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EXPERIENCE-WEIGHTED ATTRACTION LEARNING IN 
NORMAL FORM GAMES 

BY COLIN CAMERER AND TECK-HUA Ho1 

In 'experience-weighted attraction' (EWA) learning, strategies have attractions that 
reflect initial predispositions, are updated based on payoff experience, and determine 
choice probabilities according to some rule (e.g., logit). A key feature is a parameter /5 
that weights the strength of hypothetical reinforcement of strategies that were not chosen 
according to the payoff they would have yielded, relative to reinforcement of chosen 
strategies according to received payoffs. The other key features are two discount rates, <f, 
and p, which separately discount previous attractions, and an experience weight. EWA 
includes reinforcement learning and weighted fictitious play (belief learning) as special 
cases, and hybridizes their key elements. When 15 = 0 and p = 0, cumulative choice 
reinforcement results. When /5 = 1 and p = <f,, levels of reinforcement of strategies are 
exactly the same as expected payoffs given weighted fictitious play beliefs. Using three sets 
of experimental data, parameter estimates of the model were calibrated on part of the 
data and used to predict a holdout sample. Estimates of /5 are generally around .50, <f, 
around .8-1, and p varies from O to ¢. Reinforcement and belief-learning special cases 
are generally rejected in favor of EWA, though belief models do better in some 
constant-sum games. EWA is able to combine the best features of previous approaches, 
allowing attractions to begin and grow flexibly as choice reinforcement does, but reinforc­
ing unchosen strategies substantially as belief-based models implicitly do. 

KEYWORDS: Learning, behavioral game theory, reinforcement learning, fictitious play. 

1. INTRODUCTION 

How DOES AN EQUILIBRIUM arise in a noncooperative game? While it is 
conceivable that players reason their way to an equilibrium, a more psychologi-
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cally plausible view is that players adapt or evolve toward it.2 The flurry of 
recent research on adaptation and evolution mostly explores theoretical ques­
tions, such as to which types of equilibria specific evolutionary or adaptive rules 
converge. We are interested in a fundamentally empirical question: Which 
models describe human behavior best? In this paper we propose a general 
'experience-weighted attraction' (EWA) model and estimate the model para­
metrically, using three sets of experimental data. 

The EWA model combines elements of two seemingly different approaches, 
and includes them as special cases. One approach, belief-based models, starts 
with the premise that players keep track of the history of previous play by other 
players and form some belief about what others will do in the future based on 
past observation. Then they tend to choose a best-response, a strategy that 
maximizes their expected payoffs given the beliefs they formed. 

A different approach, choice reinforcement, assumes that strategies are 
'reinforced' by their previous payoffs, and the propensity to choose a strategy 
depends in some way on its stock of reinforcement. Players who learn by 
reinforcement do not generally have beliefs about what other players will do. 
They care only about the payoffs strategies yielded in the past, not about the 
history of play that created those payoffs. 

The belief and reinforcement approaches have been treated as fundamentally 
different since the 1950s. Until recently, nobody asked whether the two might be 
related, or how. But like two rivers with a surprising common source, ot children 
raised apart who turn out to be siblings, belief and reinforcement are special 
kinds of one learning model. The common heritage of these approaches was 
probably not discovered earlier because reinforcement models were used pri­
marily by psychologists, and belief models primarily by decision and game 
theorists. In addition, the information used by each approach is quite different. 
Belief-based models do not specially reflect past successes (reinforcements) of 
chosen strategies. Reinforcement models do not reflect the history of how 
others played. The EWA approach includes both as special cases by incorporat­
ing both kinds of information, using three modelling features. 

The crucial feature is how strategies are reinforced. In the choice reinforce­
ment approach, when player 1 picks strategy s{, and player 2 picks s~, player l's 
strategy s{ is reinforced according to the payoff 7T1(s{, s~). Unchosen strategies 
sr (h -=I= j) are not reinforced at all. In EWA, the unchosen strategies are 
reinforced based on a multiple 8 of the payoffs 7T1(sr, sf} they would have 
earned. This makes psychological sense because research on human and animal 
learning shows that people learn from many kinds of experiences other than 
those that are directly reinforcing. An expanded notion of reinforcement there­
fore liberates learning from the straitjacket of behaviorist psychology, toward 
something more cognitive and descriptive of humans. 

2Like most good ideas in economics, the adaptive and evolutionary interpretations of equilibra­
tion have a long pedigree. Weibull (1997) pointed out that in Adam Smith's famous passage where 
he said that the division of labor emerged as a consequence of the "propensity to truck, barter, and 
exchange," Smith also noted that the division of labor emerged in a "very slow and gradual" way 
(1981). 
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The second EWA feature controls the growth rates of attractions. Attractions 
are numbers that are monotonically related to the probability of choosing a 
strategy. In cumulative reinforcement models attractions can grow and grow, 
which implies that convergence can be sharper (in the sense that choice 
probabilities diverge toward one and zero). In belief learning, attractions are 
expected payoffs, which are always bounded by the range of matrix payoffs. The 
EWA model allows growth rates to vary between these two bounds by using 
separate decay rates, <p for past attractions, and p for the amount of experience 
(which normalizes attractions). 

The third modelling feature is initial attraction and experience weight. In 
belief models initial attractions must be expected payoffs given prior beliefs. In 
reinforcement models initial attractions are usually unrestricted. Therefore, 
initial attractions are unrestricted in EWA too. The initial experience weight 
N(O) reflects a strength of prior in belief models, or the relative weight given to 
lagged attractions versus payoffs when attractions are updated. 

When 8 = 0, p = 0, and N(O) = 1, the EWA attractions of strategies are equal 
to reinforcements, as used in many models. When 8 = l, and <p = p (and initial 
attractions are determined by prior beliefs), the attractions of strategies are 
equal to their expected payoffs given beliefs in a general class. That is, reinforc­
ing each strategy according to what it would have earned (or did earn) is 
behaviorally equivalent to forming beliefs, based on observed history, and 
calculating expected payoffs. The equivalence' holds because looking back at 
what strategies earned (or would have) in the past is the same as forming beliefs 
based ori what others did in the past, then computing forward-looking expected 
payoffs based on those backward-looking beliefs. 

EWA tries to mix appropriate elements of reinforcement and belief learning 
approaches in a way that makes sense. We think this can be judged by whether 
the parameters have clear psychological interpretations, and whether adding 
them improves statistical fit (adjusting, of course, for added degrees of freedom) 
and predictive accuracy. To test the empirical usefulness of EWA, we derived 
maximum-likelihood parameter estimates from three data sets. The data sets 
span a wide range of games: constant-sum games with unique mixed-strategy 
equilibria; coordination games with multiple Pareto-ranked equilibria; and 'p­
beauty contests' with unique dominance-solvable equilibria. Some empirical 
studies have evaluated belief and reinforcement models, but most have not 
compared them directly with statistical tests. Because EWA is a generalization 
which reduces to belief and reinforcement learning when parameters have 
certain values, it is easy to compare them to EWA and to each other. 

