj (t) and standard

deviation σ, the normal distribution evaluated at xj(t), i.e., N (xj(t) | akj (t), σ), denotes the

probability that opponent j chooses xj(t) when conjectured to choose akj (t); if akj (t) is a

mixed strategy with equal probabilities over multiple best responses, fj(xj(t) | akj (t)) simply

becomes the expected value of multiple conditional normal densities, each with mean at each

of these best responses and with standard deviation σ. In essence, the farther xj(t) is from
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akj (t), the smaller the probability. In a symmetric game, fj(·) = f(·), ∀j.

Then, player i updates her cumulative rule count for a rule k at the end of time t by:

Nk
i (t) = ρ ·Nk

i (t− 1) + (n− 1) · P k
−i(t)

where ρ is a memory decay factor. These updated rule counts, Ni(t), yield a posterior belief

Bk
i (t) =

Nk
i (t)∑

k N
k
i (t)

. Note that this updating process is consistent with Bayesian updating

involving a multinomial distribution with a Dirichlet prior (Fudenberg and Levine, 1998;

Camerer and Ho, 1999; Ho and Su, 2013).

Note that the updating process requires a feedback on opponents’ choices after each

round. If this feedback is in the aggregate (e.g., only the average choice of opponents is

given), then one approach researchers can adopt is that each player i treats all opponents as

symmetric, infers xj(t), which is identical for all j 6= i from the aggregate feedback provided,

and uses xj(t) (∀j 6= i) in her Bayesian updating.

Let us emphasize how the memory decay factor (ρ) and rule counts (Ni(t)) interplay with

each other. Let Ni(0) be the sum of player i’s rule counts before the game starts. In other

words, Ni(0) =
∑

kN
k
i (0) and hence Nk

i (0) = Ni(0) · Bk
i (0). Ni(0) captures the strength of

prior belief Bi(0). That is, Ni(0) = ∞ and ρ = 1 imply that the prior belief is completely

sticky and subsequent observations have no influence at all, i.e., Nk
i (t) = Nk

i (0), ∀t. On the

contrary, Ni(0) < ∞ and ρ = 0 implies a weak prior and that the posterior belief is driven

entirely by observed rule levels.

Note that players’ chosen rules are not fixed and can vary over time. At each time t,

player i’s rule level depends on sampled rule di(t), which is moderated by belief Bi(t−1); this

belief is then updated to Bi(t) using the observed choices x−i(t) after time t. In this regard,

players learn sophisticatedly and change rule levels in response to opponents’ previously

chosen rules.

3.4 Model Summary and Special Cases

The Bayesian level-k model (BLk(t)) has the following key features:

1. (Adaptive Level-0 Players) Players can be either adaptive or sophisticated. Level-0 adap-

tive players choose a0i (t) at time t.
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2. (Sophisticated Player’s Conjecture of Opponents’ Rule) At the beginning of round t,

player i samples a rule di(t) from {0, 1, 2, . . .} with probability B
di(t)
i (t− 1). Player i then

conjectures that all opponents will choose rule di(t). Consequently, player i best responds

in round t by choosing a
di(t)+1
i (t) = BRi(a

di(t)
1 (t), . . . , a

di(t)
i−1 (t), a

di(t)
i+1 (t), . . . , a

di(t)
n (t)).

3. (Sophisticated Player’s Belief Updating) At the end of round t, player i’s belief about her

opponents’ rule levels may change. Specifically, upon observing choices x−i(t), player i

updates her rule counts to: Nk
i (t) = ρ · Nk

i (t − 1) + (n − 1) · P k
−i(t) where P k

−i(t) =

Bk
i (t− 1) ·

∏
j 6=i fj(xj(t) | akj (t))/

(∑
k B

k
i (t− 1) ·

∏
j 6=i fj(xj(t) | akj (t))

)
.

Our BLk(t) model, which incorporates dynamic rule levels over a dynamic rule hierarchy,

nests three classes of non-equilibrium structural models described below.

3.4.1 Static Level-k with Adaptive Level-0 Players (Lk(t))

We first describe a special case with static rule levels over a dynamic rule hierarchy. By

setting Ni(0) =∞, ∀i and ρ = 1, we suppress sophisticated learning, so players do not adjust

their rule levels. However, the level-0 rule a0i (t) adapts over time, inducing an adaptive rule

hierarchy. We denote this model by Lk(t). This model allows for an α fraction of adaptive

players and a 1 − α fraction of higher level players who iteratively best respond to level-0

learning dynamics.

By further restricting α = 1, Lk(t) reduces to adaptive learning models because all players

are adaptive level-0 players. We describe two possible specifications for a0i (t) below.

• Ho et al. (1998) propose a model of adaptive level-0 players for p-beauty contests. In

the model, a0i (t) is the weighted sum of ex post best responses from previous rounds.

Similar imitation learning models, which borrow ideas from evolutionary dynamics,

have been applied to two- and three-player Cournot quantity games, in which varying

information is given to players (Hück, Normann, and Oechssler, 1999; Bosch-Domenech

and Vriend, 2003; Stahl 2000). Imitation learning has been shown to work well in low-

information learning environments.

• Another candidate model for adaptive level-0 players is EWA learning. The EWA

learning model (Camerer and Ho, 1999; Ho et al., 2007) unifies two separate classes
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of adaptive learning models: 1) reinforcement learning (Erev and Roth, 1998) and 2)

belief learning (Fudenberg and Levine, 1998) (including weighted fictitious play and

Cournot best-response dynamics). The weighted fictitious play model has been used

to explain learning behavior in games (Brown, 1951; Ellison and Fudenberg, 2000;

Fudenberg and Kreps, 1993; Fudenberg and Levine, 1993).