In the next section, the EWA approach is defined and we show how a general 
class of choice reinforcement and adaptive belief-based approaches are special 
cases. The third section provides interpretations of the model parameters and 
discusses how they relate to principles of human learning. The fourth section 
describes previous findings and shows how our empirical implementation goes 
further than earlier work. The fifth section reports parameter estimates from 
several data sets. The last section concludes and mentions some future research 
directions. 



830 COLIN CAMERER AND TECK-HUA HO 

2. THE EXPERIENCE-WEIGHTED ATTRACTION (EWA) MODEL 

We start with notation. We study n-person normal-form games. Players are 
indexed by i (i = 1, ... , n), and the strategy space of player i, S; consists of m; 
discrete choices, that is, S; = {sf, s;2, ... , sf, ... , s;i;- 1 , s;";}. S = S1 X ... XS,, is 
the Cartesian product of the individual strategy spaces and is the strategy space 
of the game. s; ES; denotes a strategy of player i, and is therefore an element of 
S;, s = (s1, ••• , s,,) ES is a strategy combination, and it consists of n strategies, 
one for each player. s _; = (s1, ••• , s;_ 1, s;+ i, ••• , s,,) is a strategy combination of 
all players except i. S _; has a cardinality of m_; = Ilk'= 1 k * ;mk. The scalar­
valued payoff function of player i is 1r;(s;, s _). Denote' the actual strategy 
chosen by player i in period t by s;(t), and the strategy (vector) chosen by all 
other players bys _;(t). Denote player i's payoff in a period t by 1r;(s;(t), s _;(t)). 

EWA assumes each strategy has a numerical attraction, which determines the 
probability of choosing that strategy (in a precise way made clear below). 
Learning models require a specification of initial attractions, how attractions are 
updated by experience, and how choice probabilities depend on attractions. 

2.1. The EWA Updating Rules 

The core of the EWA model is two variables which are updated after t::ach 
round. The first variable is N(t ), which we interpret as the number of.'observa­
tion-equivalents' of past experience. The second variable is A{(t), player i's 
attraction of strategy sf after peFiod t has taken place. 

The variables N(t) and A{(t) begin with some prior values, N(O) and 
A{(O).These prior values can be thought of as reflecting pregame experience, 
either due to learning transferred from different games or due to introspection. 
(Then N(O) can be interpreted as the number of periods of actual experience, 
which is equivalent in attraction impact to the pregame thinking.) 

Updating is governed by two rules. First, 

(2.1) N(t)=p·N(t-l)+l, t~l. 

The parameter p is a depreciation rate or retrospective discount factor that 
measures the fractional impact of previous experience, compared to one new 
period. 

The second rule updates the level of attraction. A key component of the 
updating is the payoff that a strategy either yielded, or would have yielded, in a 
period. The model weights hypothetical payoffs that unchosen strategies would 
have earned by a parameter 8, and weights payoffs actually received, from 
chosen strategy s;(t), by an additional 1 - 8 (so they receive a total weight of 1). 
Using an indicator function l(x, y) that equals 1 if x = y and O if x * y, the 
weighted payoff can be written as [ 8 + (1 - 8) · I(s{, s;(t))] · 1r;(s/, s _;(t)). 

The rule for updating attraction sets A{(t) to be the sum of a depreciated, 
experience-weighted previous attraction A{(t - l) plus the (weighted) payoff 
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from period t, normalized by the updated experience weight: 

(2.2) 
A.,N(t-l)·Al(t-l) +[8+(1-8)·/(si s-(t))]·1r.(si s .(t)) 

A{(t) = 'I' I N(t) I' I I I' -, • 

The factor </> is a discount factor or decay rate, which depreciates previous 
attraction. 

2.2. Choice Reinforcement 

In early reinforcement models (and some recent ones) choice probabilities are 
updated directly (e.g., Bush and Mosteller (1955); cf. Cross (1983)). In more 
recent models (Harley (1981); Roth and Erev (1995)), strategies have levels of 
reinforcement or propensity that are incremented cumulatively by received 
payoffs (and perhaps normalized; Arthur (1991)). We emphasize the latter 
cumulative form, which gives more modelling freedom3 and avoids some clumsy 
technical features (e.g., imposing boundary conditions so probabilities do not 
grow above one or below zero). 

The initial reinforcement level of strategy sf of player i is R{(O). These initial 
reinforcements can be assumed a priori (based on a theory of first-period play) 
or estimated from the data. Reinforcements are updated according to two 
principles: 

(2.3) 
. i <f>·R{(t - 1) + 1r;(s{, s_;(t)) 

Rl(t) = 
' </>·R{(t-1) 

if sf= S;(t), 

if sf -=I= s;(t). 

The two principles can be reduced to a single updating equation: 

(2.4) R{(t) = </> • R{(t - 1) + I(s{, s;(t )) · 1r;(s{, s _ ;(t)). 

It is easy to see that this updating formula is a special case of the EWA rule, 
when 8 = 0, N(O) = 1, and p = 0. Thus, cumulative choice reinforcement in this 
form is a special case of experience-weighted attraction learning. 4 

Other reinforcement models assume that previous payoffs are averaged, 
rather than cumulated (McAllister (1991), Mookerjhee and Sopher (1994, 1997), 

3In the Cross model, strategies have utilities that are weighted averages of past utilities and 
current payoffs (for chosen strategies), and players maximize utility. Sarin (1995) shows that when 
the weight on current payoff declines over time, this model behaves similarly to the Harley version 
in which attractions grow. The similarity reflects the fact that both models build in a declining effect 
of marginal reinforcements. 

4Some reinforcement models add other parameters. Roth and Erev (1995) add a parameter that 
cuts off attractions close to zero, to avoid negative attractions. Erev and Roth (1997) add three 
parameters that allow reinforcement to depend on payoffs minus an (updated) reference point (as in 
Bush and Mosteller (1995), Cross (1983)), where the updating may be different for losses and gains. 
They also add a parameter that smears a portion of the chosen-strategy reinforcement to neighbor­
ing strategies, to reflect a kind of experimentation or generalization that is (locally) similar to our 8 
parameter. Camerer and Ho (1998) compare the local-generalization specification with 8 updating 
in the EWA model and find that local-generalization fits much worse. 
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Sarin and Vahid (1997)). Then reinforcements are updated according to 

(2.5) R{(t) = cp·R{(t-1) + (1- cp)/(s{,s;(t))·11";(s(,s_;(t)). 

When 8 = 0, N(O) = l /(1 - p) and p = cp, EWA reduces to this averaged­
reinforcement form. 