Note that the adaptive learning models described above do not allow for higher level

thinkers, who perform iterative best responses to level-0 learning dynamics. As a result,

Lk(t) is more general and should describe learning behavior better than any adaptive learning

model.

3.4.2 Bayesian Level-k with Stationary Level-0 Players (BLk)

Next, we describe a special case with dynamic rule levels over a static rule hierarchy. By

setting a0i (t) = a0i (1), ∀i, t, BLk(t) reduces to BLk. In BLk, players update their beliefs and

sophisticatedly learn about opponents’ rule levels, while keeping rule 0’s choices fixed over

time. As a result, this class of models only captures sophisticated learning.

Ho and Su (2013) adopt this approach and generalize the standard level-k model to allow

players to dynamically adjust their rule levels. Their model is shown to explain dynamic

behavior in centipede and sequential bargaining games quite well. Nonetheless, the model

works only for two-player games and for games where the strategy space and rule hierarchy

have a one-to-one mapping (note that this one-to-one mapping does not exist for games with

a continuous strategy space, including the p-beauty contest and Cournot oligopoly games).

BLk does not have these limitations.

3.4.3 Static Level-k Models (Lk)

The standard level-k model, in which players use static rule levels over a static rule hierarchy,

has been used to explain non-equilibrium behavior in applications such as auctions (Crawford

and Iriberri, 2007b), matrix games (Costa-Gomes et al., 2001), and signaling games (Brown

et al., 2012). In our model, if a0i (t) = a0i (1), ∀i, t, Ni(0) = ∞, ∀i and ρ = 1, then BLk(t)

reduces to Lk, where both the level-0 players’ choices and higher level thinkers’ beliefs are
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fixed over time. As a result, our model will naturally capture the empirical regularities in

the above games.

There is a subtle difference between Lk and the standard level-k model. The standard

level-k model posits that each player is endowed with a rule at the beginning of the game and

the player always plays that rule over time. Thus, any choice that does not correspond to her

prescribed rule is attributed to error. Our Lk model prescribes that each player is endowed

with a static belief distribution of opponents’ levels and players sample independently in

each round from this static distribution. Since a player may sample a different rule each

time, the best response may change. As a consequence, a player’s choice dynamics over time

are interpreted as rational best responses to different sampled rules for opponents’ levels,

instead of choice errors. Note that if each player i’s initial prior is restricted to a point mass,

Lk is identical to the standard level-k model. Moreover, Lk also differs from the cognitive

hierarchy model (Camerer et al., 2004). In the cognitive hierarchy model, each rule is defined

as the best response to a distribution of lower rules. In Lk, however, each rule is the best

response of the rule one level below.

Note that Lk further reduces to the iterative dominance solution in dominance-solvable

games if we restrict α = 0, B∞i (0) = 1 and Bk
i (0) = 0, ∀k < ∞, ∀i (i.e., all players have

a unit mass of belief on rule ∞, which corresponds to the iterative dominance solution in

dominance solvable games). Since BLk(t) nests the iterative dominance solution as a special

case, we can use our model to empirically evaluate the fit of the iterative dominance solution.

The proposed Bayesian level-k model is quite general; it applies to any n-person game,

irrespective of its symmetry and uniqueness of best responses. In our empirical estimation

below, we study three symmetric games: p-beauty contest game, Cournot quantity game

and private-value auction. Since all games are symmetric, we assume that the prior belief

distribution, the density function used in belief updating, and the rule-0 action are common

across all players (i.e., Bi(0) = B(0), fi(· | ·) = f(· | ·), and a0i (t) = a0(t), ∀i).
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4 p-Beauty Contest Game

In this section, we estimate the Bayesian level-k model and its special cases using data on

p-beauty contest games. Below, we describe our experimental data, estimation methods,

and results.

4.1 Data

We use experimental data from p-beauty contest games collected by Ho et al. (1998). We

focused on games where players chose numbers from [0, 100] with p = 0.7 or 0.9 and n = 3

or 7. The prize in each round was $1.50 for groups of size 3 and $3.50 for groups of size 7,

keeping the average prize at $0.50 per player per round. A total of 277 subjects participated

in the experiment. Each subject played the same game for 10 rounds in a fixed matching

protocol.5 After each round, only the group average and the target number were publicly

announced. For p = 0.7, there were 14 groups of size 7 and 14 groups of size 3; for p = 0.9,

there were 14 groups of size 7 and 13 groups of size 3. Thus, we have a total of 55 groups

and 2,770 observations. The first and last round of data and the convergence pattern of the

data are presented in Figure 1.

4.2 Estimation Methods

Similar to Ho et al. (1998), we normalized the data with each round’s sample mean and

standard deviation so that each round’s data has equal influence on the estimation.6 Since

players were told target numbers, it was natural to model the level-0 player as one who

simply mimics past periods’ target numbers. Note that these target numbers may or may

not be chosen by a player and they simply represent the ideal choices for winning a prize ex

post. Ignoring one’s own influence on the average, target numbers are also the ex post best

responses.

Let ω(t) be the target number in time t. We define the rule 0’s choice at time t, a0(t), to

be the weighted sum of her choice at time t − 1, a0(t − 1), and the most recently observed

5Reputation building is unlikely because the p-beauty contest game is a constant-sum game where players’
interests are strictly opposed.

6See Ho et al. (1998) for the exact procedure for normalization.
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target number at time t− 1, ω(t− 1). Formally, a0(t) is defined as:

a0(t) = δ · a0(t− 1) + (1− δ) · ω(t− 1) (t ≥ 2) (4.1)

where δ captures the rate at which a level-0 player decays past choices. To initialize the

above updating equation, we set a0(1) = ω(0), a parameter that we will estimate from the

data. Note that when δ = 0, level-0 players decay history completely after one round and

simply repeat the most recently observed target number. Hence, level-0 players capture

Cournot best-response dynamics in this case. On the other hand, when δ = 1, level-0

players never incorporate observed game plays and their choices remain unchanged, i.e.,

a0(t) = a0(1) = ω(0), ∀t.

To initialize the belief updating process, the prior belief distribution was assumed to be

a simple one-parameter Poisson distribution with mean τ . Note that in Ho et al. (1998),

only the opponents’ average choice is provided as an aggregate feedback after each round.

Thus, as described in Section 3.3, each player i infers the symmetric xj(t) as the same as

the opponents’ average choice for all j 6= i and updates her belief based on this information.

In the belief updating process, as in Camerer and Ho (1999), we assumed N(t− 1) ≤ N(t),

which is equivalent to N(0) ≤ (n− 1)/(1− ρ), so that experience always accumulates.

The error structure of a player’s choice x around her predicted choice µ was assumed to

follow a normal distribution with mean at the predicted choice µ and standard deviation σ,

i.e., f(x |µ) = N (x |µ, σ), where N (x |µ, σ) denotes the normal density with mean µ and

standard deviation σ evaluated at x. In order to better capture heterogeneity among players,

we allowed a separate variation, σ0, for level-0 players, i.e., f(x |µ) = N (x |µ, σ0). These

standard deviations, σ and σ0, were empirically estimated.

We used the maximum likelihood estimation method with the MATLAB optimization

toolbox. To ensure that the maximized likelihood is indeed the global maximum, we utilized

multiple starting points in the optimization routine. The standard errors of parameter

estimates were estimated using the jackknife method.
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4.3 Likelihood Function

Each player i’s probability of choosing xi(t) at time t is based on her actual interactions with

her matched opponents up to time t−1. Let Θ = (α, ω(0), δ, σ0, τ, N(0), ρ, σ) and let H(t) be

the history of actions chosen by all players up to time t, i.e., H(t) = {xi(t′) | ∀t′ ≤ t and ∀i}.

Further, let L0
i (xi(t) |Θ, H(t− 1)) be the probability that a level-0 player i chooses xi(t)

at time t, and Lhi (xi(t) |Θ, H(t− 1)) be the probability that a higher level player i chooses

xi(t) at time t, given Θ and H(t − 1). Since each player i’s type (i.e., whether level 0 or

higher level) is fixed throughout the game, the likelihood of observing player i’s entire data,

Li(xi(1), . . . , xi(T ) |Θ, H(T − 1)), is given by:7

Li(xi(1), . . . , xi(T ) |Θ, H(T − 1))

= α ·
T∏

t=1

L0
i (xi(t) |Θ, H(t− 1)) + (1− α) ·

T∏
t=1

Lh
i (xi(t) |Θ, H(t− 1))

= α ·
T∏

t=1

N (xi(t), a
0(t), σ0 |Θ, H(t− 1))

+ (1− α) ·
T∏

t=1

( ∞∑
k=0

Bk
i (t− 1 |Θ, H(t− 1)) · N (xi(t), a

k+1(t), σ |Θ, H(t− 1))

)
That is, player i’s likelihood function is the weighted sum of conditional likelihoods depending

on whether the player is level 0 (i.e., with probability α) or higher (i.e., with probability 1−α).

The log-likelihood of observing the entire data, LL(H(T ) |Θ), is then given by:

LL(H(T ) |Θ) =
n∑
i=1

log (Li(xi(1), . . . , xi(T ) |Θ, H(T − 1)))

In sum, the parametric space of the estimation is Θ = (α,w(0), δ, σ0, τ, N(0), ρ, σ): 1). For

level-0 players, we estimated the probability that a player is only a level-0, adaptive-learning

player throughout the game (α), the initial conditions (ω(0)), the decay rate of past periods’

ex-post best responses (δ) and the error term for adaptive level-0 players (σ0); 2). For

higher level thinkers, we estimated the prior Poisson belief distribution (τ), the strength of

the initial prior (N(0)), the memory decay factor (ρ) and the error term for sophisticated,

belief-updating players (σ).

7Note that we empirically assume that players may make errors when they best respond, and that their
actual choices are normally distributed around the predicted best-responses. For the sake of parsimony, the
standard deviation of these errors is empirically assumed to be σ, the same as that of f(· | ·). The errors
could be assumed to be different in general, i.e., what a player believes the error rates of opponents’ choices
to be, may be different from their actual error rates.
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4.4 Estimated Models

We estimated a total of four models, which can be classified into two groups. The first

group includes two models that incorporate adaptive level-0 players (i.e., a0(t)) while the

second group includes two models that do not incorporate adaptive level-0 players (i.e.,

a0(t) = a0(1), ∀t).

The first group includes the following 2 models:

1. Bayesian level-k model with adaptive level-0 (BLk(t)): This is the full model with the

parametric space (α, ω(0), δ, σ0, τ, N(0), ρ, σ).

2. Static level-k model with adaptive level-0 (Lk(t)): This model allows level-0 players to

adaptively learn and a0(t) to change over time. However, the rule levels of higher level

thinkers remain fixed over time. This model is a nested case of BLk(t) with N(0) = ∞

and ρ = 1, i.e., the parametric space is (α, ω(0), δ, σ0, τ,∞, 1, σ).