2.3. Belief-based Models 

In a belief-based model, players tend to choose strategies that have high 
expected payoffs given beliefs formed by observing the history of what others 
did. While there are many ways of forming beliefs, we consider a fairly large 
class of weighted fictitious play models, which include familiar ones like ficti­
tious play (Brown (1951)) and Cournot (1960) best-response as special cases (see 
Fundenberg and Levine (1995, 1998), Cheung and Friedman (1997)).5 

In the weighted fictitious play model, prior beliefs of opponents' strategy 
combinations are expressed as a ratio of hypothetical counts of observations of 
strategy combination s~;, denoted by N~;(O). These observations can then be 
naturally integrated with actual observations as experience accumulates. (Carnap 
(1962) shows an elegant set of axioms that implies this structure, which corre­
sponds to Bayesian updating with a Dirichlet-distributed prior.) In our view, 
specifying prior beliefs (and computing initial expected payoffs based on the 
prior) is a crucial feature of belief models, though some papers have not 
imposed this assumption. Without specifying a prior, there is no guarantee that 
the updated beliefs that result •from mixing initial expected payoffs with later 
experience will be valid beliefs (i.e., nonnegative probabilities that sum to one). 

We also allow past experience to be depreciated or discounted by a factor p 
(presumably between zero and one). Formally, the prior beliefs for player i 
about choices of others are specified by a vector of relative frequencies of 
choices of strategies s~;, denoted N~;(O). Call the sum of those frequencies 
(dropping the player subscript for simplicity) N(t) = 'E,'7:;;;\ N~;(t). Then the 
initial prior B~;(O) is 

k N~;(O) 
(2.6) B_;(O) = N(O) , 

with N~;(O) ~ 0 and N(O) > 0. Beliefs are updated by depreciating the previous 
counts by p, and adding one for the strategy combination actually chosen by the 
other players. That is, 

k p·N~;(t-l)+I(s~;,s_;(t)) 
(2.7) B (t) - -~--------~ 

-; - '£7,';;;;1 [ p· N~;(t - 1) + I(s~;, s _;(t))] 

5When the description 'fictitious play' is used below, we mean traditional fictitious play in which 
all past observations are weighted equally. Also, Crawford (1995) and Camerer and Ho (1998) 
estimate models in which </> varies across periods, which generalizes weighted fictitious play to 
include cases where the weight rises or falls over time. In both papers, allowing time-varying weight 
does not improve fit very much, so assuming a fixed </> seems reasonable. 
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Expressing beliefs in terms of previous-period beliefs, 

k ( ) /(s!;,s_;(t)) 
p·B_; t-l +-----

(2.8) B!;(t) = 1 N(t - 1) 

p + N(t- l) 

p·N(t-l)·B!;(t- l) +l(s!;,s_;(t)) 

p·N(t-l)+l 
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This form of belief updating weights observations from one period ago p 
times as much as the most recent observation. This includes Cournot dynamics 
( p = O; only the most recent observation counts) and fictitious play ( p = l; all 
observations count equally) as special cases. The general case Os p s 1 is a 
compromise in which all observations count but more recent observations count 
more. 

Expected payoffs in period t, Ef(t), are taken over beliefs according to 

,11_1 

(2.9) E i( ) = '\"" ( i k ) ·Bk ( ) ;t J...,7T;S;,S-; -if. 
k-1 

" 
The crucial step is to express period t expected payoffs as a function of period 
t - l expected payoffs. Substituting equation (2.8) into (2.9) and rearranging 
yields: · 

(2.10) 
. p·N(t-l)-Ei(t-l)+7T(si s_.(t)) 

E!(t)= I ,, I 

I p·N(t-l)+l 

This equation makes the kinship between the EWA and belief approaches 
transparent. Formally, suppose initial attractions are equal to expected payoffs 
given initial beliefs that arise from the'experience-equivalent' strategy counts 
N~;(O), so A{(O) = E/(0) = E'j/;;,;1 7T;(s/, s!;) · B~;(O). Then substituting 8 = l and 
p = </J into the attraction updating equation (2.2) gives attractions that are 
exactly the same as updated expected payoffs in (2.10). Hence, the weighted 
belief models are a special case of EWA 

The contrast with EWA makes clear that belief models actually make three 
separate assumptions: Players' initial attractions are expected payoffs based on 
some prior; players update attractions using EWA with 8 = l; and attractions 
are a weighted average of lagged attractions and payoffs (</J = p). We think the 
most intuitively appealing assumption is the best-responsiveness to foregone 
payoffs embodied in 8 = l, rather than the weighted-average restriction </J = p 
or the restriction on first-period play. EWA allows one to separate the three 
features of belief learning: Players could have attractions that begin and grow 
differently than belief models assume, but update those attractions in a belief­
learning way. Such players are a special kind of EWA learner. 
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The close relation between reinforcement and belief learning is surpnsmg 
because the two approaches have generally been treated as fundamentally 
different (e.g., Selten (1991, p. 14)). Some authors have extended choice rein­
forcement models to include reinforcement using all foregone payoffs (McAllis­
ter (1991)) or the highest foregone payoffs (Roth (1995, pp. 37-40), Roth and 
Erev (1995), on market games), without noticing that these extensions make 
reinforcement like belief learning. 

Some connection between reinforcement and belief learning was recognized 
very recently by others (unbeknownst to us). Fudenberg and Levine (1995, pp. 
1084-1085) and Cheung and Friedman (1997, p. 54-55) both pointed out that 
expected payoffs computed using fictitious play beliefs, and based on history, are 
asymptotically the same as histories of actual payoffs. But their arguments are 
based on long-run asymptotic equivalence between a stationary distribution 
(possible payoffs) and a sample from it (actual payoffs). Neither explicitly 
recognized that even in the short run, there is an exact equivalence between a 
general kind of reinforcement learning (EWA) and weighted fictitious play.6 

The nonlinear interplay of parameters in the EWA updating rules is why, as a 
model of human learning, EWA is potentially superior to simply running a 
regression of choices against reinforcements and expected payoffs or combining 
the two in a weighted average. Reinforcements and expected payoffs differ in 
three crucial dimensions-initial attractions and experience weight N(O), the 
weight 8 on foregone payoffs in updating attractions, and whether attractions 
can grow outside the bounds of possible payoffs (which depends on <p and p). 
EWA is not a convex combination of reinforcement and belief models because 
these three dimensions are controlled by separate parameters. For instance, a 
weighted average in which expected payoffs are given weight 8 and reinforce­
ments have weight 1 - 8 will update attractions like EWA does, but that 
weighted average will not allow the wide range of initial attractions, experience 
rates, and growth rates available in EWA.7 

2.4. Choice Probabilities 

Attractions must determine probabilities of choosing strategies in some way. 
P/(t) should be monotonically increasing in A{(t) and decreasing in A}(t) 
(where k =I= j). Three forms have been used in previous research: Exponential 
(logit), power, and normal (probit). In estimation reported below we use the 

6For example, Cheung and Friedman (1997) make their point by "assum[ing] for the moment 
(very counterfactually!), that the player somehow managed to play both strategies each period." 
Then "dropping the counterfactual," they show that the average experienced payoffs will corre­
spond, up to some noise, to expected payoffs. Counterfactual simulation of foregone payoffs is 
precisely the mental process invoked by 8 in EWA. However, the 'noise' is correlated with past 
observations that are included explicitly in EWA, so the relation between EWA and weighted 
fictitious play is exact rather than approximate. 