The second group includes the following 2 models:

3. Bayesian level-k model with stationary level-0 (BLk): This model ignores level-0’s adap-

tive learning and only captures sophisticated learning. Specifically, it allows higher level

thinkers to update their beliefs after each round about what rules others are likely to

choose. As a result, these higher level thinkers can choose a rule with different probabili-

ties over time. This model is obtained by setting δ = 1 in BLk(t), i.e., a0(t) = a0(1), ∀t.

The resulting parametric space is (α, ω(0), 1, σ0, τ, N(0), ρ, σ).

4. Static level-k with stationary level-0 (Lk): This captures neither adaptive learning nor

sophisticated learning. It is obtained by setting N(0) =∞ and ρ = δ = 1. The resulting

parametric space is (α, ω(0), 1, σ0, τ,∞, 1, σ). This model is similar to the standard level-k

model (as discussed in Section 3).

The full model BLk(t) nests the other 3 models as special cases. By comparing the fit of our

model with those of nested cases, we can determine the relative importance of adaptive and

sophisticated learning.
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4.5 Estimation Results

Table 1 shows the estimation results. The first column lists the names of parameters and

test statistics. The next four columns report results from each of the four estimated models.

The top panel reports parameter estimates and the bottom panel reports maximized log-

likelihood, χ2, the Akaike Information Criterion (AIC), the Bayesian Information Criterion

(BIC) and the two-fold cross validation result.

The bottom panel of Table 1 shows that BLk(t) fits the data better than the three special

cases. In fact, the test statistics χ2 and AIC indicate that the three special cases are rejected

in favor of BLk(t). For instance, the χ2 test statistics of Lk, BLk, and Lk(t) against BLk(t)

are 11.04, 846.46 and 1,630.06, respectively. These results suggest that having adaptive level-

0 players (i.e., adaptive learning) and allowing Bayesian updating by higher level thinkers

(i.e., sophisticated learning) can help to explain subjects’ dynamic choices over time.8

In order to check the out-of-sample validity of the model, we ran the two-fold cross vali-

dation. Specifically, we randomly split the data into two groups, calibrated the model using

one group of data and validated using the other; we repeated this process 50 times and re-

ported the average likelihood value obtained from these repetitions. On each run, the same

random split was used across the four models (the full model and three nested models) for

the cross validation in order to control for the sampling error. As shown, we see that the

results from the likelihood on the whole sample are mostly preserved in the two-fold cross

validation except that the likelihood difference between the full model and the second best

fitting adaptive learning model, Lk(t), is halved since each fold consists half the data. The

χ2 statistics of Lk(t), BLk and Lk against the full model in the two-fold cross validation has

a p-value of 0.13, 0.00 and 0.00 respectively.

[INSERT TABLE 1 HERE.]

The estimated parameters of the best-fit model, BLk(t), appear reasonable. The fraction

8We also estimate the self-tuning EWA model (Ho et al., 2007). Since the EWA model uses a likelihood
function over discrete choices, we discretize our probability density function so that we can compare the two
log-likelihoods. We obtain LL = −11038.77, AIC = 22093.54, and BIC = 22140.95 for the BLk(t) model,
and LL = −11733.83, AIC = 23469.66, and BIC = 23475.59 for the self-tuning EWA model. These results
show that sophisticated learning is important in capturing the choice dynamics in the data.
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of adaptive level-0 players (α̂) is estimated to be 47%. These adaptive level-0 players weigh

the most recently observed ex-post best response by 0.89 (i.e., 1− δ̂ = 0.89), suggesting that

players notice that ex-post best responses are converging towards equilibrium. The level-0

players’ choices have a standard deviation of σ̂0 = 1.32, and their choices are more variable

than those of higher level thinkers (σ̂ = 0.46). Since we normalized the choice, as in Ho et

al (1998), by sample standard deviation (described in Section 4.2), the σ value of 1 means

that higher-level players’ choices are as variable as those made by the entire population

observed in the data. These higher level thinkers (k ≥ 1) give their initial priors the weight

N̂(0) = 2.00 and decay this prior weight at a rate of ρ̂ = 0.00. That is, the influence of the

initial prior immediately approaches near-zero after the first round. Comparing N̂(0) and

ρ̂ between the BLk(t) and Lk(t) models, we note that our models are not very sensitive to

these two parameters.

We note the following patterns in the parameter estimates:

1. The estimated fraction of level-0 players does not vary much across the four models,

ranging from 0.32 to 0.48.

2. Across all models, the choices of level-0 players are more variable than those of higher

level players (σ̂0 ranges from 1.31 to 10.00, while σ̂ ranges from 0.43 to 0.46).

3. Introducing adaptive learning decreases the average of the initial belief distribution over

opponents’ rule levels of higher level players (τ̂ is 0.00 and 0.07 compared to 3.84 and

18.06).

Figure 2 presents a three-dimensional bar graph of actual choice frequency of the experi-

mental data. To study the prediction power of the model for each individual choice, we look

at the entire distribution of the absolute deviation of the model prediction from each data

point. That is, for each player’s choice in each round, we calculate how distant the actual

choice is from the expected model prediction given the observed history of game play. The

three-dimensional bar graph in Figure 3 plots the distribution of these absolute deviations.