7Indeed, Camerer and Ho (1998) show that EWA fits much better than a convex combination of 
belief and reinforcement learning, in two coordination games. 
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logit function, which is commonly used in studies of choice under risk and 
uncertainty, brand choice, etc. (Ben-Akiva and Lerman (1985), Anderson, Palma, 
and Thisse (1992)), and is given by 

(2.11) 
eA·Ai(t} 

P/(t + 1) = Em; eA·Aj(t). 
k=l 

The parameter A measures sensitivity of players to attractions. Sensitivity 
could vary due to the psychophysics of perception or whether subjects are highly 
motivated or not. In this probability function, the exponent in the numerator is 
just the weighted effect of strategy si's attraction, A ·Af(t), on the probability of 
choosing strategy sf. Models in which cross-effects of attractions on other 
strategies' choice probabilities are allowed have been estimated (Mookerjhee 
and Sopher (1997)) but we do not have the degrees of freedom to do so.8 

The logit, power, and probit probability functions each have advantages and 
disadvantages. The exponential form has been used to study learning in games 
by Mookerjhee and Sopher (1994, 1997), Ho and Weigelt (1996), and Fudenberg 
and Levine (1998), and in 'quanta! response equilibrium' models by Chen, 
Friedman, and Thisse (in press) and McKelvey and Palfrey (1995, 1998). Cheung 
and Friedman (1997) used the probit form. Thf exponential form is invariant to 
adding a constant to all attractions. 9 As a result, negative values of A{(O) are 
permissible, which means one can avoid the difficult question of how to update 
attractions when payoffs are negative.10 

The power probability form is given by 

(2.12) 

8 In Mookerjhee and Sopher (1997), the exponent in the probability equation numerator is the 
sum of weighted effects of all the. attractions, [,;'l 1 >..ik ·A}(t), where \k is the cross-effect of 
strategy sts attraction on strategy sf's score. This model allows cross-effects in which one strategy's 
attraction can affect other strategies' choice probabilities differently. These cross-effects are hard to 
interpret without knowing more about similarity of strategies or some other basis for one strategy's 
attraction to affect others differently. Nonetheless, they have some significance as a whole in the 
Mookerjhee-Sopher analysis of constant-sum games. Estimating them for our median-action and 
p-beauty contest data uses up far too many degrees of freedom because there are too many 
strategies. Including cross-effects could proceed particularly efficiently if some structural considera­
tions were used to restrict coefficients a priori (as in Sarin and Vahid's (1997) use of strategy 
similarity). 

9As a result, one must normalize A{(O) to equal a constant for one value of j in order to identify 
parameters. There is some evidence that adding a constant to payoffs does matter (Bereby-Meyer 
and Erev (1997)) but there is also evidence that logit fits better than power, so we regard the choice 
of firoper form as a matter of one's purpose and yet-unresolved empirical debate. 

0 Borgers and Sarin (1996) avoid this problem by addingx to all other strategies when a chosen 
strategy loses x. 
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The power form is invariant to multiplying all attractions by a constant. 
Because of this invariance, the parameters N(O) and p make no difference 
when the power form is used (i.e., they are not identified).11 

Depending on one's purpose, being able to ignore N(O) and p can be an 
advantage or disadvantage. For the purpose of distinguishing different models, it 
is a big disadvantage because models impose different restrictions on N(O) and 
p. By using the power form, the difference between belief-based, reinforcement, 
and EWA models, besides initial attractions, is only one parameter, 8, rather 
than three parameters. For the purposes of estimating any one model reliably, 
however, conserving degrees of freedom is good so the power form is better. 
Since our main purpose in this paper is comparing models, having the extra tools 
to distinguish theories is a large advantage so we use the logit form rather than 
the power form. This choice of probability rule is, of course, not an essential 
part of the EWA model. 

Ultimately, it is an empirical question whether the logit, probit, or power 
forms fit better (adjusting for degrees of freedom). Previous studies show 
roughly equal fits of logit and power (Tang (1996), Chen and Tang (1998), Erev 
and Roth (1997)) or better fits for the logit form over the power form (Camerer 
and Ho (1998)). 

3. INTERPRETING EWA PARAMETERS 

We think it is crucial to ask how a learning model's parameters can be 
interpreted, what general behavioral principles of learning they capture, and, for 
EWA, how they reveal the assumptions implicit in reinforcement and belief 
learning. Asking these questions about any learning theory avoids the danger of 
adding parameters just to improve statistical fit, without adding new insight or 
respecting what is known in other disciplines. In addition, if parameters have 
natural psychological interpretations they can be measured in other ways (e.g., 
response times and attention measures) and used in psychological modelling. 

3.1. Learning Principles, Aspiration Levels, and 8 

The parameter 8 measures the relative weight given to foregone payoffs, 
compared to actual payoffs, in updating attractions. This is the most important 
parameter in EWA because it shows most clearly the different ways in which 
EWA, reinforcement and belief models capture two basic principles of learn­
ing-the law of actual effect and the law of simulated effect. 

11 The parameter p disappears because it only appears in the updating equation denominator 
p · N(t - 1) + 1 that is common to all attractions and thus cancels out in the power form. Then EWA 
attractions at time t depend only on recent payoffs and the product Aj(O) · N(O). While initial choice 
probabilities depend on Aj(O) only, these probabilities are the same as those that depend on 
A/(0) · N(O) (for N(O) > 0). As a result, multiplying the initial attractions by an arbitrary constant 
makes no difference (econometrically, N(O) is not identifiable). 
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Many decades of learning experiments, mostly with (nonhuman) animal 
subjects, show that successful chosen strategies are subsequently chosen more 
often. Behaviorist psychologists call this the 'law of effect' (Thorndike (1911), 
Herrnstein (1970)). We relabel this the 'law of actual effect' because behavior­
ists took it for granted for years that the only effect on subsequent choices was 
produced by rewards for actual choices. The behaviorists eschewed 'mentalist' 
constructs like imagination, which allowed the possibility that foregone rewards 
could affect the probability of choosing new strategies, until a series of demon­
strations showed that those cognitive constructs are necessary. When applied to 
humans playing games with a known payoff matrix, it is sensible to propose a 
corollary general principle, the 'law of simulated effect'. The law of simulated 
effect states that unchosen strategies that would have yielded high payoffs­
simulated successes-are more likely to be chosen subsequently. Many experi­
ments on reinforcement learning are consistent with this principle. 12 

Furthermore, most research on human and machine learning assumes that 
the basic process driving learning is not reinforcement, per se, but the reduction 
of errors. Since errors are measured by the difference between what players 
received and what they could have received, error-reduction algorithms effec­
tively use both actual payoffs and foregone payoffs. 

This error reduction idea also lies behind learning direction theory (Selten 
and Stoecker (1986), Selten (1997)). Learning direction theory presumes players 
have a causal understanding of the game that enables them to tell in which 
direction they should switch strategies. 13 If players know strategies' foregone 
payoffs, then direction learning predicts they will move (weakly) in the direction 
of higher-forgone payoffs, and away from low foregone payoffs. This is essen­
tially the same prediction as EWA with 8 = 1, except that the direction learning 
allows inertia in responses, which corresponds to 8 < 1 when payoffs are 
positive. 14 Thus, in our view EWA incorporates the intuition behind direction 
learning in a precise way, when the causal structure is known, while direction 
learning can more generally apply to situations with known causal structure (but 
unknown foregone payoffs) in a way yet to be fully specified. 