(Note that the “Choices” axis is reversed compared to Figure 2 so taller bars do not block

shorter ones.) We find that the deviation is as large as 60 in the first round, but most

deviations are below 10 from the 5th round. We also compute the relative magnitude of the

absolute deviation compared to the actual data. The relative absolute deviation (absolute
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deviation divided by the the actual data value) is on average 59% for the full model, while

for the nested models, (Lk(t), BLk and Lk) it is 62%, 317% and 122%, respectively. These

statistics, consistent with those shown in Table 1, demonstrates that the full model predicts

better than the nested models.

[INSERT FIGURES 2 AND 3 HERE.]

We further demonstrate how players in the data appear to adjust their rule levels depend-

ing on the feedback they receive. If players change their rules in subsequent rounds to beat

their opponents by taking into account the opponents’ observed rules, players’ rules must

change towards opponents’ observed rules. Specifically, let OWNDIFF denote a player’s own

rule in time t + 1 minus her own rule in time t, and OPPDIFF denote the rule opponents

choose in time t minus her own rule in time t. Then, OWNDIFF and OPPDIFF must be

positively correlated if players are changing rules in response to the feedback they receive.

Figure 4 plots the pairwise correlation of the OWNDIFF and OPPDIFF values of all play-

ers. It is clearly shown that the two values are positively correlated with the correlation

coefficient of 0.45.

[INSERT FIGURE 4 HERE.]

5 Cournot Quantity Game

In this section, we analyze another classical game, the Cournot oligopoly game, using the

Bayesian level-k model. In the classical symmetric Cournot game, n players compete in

quantities and simultaneously choose what quantities of a homogeneous product to produce.

The cost structure of players is common knowledge and is the same for all players. The

market price is determined by the total quantity produced by all players, which is normally

assumed to be a linear function of the total quantity produced. The payoff to each player

is determined by the unit margin (market price less the variable cost) times the quantity

produced by the player. This game is known to have a unique interior symmetric equilibrium
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characterized by the intersection of each player’s best response function given the other

players’ chosen quantities.

We find that the classical Cournot game is interesting for applying our Bayesian level-k

model for three reasons. First, the class of Cournot games bears resemblance to the class

of p-beauty contest games. That is, it is dominance solvable with a clearly defined rule

hierarchy where the rules converge to the unique equilibrium. Second, despite these simi-

larities, the Cournot quantity game has an interior equilibrium solution while the p-beauty

contest game has a boundary equilibrium solution. This implies that the rule levels alternate

between choices greater and smaller than the equilibrium until they finally converge to the

interior equilibrium point as rules increase. This characteristic may help disentangle adap-

tive learning from sophisticated learning. Third, from the practical application standpoint,

Cournot games resemble a commodities market in which firms compete in quantity. Thus,

examining the Cournot game will broaden our perspective on how different types of learning

occur in these different types of games.

5.1 Data

We use experimental data on classical Cournot oligopoly quantity games, collected by Fouraker

and Siegel (1963). Fouraker and Seigel ran experiments on the Cournot quantity game with

group size two or three.9 Since players were told their own as well as the total sum of oppo-

nents’ choices in all conditions, we fit our model to the entire dataset. All games followed a

fixed matching protocol. There were a total of 22 rounds. The price and profit function of

the Cournot quantity game was given by: p = A−B ·
∑n

i=1 qi, where A = 2.4, B = 0.04, p is

the market price and qi is the quantity chosen by player i. Player i’s profit in each round is

defined by: πi = p · qi =
(
A−B ·

∑n
j=1 qj

)
· qi. The unique interior equilibrium of duopoly

and triopoly settings was 20 and 15, respectively. There were a total of 130 subjects, of which

64 were under duopoly, and 66 were under triopoly conditions. Subjects were rewarded in

9There were separate treatments for two information states, termed “complete” and “incomplete”, with
entirely different meanings from the ones normally used nowadays. In Fouraker and Siegel, subjects were
told their own as well as opponents’ total profits in the complete information state, while they were told
only their own profits in the incomplete information state. In all states, however, players were told their
opponents’ choices and knew that the payoff function was symmetric. Therefore, we fit our model to the
entire dataset.
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the amount of the total profit obtained across all rounds times $0.01.

Figure 5 compares the first round data to the last round data in duopoly and triopoly

settings. As shown, although the number of equilibrium choices has increased from about

15% to 30% in both settings, the rest of the choices maintain a similar spread. Figure 6

plots the average and standard deviation of choices over time. The average stays quite static

around the equilibrium. The standard deviation also remains relatively constant, reducing

only from about 5 to 4 over the 22 periods. The standard deviation is quite low given that

the strategy space spans from 0 to 60. Figure 5 and 6 together demonstrate that the pattern

of data is fixed quite instantly at the onset of the game, and most choices are quite close to

the equilibrium point from period 1. The data pattern in earlier rounds remains relatively

unchanged over time except for a 15% increase in equilibrium choices.

5.2 Rule Hierarchy

Player i’s best response that maximizes her profit function given other players’ chosen quan-

tities can be obtained as qi = (A−B ·
∑

j 6=i qj)/(2B) and the symmetric equilibrium quantity

is A
(n+1)B

.

The rule hierarchy is iteratively defined from the level-0 rule. Believing that all her

opponents are level 0, the level-1 player best responds by choosing a1(t) that maximizes her

profit. Thus, a1(t) = A
2B
− n−1

2
· a0(t). Iteratively,

ak(t) =
A

(n+ 1)B
− (n− 1)

2
·
(
ak−1(t)− A

(n+ 1)B

)
.