The empirical strengths of the law of effect and the law of simulated effect 
are the key to distinguishing different models of learning in games, and are 

12 For example, anxious patients can be taught to fear a picture of a triangle (a conditioned 
stimulus, or CS) when it is followed by a loud annoying noise (an unconditioned stimulus, or UCS). 
When patients are told to simply imagine the UCS several times, their imagination increases the 
strength of their conditioned fear response to the triangle CS (Davey and Matchett (1994)). A 
related phenomenon is 'incubation', in which presentation of the CS itself increases the fear 
response (Eysenck (1979)). In these cases, people are not learning by direct reinforcement. They 
'learn' by simply imagining either the UCS's reinforcement, or the reinforcement that typically 
follows a CS. 

13 The players' understanding could be expressed in a causal diagram or map, but this central part 
of the theory is not yet developed. 

14 When payoffs are negative, 8 < l in EWA implies players will be likely to move away from 
money-losing chosen strategies (which are reinforced fully, and negatively), even moving to strategies 
with larger negative (foregone payoffs). 
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calibrated by 8. Reinforcement insists that only actual effects matter (8 = 0). 
Belief models implicitly require that actual and simulated effects are equally 
strong ( 8 = 1). EWA takes the middle ground. 

The parameter 8 could also be interpreted as creating an endogeneous 
aspiration level against which payoffs are compared. Including an aspiration 
level is sensible because many studies show that the reinforcement value of a 
fixed payoff depends on the aspiration level to which the payoff is compared 
(e.g .. , Erev and Roth (1997)).15 

In EWA, 8 creates an adjustable aspiration level endogeneously. It is easy to 
show that reinforcing strategies according to foregone payoffs means the proba­
bility of a chosen strategy s;(t) only increases if its payoff is larger than 8 times 
the average foregone payoff, holding previous attractions constant (see our 
working paper for details). Therefore, one can interpret 8 times the average 
foregone payoff in each period as a kind of aspiration level. A larger 8 creates a 
higher aspiration level. Furthermore, the aspiration level adjusts automatically 
over time, because it depends on the foregone payoffs in each period. EWA 
therefore creates an endogeneous, adjustable aspiration level at no extra para­
metric cost. 

If 8 is interpreted as the weight placed on foregone payoffs, many generaliza­
tions spring to mind. The size of the weight 8 could depend on the size of the 
foregone payoff or on its sign, to allow the possibilities that unusually large or 
small foregone payoffs catch a player's attention, or that players ·ire more 
sensitive to losses than to gains (cf. loss-aversion in risky choices, e.g., Tversky 
and Kahneman (1992)). If players are more sensitive to foregone payoffs for 
strategies that are closer to the chosen strategy, or more similar, then 8 will 
depend on the distance or similarity between each strategy and the chosen 
strategy s;(t) (cf. Sarin and Vahid (1997)). 

If 8 is applied to others' actual payoffs instead of own foregone payoffs, EWA 
can be used to capture learning by imitation. Imitation is obviously common, 
especially among animals, children, and impressionable teenagers. Payoff­
dependent imitation is also a sensible heuristic behavior in low-information 
environments where players do not know what their foregone payoffs are, but 
can observe success of other firms. EWA and imitation learning will be approxi­
mately the same when (i) games are symmetric, so that another player's payoffs 
are the same as one's own foregone payoffs, and (ii) when there are many 
players who choose different strategies, so that a player who imitates others 
according to how successful they were is effectively reinforcing a wide range of 
her own strategies according to their foregone payoffs. We conjecture that these 
are the conditions under which imitation is most common. If so, then imitation 
is just a heuristic way to implement foregone-payoff-based updating (a la EWA), 

15 Players who tend to repeat previously-chosen strategies, regardless of their outcomes, reveal a 
'status quo bias' or 'habit' (Majure (1994), Tang, (1996)). This habitual behavior of chosen strategies 
can be captured by having an aspiration level that is always lower than the actual payoffs and by a 
lack of simulated effect. 
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using payoffs of others as the best available proxy for one's own unknown 
payoffs. In this sense, EWA captures some of the intuition underlying imitation, 
and perhaps much of its empirical force as well. 

3.2. Growth of Attractions, p and</> 

The parameter </> depreciates past attractions, A{(t).16 The parameter p 
depreciates the experience measure N(t). It captures decay in the strength of 
prior beliefs, which can be different than decay of early attraction (captured by 
</> ). These factors combine cognitive phenomena like forgetting with a deliberate 
tendency to discount old experience when the environment is changing. 

One way to interpret p and </> is by considering the numerator and denomina­
tor of the main EWA updating equation (2.2) separately, and thinking about 
how reinforcement and belief-based models use these two terms differently. The 
numerator is </> · N(t - l) ·A{(t - 1) + [ 8 + (1 - 8) ·!(sf, s;(t))] · 1r;(sf, s _;(t)). This 
term is a running total of (depreciated) attraction, updated by each period's 
payoffs. The denominator is p · N(t - 1) + 1. This term is a running total of 
(depreciated) periods of experience-equivalence. Reinforcement models essen­
tially keep track of the running total in the numerator, and do not adjust for the 
number of periods of experience-equivalence .(since p = 0, the denominator is 
always one). Belief-based models also keep track of the attraction total but 
divide by the total number of periods of experience-equivalence. By depreciating 
the two totals at the same rate ( p = <f>), the belief-based models keep the 
'per-period' attractions (expected payoffs) in a range bounded by the game's 
payoffs. 

EWA allows attractions to grow faster than an average, but slower than a 
cumulative total. An analogy might help illustrate. Instead of determining 
attractions of strategies, think about evaluating a person (for example, an 
athlete, or a senior colleague you might hire) based on a stream of lifetime 
performances. The reinforcement model evaluates people based on (depreci­
ated) lifetime performance. The belief-based models evaluate people based on 
'average' (depreciated) performance. Both statistics are probably useful in 
evaluation-in hiring a colleague or an athlete, you would want to know lifetime 
performance and some kind of performance averaged across experience. One 
way to mix the two is to normalize depreciated cumulative performance by 
depreciated experience, but depreciate the amount of experience more rapidly. 
Then if two people perform equally well on average every year, the person with 
10 years of experience is rated somewhere between equally as good and twice as 
good as the person with five years of experience. When </> > p, EWA models 
players who use something in between 'lifetime' performance and 'average' 
performance to evaluate strategies. 