5.3 Estimation Results

Table 2 shows the estimation results of the Cournot quantity game. Estimation methods

and assumptions were exactly the same as in the p-beauty contest game and level-0 players

are assumed to be imitation learners choosing a weighted sum of ex post best responses. As

opposed to the p-beauty contest game, the χ2 test statistics indicate that the BLk(t) fits

the data significantly better than BLk and Lk (χ2 = 68.81 and 72.36 respectively) but it is

not statistically different from Lk(t) (χ2 = 3.15). This suggests that adaptive learning is the
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dominant type of learning and the role of sophisticated learning is negligible in the Cournot

quantity game.10

The same results hold in the two-fold cross validation as well. The validation fit of BLk(t)

is actually 5 points less than the second-best fitting Lk(t) implying the possibility of over-

fitting compared to the Lk(t). Against the other two nested models (BLk and Lk), BLk(t)

still fits significantly better in the cross validation.

[INSERT TABLE 2 HERE.]

The fraction of adaptive level-0 players (α̂) is estimated to be 11%. These adaptive level-

0 players weigh the most recently observed ex-post best response by 0.23 (i.e., 1− δ̂ = 0.77).

The level-0 players’ choices have a standard deviation of σ̂0 = 9.25, and their choices are

more variable than those of higher level thinkers (σ̂ = 4.02). These higher level thinkers

(k ≥ 1) give their initial priors the weight N̂(0) = 52.73 and decay this prior weight at a rate

of ρ̂ = 0.45. That is, the influence of the initial prior drops to 52.73 · 0.45t after t rounds.

We note that allowing for adaptive learning reduces the fraction of level-0 players from

around 0.47 to 0.11 and increases the standard deviation for their choices from around 4.34

to 9.25. The choices of level-0 players are about twice as variable as the choices of higher

level players (σ̂0 ranges from 4.34 to 9.54 while σ̂ ranges from 3.98 to 4.34).

6 Private-Value Auction

To demonstrate how the Bayesian level-k model explains different types of games, we further

fit our model to another completely different game: the first-price, private-value auction.

The private-value auction is distinct from both the p-beauty contest and Cournot oligopoly

games because a player’s type, i.e., her private value, is not known to opponents, who have

to make best responses based on their expectations. As a consequence, studying the private-

value auction will help us understand how the Bayesian level-k model behaves in games with

10The self-tuning EWA model yields LL = −9582.83, AIC = 19169.66, and BIC = 19173.62. The BLK(t)
model fits better than the self-tuning EWA model because it has a more flexible error structure (spreading
probability mass more evenly across choices). This “more forgiving” error structure is important in the
Cournot game where choices remain spread out in the final rounds.
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incomplete information.

6.1 Data

We utilize the existing experimental first-price, private-value auction data from Goeree et al.

(2002). In their experiments, each subject was randomly matched to another in each round.

Each bidder received a private value (v) for a prize in a first-price, sealed-bid auction. The

prize went to the highest bidder and each bidder’s private value was exogenously determined

by a random device (rolling a die), among $0, $2, $4, $6, $8, and $11 for the low-values

treatment condition, and among $0, $3, $5, $7, $9, and $12 for the high-values treatment

condition. Upon being randomly assigned their private values, subjects placed a sealed bid.

Bids were constrained to integer dollar amounts and ties were decided with a coin flip. Profits

were realized only when an auction was won and the net surplus (private value minus the

winning bid) was given. The equilibrium prediction for both treatment conditions is $0, $1,

$2, $3, $4, and $5 for the six private values in both treatment conditions.

Eight sessions were conducted in total, among which four sessions were under the low-

value treatment conditions and four other sessions were under the high-value treatment

conditions. Each session ran for 15 rounds and had 10 subjects who were randomly matched

to each other in each round. After each round, subjects were privately told their own earnings

and their opponent’s bid of that round. At the end of the session, subjects were paid one-half

of the total profits accumulated across all rounds. While Goeree et al. (2002) fit data from

rounds 6 to 15 after data has stabilized, we fit the entire 15 rounds of data to fully examine

the learning dynamics.

Figure 7 shows average bids by period (Figure 2 of Goeree et al. (2002)). The data is

erratic, particularly in the earlier rounds and even in the later rounds except for some lowest

private values. Unlike the previous two games, there is not much indication of convergence

in the private-value auction. Persistent overbidding beyond the equilibrium prediction (i.e.,

$0, $1, $2, $3, $4, and $5 for six values) is observed.
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6.2 Estimation Method

We first define the rule hierarchy in the private-value auction. Since rule hierarchy depends

on one’s private value, we define each rule level conditional on one’s private value. We denote

the choice of rule k by ak(t | v), with a private value of v at time t. Then, ak(t | v) is the

best-response to the rule-(k−1) opponent who has an equal probability of having one of the

6 possible private values and is thus defined as:

ak(t | v) = arg max
s∈S

Ev′ [π(s, ak−1(t | v′))]

= arg max
s∈S

1

6

∑
v′

π(s, ak−1(t | v′))

Note again that if multiple best responses exist, ak(t | v) is defined as a mixed strategy placing

equal probability weights over these multiple best responses.

Next, in order to define the error structure of the model, i.e., f(·), we note that the first-

price, sealed-bid auction prescribes that one shall place a bid lower than one’s value. This

is because a bid lower than one’s value (except when the value is zero) will yield a positive

expected payoff whereas the expected payoff from bidding one’s value is zero and that from

bidding higher than one’s value is negative. This indeed manifested in the dataset. Subjects

who were randomly assigned the private value of zero bid zero 96% of the time. Subjects

who were randomly assigned a private value higher than zero bid a number strictly smaller

than their private value 99% of the time. Therefore, we concluded that f(·) must capture

these characteristics of the data and assumed f(x | ak(t | v)) ∝ exp(−|x − ak(t | v)|) only if

x < v for v > 0; and only if x = v = 0 for v = 0. Hence, f(x | ak(t | v)) = 0 if x > v always

holds. Note that the farther x is from ak(t | v), the greater f(x | ak(t | v)) is, i.e., this error

structure is of similar shape to a normal distribution.