16A 'primary effect' (or 'imprinting'; Cheung and Friedman (1997)) in which early observations 
are remembered more strongly than recent ones, can be expressed by <p ~ l. 
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The depreciation rate parameters </J and p can also be understood by how 
they control slowdown in learning rate or sharpness of convergence. Solving 
recursively for steady-state attraction levels shows that those levels equal the 
ratio (1 - p)/(1 - </J) times the steady-state average payoff. Thus, when p = 0 as 
in reinforcement learning, attractions can end up outside the bounds of payoff 
levels (and they grow as large as possible, holding </J constant). When p = </J, as 
in belief-learning, steady-state attraction levels are equal to steady-state average 
payoffs. The implication of these two possibilities depends on how attractions 
determine probabilities. In the logit probability form, only differences in attrac­
tion levels affect choice probabilities. Therefore, given a fixed value of A, 
attractions that can grow outside the bounds of payoff levels have a wider range 
across strategies. This allows the possibility of sharper convergence in the sense 
that choice probabilities can converge closer to the boundaries at zero and one. 
When attractions are bounded to be close to payoff levels, convergence cannot 
be as sharp. In the power probability form, only ratios of attraction levels 
matter. Therefore, if attractions grow, the relative impact of new reinforcements 
falls; learning slows down. Ceteris paribus, reinforcement learning requires 
convergence to be as sharp as possible (in the logit form) or requires learning to 
slow down as quickly as possible (in the power form), while belief learning 
requires the opposite. EWA is able to choose an intermediate value of p that 
tailors the sharpness of convergence or rate of learning to the data. 

3.3. Initial Attractions A {(O) and their Strength N(O) 

The term A{(O) represents the initial attraction, which might be derived from 
an analysis of the game, from surface similarity between strategies and strategies 
that were successful in similar games, etc. Belief models restrict the A{(O) 
strongly by requiring initial attractions to be derived from prior beliefs. This 
requires, for example, that weakly dominated strategies will always have (weakly) 
lower initial attractions than dominant strategies. EWA allows more flexibility. 

For example, suppose players make first-period choices randomly, by choosing 
what was chosen previously in a different game, by setting each strategy's initial 
attraction equal to its minimum payoff (the maximin rule) or maximum payoff 
(the maximax rule),17 or by choosing stochastically among selection principles 
like payoff-dominance, risk-dominance, loss-avoidance, etc. All these decision 
rules are plausible models of first-period play, but none of them generate initial 
attractions that are always expected payoffs given some prior beliefs. 

We consider the scientific problem of figuring out how people choose their 
initial strategies as fundamentally different than explaining how they learn. 

17 Making a strategy's initial attraction equal to its minimum payoff, for example, is implicitly 
putting all the belief weight on the choices by others that yield that minimum. But the choices by 
others that lead to minima for different strategies are likely to be different. So the implicit beliefs 
underlying each attraction will be different. 
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Leaving initial attractions unrestricted makes them numerical placeholders that 
can be filled by a theory of first-period play that supplies attractions as an input 
to EWA That combination would be a complete theory of behavior in games, 
from start to finish. 

The initial-attraction weight N(O) appears in the EWA model to allow players 
in belief-based models to have an initial prior that has a certain strength 
(measured in units of actual experience). In EWA, N(O) is therefore naturally 
interpreted as the strength of initial attractions, relative to incremental changes 
in attractions due to actual experience and payoffs. Fixing N(O) = 1 means that, 
unit for unit, initial attractions A{(O) and chunks of reinforcement from payoffs 
are weighed equally when attractions are updated. This is easiest to see by fixing 
8 = l for simplicity and directly computing the attraction after two periods, 
A{(2), which gives 

(3.1) 
. cp 2 ·A{(O)·N(O) + cp·1r;Cs{,s_;(l))· + 1r;Cs{,s_;(2)) 

A{(2) = P2. N(O) + P + l 

The parameter cp captures the declining weight placed on payoffs from more 
distant periods of actual experience, compared to more recent periods. (That is, 
the older period 1 payoff 1r;(sf, s _;(l)) is weigpted by cp but the recent period 2 
payoff 1T; (sf, s -;(2)) is not.) Like previous payoffs, the initial attraction is also 
weighteci by a power of cp ( cp 2 , because it 'happened' two periods earlier), but is 
also weighted by N(O). Thus, the parameter N(O) captures the special weight 
placed on the initial attractions, compared to increments in attraction due to 
payoffs. N(O) can therefore be thought of as a'pre-game (introspective) experi­
ence' weight. If N(O) is small the effect of the initial attractions is quickly 
displaced by experience. If N(O) is large then the effect of the initial attractions 
persists. 

Notice that updating the experience-weight by N(t) = p · N(t - 1) + 1 implies 
a steady-state value of N* = 1/(1 - p). In estimation, we have found it useful to 
restrict N(O) to be less than N*. This implies N(t - 1) ::;_ N(t ); the experience 
weight is (weakly) rising over time. Since the relative weight on decayed 
attractions, compared to recent reinforcement, is always increasing, the relative 
weight on observed payoffs is always declining. This implies a 'law of declining 
effect' that is widely observed in research of learning. 

The flexibility of initial attractions and experience weight allows one to fit a 
variety of models. Theories of equilibrium behavior are special cases in which all 
'learning' occurs before the game starts. For example, a 'stubborn' game-theo­
retically-minded player sets A{(O) equal to the equilibrium payoffs of each 
strategy and act as if N(O) is infinite (meaning that no amount of game-playing 
experience can outweigh the prior calculation). An adaptive game theorist 
assumes A{(O) are equilibrium payoffs but has a small N(O), so she learns from 
experience. A player who does not begin with prior beliefs, but updates accord-
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ing to experience as a belief learner does, has </> = p and 8 = 1 with arbitrary 
Af(O). 

4. PREVIOUS RESEARCH 

In this section we briefly summarize previous research (see Camerer (in 
progress) for more details). 

Several papers investigate only belief learning. Cheung and Friedman (1997) 
(CF) estimated a weighted fictitious play model on individual-level data from 
four games (hawkdove, stag hunt, 'buyer seller' and battle-of-the-sexes). They 
find substantial heterogeneity across subjects but stability across games in 
parameters that are like our </> and A. A more general belief model, allowing 
idiosyncratic shocks in beliefs and time-varying weights, was developed by 
Crawford (1995) to fit data from coordination games, extended by Broseta (1995) 
to allow ARCH error terms, and applied by Crawford and Broseta (1998) to 
coordination with preplay auctions. Brandts and Holt (in press) and Cooper, 
Garvin, and Kagel (in press) simulate fictitious play in signaling games. Boylan 
and El-Gamal (1992) compare fictitious play and Cournot learning in coordina­
tion and dominance-solvable games; they find overwhelming relative support for 
fictitious play. 

Other studies concentrate only on reinforcement learning. Versions of rein­
forcement in which probabilities were reinforced directly, or cumulative payoffs 
normalized, were used by Bush and Mosteller (1955), Cross (1983), and Arthur 
(1991). Harley (1981) posited a reinforcement model using cumulative payoffs 
and simulated its behavior in several games. The Harley model was later 
extended by Roth and Erev (1995) to include spillover of reinforcement to 
neighboring strategies. Their model fits the time trends in ultimatum, public 
good, and responder-competition games but converges much too slowly. McAl­
lister (1991) shows that a modified Cross model that uses foregone payoff 
information fits weak-link data modestly well. Sarin and Vahid (1997) show that 
a modified Cross model with distance-weighted spillover of reinforcement to 
similar strategies fits data on coordination experiments with low information 
fairly well. 

These studies of belief and reinforcement learning find that each approach, 
evaluated separately, has some explanatory power. Other studies compared 
models.18 Erev and Roth (1997) add an adjustable reference point to their 
earlier model (cf. Cross (1983)). The extended model fits slightly better than 
fictitious play, at the individual level, in constant-sum games played for 100 or 

18 In still another approach, models in which players learn to shift weight across various rules (or 
'methods'), rather than across strategies, were studied by Tang (1996) and by Stahl (1996, 1997). In 
Tang's comparison 'method-learning' does slightly worse than reinforcement. Stahl (1997) finds that 
players seem to weight rules that mimic choices of others or best-respond given diffuse priors. 
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more periods. Mookerjhee and Sopher (1994, 1997) (MS) compare average-pay­
off reinforcement and fictitious play in constant-sum games; reinforcement does 
somewhat better. Ho and Weigelt (1996) compare modified versions of fictitious 
play and choice reinforcement (the MS 'vindication' model) in coordination 
games with multiple Nash equilibria. Fictitious play fits better. Battalio, Samuel­
son, and Van Huyck (1997) compare average-payoff reinforcement and fictitious 
play in three variants of stag hunt with the same equilibria but different 
disequilibrium incentives to converge. Fictitious play does better but a model 
that uses both reinforcements and expected payoffs does better still. 

Many variants of weighted fictitious play and reinforcement (and other 
models) were compared by Tang (1996) in games with mixed-strategy equilibria. 
Reinforcement does better in most games. Chen and Tang (1998) fit models to 
data from two public goods games. In one game equilibration is so fast that 
Nash equilibrium outpredicts the learning models. In the other game reinforce­
ment does better. 

The overall picture from previous research is somewhat blurry. Comparisons 
appear to favor reinforcement in constant-sum games and belief learning in 
coordination games. However, specifications of the models and estimation 
techniques vary across studies. Our approach allows one to compare models 
more systematically by including all features that have been used differently in 
different studies. Two general features are especially notable. 

First, most papers assume equal initial atfractions or, for belief models, 
uniform priors. Some papers estimate initial attractions using data from early 
periods (which does not generally optimize overall fit). Our procedure is more 
general because we estimate initial attractions and experience weight as part of 
an overall maximization of fit. Estimating initial experience weight N(O) allows 
belief models to express a prior strength. This is an important feature of belief 
learning; omitting it may explain why belief models have sometimes fit relatively 
poorly (in Mookerjhee and Sopher (1997), Tang (1996), Erev and Roth (1997), 
Chen and Tang (1998)). 

Second, some reinforcement models assume averaged payoffs affect choices, 
while others assume reinforcements cumulate. This difference can be captured 
by allowing p to vary between </J (for averaging) and O (for maximum cumula­
tion), as EWA does. In addition, many studies of belief learning did not allow 
weighted fictitious play, as EWA does. Including </J and p therefore allows us to 
determine whether previous mixed results depend on whether reinforcements 
are averaged or cumulated, and on whether belief models are weighted. 

Our methodology for model estimation is more general than most earlier 
papers in four ways. First, we compare across three classes of games using the 
same estimation technique (only Cheung and Friedman (1997) have done this in 
one paper). Second, our method uses standard statistical tests to judge whether 
differences in fit are due to chance, or put differently, to decide whether simple 
models are too simple or not. Third, we calibrate models on the first 70% of the 
periods in each sample and predict the rest of the sample to validate the 
estimates and avoid overfitting (no previous paper has done this). Fourth, we 
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allow heterogeneity across individuals by comparing a model with a single class 
of agents with a two-segment model, which has not been done before.19 

5. PARAMETER ESTIMATION FROM EXPERIMENTAL DATA 

5.1. Estimation Strategy 

We estimated the values of model parameters using three samples of experi­
mental data20 and validated the models by predicting behavior out of sample. 
The games are: Constant-sum games with unique mixed-strategy equilibria (and 
one weakly dominated strategy); a 'median-action' coordination with multiple 
Pareto-ranked equilibria; and a dominance-solvable 'p-beauty contest' game 
with a unique equilibrium. We chose these games for several reasons. 

First, the games have a range of different structural features (as in Cheung 
and Friedman (1997) and Stahl (1997)). This avoids the possible mistake of 
concluding that a model generally fits well because it happens to fit one class of 
games. 

Second, the games have different spans-the constant-sum games last 40 
periods and the others last 10 periods. Longer spans provide more data and 
more power for estimating individual differences. But a mixture of long. and 
short spans are valuable too, because some games-like the coordination games 
-converge quickly. Learning models should be able to explain why convergence 
is quick in those games and slow in others. 

Third, most previous studies have reported results that are favorable to either 
reinforcement or belief learning. The games we use each present some new 
challenges to these models. The presence of dominated strategies in the con­
stant-sum games is a challenge for belief models, which predict those strategies 
will be played relatively rarely. Rapid convergence in the coordination and 
dominance-solvable games is a challenge for reinforcement learning (see also 
Van Huyck, Battalio, and Rankin (1996)), which tends to be sluggish. 

Next we describe some general features of the estimation method. For 
simplicity we assume that players' strategies are the stage-game strategies, and 
denote player i's strategy choice in period t by s;(t). (Of course, in general 

19 The only paper that estimates individual-levy! parameters on these kinds of models is Cheung 
and Friedman (1997). While the median parameter estimates are reasonable and similar across 
games when expected to be, the individual-level estimates are variable (e.g., a third of the </> 
estimates are negative and a sixth are above one). This reflects some imprecision in individual-level 
estimation that suggests that multiple-segment estimation, which lies between single-segment 
estimation and individual-level estimation, may be a reasonably parsimonious compromise between 
the desires to allow heterogeneity and to estimate reliably. 

20 0ur working paper includes two other samples of data, on weak-link coordination games and 
matching pennies (Mookerjhee and Sopher (1994)). We dropped these because the weak-link data 
did not have a long enough span to permit both calibration and validation; calibration is reported in 
Camerer and Ho (1999). The matching pennies data did not distinguish models from each other or 
from Nash equilibrium. 
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strategies could be history-dependent or could be decision rules; we say more 
about this in the conclusion.) 

We use a 'latent class' approach in which there are one or two segments of 
players, and all players in a segment are assumed to have the same parameter 
values. This technique is standard in some fields (e.g., analyses of brand choice 
in marketing) and was also suggested by Crawford (1995).21 The single-class 
estimation provides a representative-agent benchmark. Allowing a second class 
gives a clue about how important it is to allow heterogeneity. While allowing 
heterogeneity should obviously improve fit in most cases, it does not always. For 
example, in constant-sum games, allowing a second class hardly improves the fit 
at all. 

The two-class procedure makes sense for these data sets because there are 
not enough observations per subject to reliably estimate many more classes.22 

And while including more segments would be desirable, there is no reason to 
think that assuming all players have the same parameters favors some models 
over others, so this simplification should not alter our conclusions about which 
models fit better. 