6.3 Estimation Results

Table 3 shows the estimation results of the private-value auction game. In this game, we find

that the χ2 test statistics indicate that BLk(t) fits the data significantly better than Lk(t)

and Lk (χ2 = 31.10 for both cases) but is not statistically different from BLk (χ2 = 0.00).11

11The BLk(t) model also fits the private-value auction better than the self-tuning EWA model. The self-
tuning EWA model yields LL = −2912.93, AIC = 5827.87, and BIC = 5832.96. The self-tuning EWA model
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This suggests that sophisticated learning is the dominant type of learning in the private-value

auction, as opposed to the Cournot oligopoly game where adaptive learning was dominant.

The same conclusion holds for the two-fold cross validation result too.

[INSERT TABLE 3 HERE.]

The fraction of sophisticated players is estimated to be 87% since α̂ = 0.13. These

sophisticated players weigh their initial priors by N̂(0) = 0.11 and decay this prior weight

at a rate of ρ̂ = 0.99. That is, the influence of the initial prior drops to 0.11 · 0.99t after t

rounds.

Incorporating sophisticated learning reduces the prior belief τ̂ of higher-level players from

0.13 to 0.02, and also reduces the standard deviation of their choices from 0.62 and 1.34 to

around 0.58. However, the estimated parameters for adaptive level-0 players do not vary

appreciably. Across all four models, the fraction of adaptive players (α̂) is estimated to be

13%. Their initial choices hardly decay at all (since δ̂ = 1.00), and the standard deviation

of their choices σ̂0 = 0.86 is higher than the corresponding estimate for sophisticated players

in three out of the four models.

Note that the fraction of level-0 players is estimated to be similar to that in the Cournot

oligopoly games, where α̂ = 0.11 but for quite different reasons. In the Cournot oligopoly

games, α is estimated to be small because the convergence to equilibrium occurs instantly

and the level-0 rule becomes indistinguishable from higher-level rules when it is very close to

equilibrium. On the contrary, in the private-value auction, the noise in the data persists in

all rounds with no sign of convergence (see Fig 2 of Goeree et al., 2002) and the estimated

level-0 rule remains distinct from higher-level rules. In this case, the fraction of level-0

players is estimated to be small because adaptive learning (represented by level-0 players)

cannot explain the choice dynamics and variation that persists in the data.

In sum, in a private-value auction, which is an incomplete information game, the adaptive

performs worse in the auction because its choice attraction does not have a natural way to take players’
private values into account in the updating process. In contrast, the Lk model captures a player’s private
value via its higher rule level players. The choices of higher rule players are determined as the iterated best
responses based on their private values. As a consequence, the level-k thinking aspect of the BLk(t) model
is crucial in capturing choice dynamics in this game.
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learning-only model (i.e., where players form best responses based solely on the observed

action, without inferring opponents’ rules) is strictly worse than the sophisticated learning-

only model. This result is quite intuitive because in sophisticated learning, players infer

opponents’ rules and update their beliefs accordingly. This process necessarily requires

players to deduce the conditional probability of a choice occurring given a player’s type

(i.e., private-value). As a consequence, sophisticated learning can generate more accurate

predictions than adaptive learning.

7 Conclusion

The level-k model is an appealing structural model for explaining non-equilibrium behavior

because it is based on an intuitive, iterative reasoning process. Each iteration in the level-k

model is akin to a thinking step. Players start at level 0 and iteratively advance one step

by best-responding to their counterparts who reason one step less. Nonequilibrium behavior

emerges when players do not perform enough thinking steps. While the level-k model has

been successfully applied to both laboratory and field data, it is inherently static and has

not been designed to capture choice dynamics. A wide body of empirical evidence shows

that choice behavior is inherently dynamic and converges to equilibrium over time.

To capture dynamic choice behavior, this paper develops a structural Bayesian level-k

model that distinguishes between two possible types of learning dynamics: adaptive and

sophisticated learning. The model generalizes the standard level-k model in two significant

ways:

1. We allow the level-0 rule to adaptively respond to historical game plays. To the extent

that observed game plays move towards equilibrium, players may approach equilibrium

without advancing in rule levels. In this way, players learn adaptively.

2. We allow players to change their rule levels by Bayesian updating, where players update

beliefs about opponents’ rule levels based on observations. Thus, players perform more

thinking steps when they anticipate similar behavior from opponents. In this way,

players exhibit sophisticated learning.
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Interestingly, the extended model provides a novel unification of two separate streams of

nonequilibrium models: level-k and adaptive learning models. On one hand, level-k models

are “static” and have been used to predict behavior in one-shot games. On the other hand,

adaptive learning models have been used to describe choice dynamics in repeated games.

While these two seemingly distinct classes of models have been treated separately in the

literature, our model brings them together and provides a sensible way to model behavior in

both one-shot and repeated games in a common, tractable framework.

We apply the Bayesian level-k model to the existing experimental data on three games

that much resemble practical settings: the p-beauty contest (Ho et al. 1999), the Cournot

quantity game (Fouraker and Siegel 1963) and the private-value auction (Goeree et al. 2002).

We find that our generalized model explains the data well for all three classes of games.

In contrast, nested models that capture either adaptive or sophisticated learning explains

behavior in some games but not others.

Our structural estimates allow us to identify whether adaptive learning or sophisticated

learning is dominant in each class of games. We find that although subjects’ dynamic be-

havior is readily observable in the experimental data for all games, the underlying learning

dynamics are quite different across them: in p-beauty contest games, players’ dynamic be-

havior is driven by both types of learning, whereas in Cournot quantity games it is driven

by adaptive learning alone, and in private-value auction games it is driven by sophisticated

learning alone. We attribute such differences to the convergence pattern (instant vs. slug-

gish) and information setting (complete vs. incomplete). Hence, we show that a more

restrictive model that allows only one type of learning may be mis-specified, and would not

explain behavior well across different classes of games.

In summary, by incorporating both adaptive and sophisticated learning, our model may

be viewed as an empirical characterization of the equilibration process. This view bears

a similar spirit to Harsanyi’s “tracing procedure” (Harsanyi and Selten, 1988), in which

players’ successive choices, as they react to new information in strategic environments, trace

a path towards the eventual equilibrium outcome.
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Figure 1: p-beauty Contest: First and Last Round Data
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Figure 2: p-beauty Contest: Actual Data Frequency
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Figure 5: Cournot Quantity Game: First and Last Round Data
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Models

Dynamic a0i (t) Static a0i (t)

Bayesian Static Level-k Bayesian Static Level-k

BLk(t) Lk(t) BLk Lk

Level-0 Players

α̂ 0.47 0.48 0.27 0.32

(0.03) (0.01) (0.00) (0.01)

ω̂(0) 61.97 63.74 100.00 39.71

(6.77) (2.21) (0.00) (0.54)

δ̂ 0.11 0.12 1 1

(0.05) (0.01)

σ̂0 1.32 1.31 10.00 1.34

(0.02) (0.01) (0.00) (0.01)

Bayesian Updating

τ̂ 0.00 0.07 3.84 18.06

(0.16) (0.04) (0.00) (0.00)

N̂(0) 2.00 ∞ 2.87 ∞

(21.35) (0.02)

ρ̂ 0.00 1 0.30 1

(0.30) (0.00)

σ̂ 0.46 0.45 0.43 1.34

(0.05) (0.02) (0.00) (0.01)

LL -2534.22 -2539.74 -2957.45 -3349.25

χ2 – 11.04 846.46 1630.06

(p-value, dof) – (0.00, 2) (0.00, 1) (0.00, 3)

AIC 5084.44 5091.48 5928.90 6708.50

BIC 5131.85 5127.04 5970.39 6738.13

Two-fold Cross Validation -1260.12 -1262.13 -1472.57 -1673.39

Table 1: p-beauty Contest: Parameter Estimates
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Models

Dynamic a0i (t) Static a0i (t)

Bayesian Static Level-k Bayesian Static Level-k

BLk(t) Lk(t) BLk Lk

Level-0 Players

α̂ 0.11 0.12 0.45 0.47

(0.03) (0.02) (0.01) (0.02)

ω̂(0) 14.87 14.87 16.58 16.73

(0.54) (0.46) (0.06) (0.10)

δ̂ 0.77 0.75 1 1

(0.09) (0.08)

σ̂0 9.25 9.54 4.67 4.34

(1.82) (1.59) (0.11) (0.17)

Bayesian Updating

τ̂ 0.00 0.03 0.00 0.05

(0.01) (0.03) (0.01) (0.03)

N̂(0) 52.73 ∞ 100.00 ∞

(30.41) (42.00)

ρ̂ 0.45 1 0.02 1

(0.31) (0.34)

σ̂ 4.02 3.98 4.13 4.34

(0.10) (0.08) (0.07) (0.12)

LL -8308.34 -8309.92 -8342.75 -8344.52

χ2 – 3.15 68.81 72.36

(p-value, dof) – (0.21, 2) (0.00, 1) (0.00, 3)

AIC 16632.69 16631.84 16699.50 16699.05

BIC 16680.36 16667.59 16741.21 16728.84

Two-fold Cross Validation -4038.40 -4033.82 -4058.13 -4052.43

Table 2: Cournot Quantity Game: Parameter Estimates
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Models

Dynamic a0i (t) Static a0i (t)

Bayesian Static Level-k Bayesian Static Level-k

BLk(t) Lk(t) BLk Lk

Level-0 Players

α̂ 0.13 0.13 0.13 0.13

(0.01) (0.01) (0.01) (0.01)

ω̂(0) 5.00 5.00 5.00 5.00

(0.00) (0.31) (0.00) (0.00)

δ̂ 1.00 1.00 1 1

(0.02) (0.02)

σ̂0 0.86 0.86 0.86 0.86

(0.02) (0.02) (0.00) (0.01)

Bayesian Updating

τ̂ 0.02 0.13 0.02 0.13

(0.01) (0.02) (0.00) (0.01)

N̂(0) 0.11 ∞ 0.10 ∞

(9.17) (0.00)

ρ̂ 0.99 1 0.95 1

(0.25) (0.03)

σ̂ 0.58 0.62 0.59 1.34

(0.01) (0.01) (0.01) (0.01)

LL -1620.70 -1636.25 -1620.70 -1636.25

χ2 – 31.10 0.00 31.10

(p-value, dof) – (0.00, 2) (1.00, 1) (0.00, 3)

AIC 3257.41 3284.50 3255.41 3282.50

BIC 3298.13 3315.04 3291.04 3307.95

Two-fold Cross Validation -827.41 -844.69 -823.10 -841.18

Table 3: Private Value Auction: Parameter Estimates
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