Estimating initial attractions Aj(O) (suppressing the player subscript), as we 
do, has three advantages. First, assuming initial attractions are equal (or 
assuming equal priors in belief models) saves degrees of freedom but fits poorly 
in some of these data sets. Second, estimatin,g initial attractions creates raw 
material that may be useful for constructing a good theory of first-period play; in 
a sense, ll.ny such theory is trying to predict the values that we estimate. Third, 
forcing a model to maximize fit by estimating learning parameters and initial 
attractions at the same time allows the possibility that the model will misspecify 
the initial attractions 'on purpose'. That is, if a model cannot easily explain how 
players move away from initial behavior as they learn, it will misestimate the 
initial behavior. Therefore, estimating the initial attractions and comparing 
them with first-period play serves as an indirect test for gross specification error. 
For example, we see below that reinforcement models fail this test for coordina­
tion games. 

Let the stage game be repeated for T rounds. Recall that the indicator 
function /(si, s;(t)) is equal to 1 if si = s;(t) and O otherwise. Define the vector 

def 
of initial attractions for player i to be A;(O) = (A}(O), Af(O), ... , A71;(0)). Since 
we study symmetric games and assume all players have the same parameter 
values, for this paper there is a common set of initial attractions A(O) =A;(O) 
Yi. Define the number of subjects by N. The overall sample size for calibration, 

21 Note that even though all agents in a class have the same parameter values, after the first 
period they will be predicted to behave differently because their actual choices and experiences vary. 

22 Two segments are also useful because one can then compare a two-segment EWA model with a 
two-segment model in which one segment consists of reinforcement learners and the other segment 
contains belief learners, to see whether EWA is fitting better than a 'population mixture' of belief 
and reinforcement learning. We did this in Camerer and Ho (1998) for weak-link and median-action 
data and found that EWA does fit much better than the mixture model. 
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.7 · T· N, is denoted by M. Then the log-likelihood function, LL(A(O), N(O), 
</>, p, 8, A), is 

(5.1) LL(A(O), N(O), </>, p, 8, A) 

O.?·T N ( m; ) 

1
~

1 
i~ ln j~l I(s{,s;(t))·P/(t) 

(5.2) 
O.?·T N ( m; e A·A/(t-1) ) 

L :Eln :EI(s{,s;(t))· m A-Ak(t-l) • 
1=1 i=1 j=1 Lk,;,1e ' 

Keep in mind that in the exponential form, attractions are only identified up 
to a constant, so we must fix one of the Aj(O) to equal a constant. We searched 
over parameter values to maximize the LL function using the MAXLIK routine 
in GAUSS, which uses a gradient method. To avoid converging to local optima 
we tried a variety of starting points. We restricted </>, A to be positive, 0:,::; 8,p:,:;; 1. 

Generally, violations of these restrictions should be interpreted as either signs 
of misspecification, or evidence that the model is trying to reach outside 
reasonable parameter values to explain an unusual feature of data. Fortunately, 
there are only two cases where the EWA restrictions bind-8 = 0 in constant­
sum game G 1, which we can't easily explain, and p = 0 in coordination games, 
which we can explain.23 

In order to make the value of N(O) interpretable as a weight on initial 
attractions relative to reinforcing payoffs, we restricted the range of Aj(O) to be 
less than or equal to the difference between the minimum and maximum payoffs 
in the entire game (while also setting one of the attractions equal to zero for 
identifiability).24 Since this restriction is naturally satisfied in belief models, in 
order to compare EWA to belief and reinforcement learning we imposed it in 
EWA and reinforcement as well.25 We also restricted O ::::;N(O):,::; 1/(1- p) to 
guarantee that the weights N(t) rise over time. 

23 In the coordination games convergence is very sharp after substantial initial dispersion. To 
explain this in the logit model, EWA needs attractions to grow apart as rapidly as possible, so high 
attraction strategies are chosen very frequently (and more frequently than in early periods). Since 
the denominator of the attraction equation is p · N(t - 1) + 1, attractions grow faster if this 
denominator shrinks, which means a negative value of p can make growth even faster. Therefore, 
the restricted estimate p = 0 in the coordination games means the model is trying to make p 

negative to capture the remarkable pace of equilibration seen in those data. 
24 If the attractions are not restricted in this way, then the experience weight N(O) expresses both 

the relative weight on initial attractions and payoffs, and a scaling factor which puts attractions and 
payoffs on the same scale. By restricting attractions to have the same range as payoffs, we can then 
interpret N(O) as a relative weight. 

25 In our working paper we allowed initial attractions to have arbitrary scale, which made MLE 
convergence slower and identification worse. Allowing arbitrary attractions helps reinforcement a bit 
in constant-sum games but does not help much in median-action and beauty-contest games. 
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Standard errors of parameters were estimated using a jackknife procedure. In 
each run of the jackknife, one subject was excluded from the analysis and the 
model was estimated using all remaining subjects.26 Doing this sequentially 
produces N vectors of estimates (where N is the number of subjects). The 
parameter standard errors are then the standard deviations of parameter 
estimates across the N runs. (Correlations between parameters can also be 
computed this way, and help detect identification problems.) 

Since EWA is always more general than the special cases, it will necessarily fit 
the data better so there is some danger of overfitting. To guard against this we 
use five ways to penalize theories that have more degrees of freedom. We 
calibrate the models by deriving MLE estimates using the first 70% of the 
observations in each sample, and measure goodness of fit three ways. Then we 
validate the models by using the derived estimates to predict the path of play in 
the remaining 30% of the sample and measure fit two ways. This procedure uses 
enough data to estimate parameters reliably, but also forecasts out-of-sample to 
ensure models are not being overfit. 

Obviously, deriving estimates on one part of the sample and predicting the 
rest of the sample implicitly assumes stationarity in parameters throughout the 
sample. In games that converge within an experiment, it is an open question how 
much power out-of-sample forecasting has to distinguish theories when behavior 
in the later, holdout-sample periods does not vary much. As is shown below for 
coordination games, the power can be substantial. The reason is that some 
theories do predict a lot of variation in later periods. If there is little variation 
in the holdout sample, the absence of variation counts against a theory that 
predicts variation. Also, we use the first 70% of the periods in an experimental 
session to calibrate parameter estimates and the final 30% of the periods to 
validate (forecast). A different approach is to derive estimates for some fraction 
of the subjects (using their entire samples), and use those estimates to forecast 
behavior for a holdout sample of subjects across the entire experimental session. 
Future work could use that method and compare the results to ours. 

To evaluate model accuracy in the calibration phase, the three criteria we 
report are: Log likelihoods (these are used in x 2 tests, which effectively 
penalize for EWA), and Akaike and Bayesian information criteria, which 
penalize theories according to the number of free parameters in different 
ways.27 We also report a pseudo-R2, denoted p2, based on the Akaike measure, 
so one can see how much better the models do than random choice.28 For the 
validation sample we report the log likelihood and a mean squared deviation 

26 For the constant-sum games, with only twenty subjects per game (ten row players and ten 
column players), every pair of row and column players were excluded, giving 100 jackknife runs. 

27 The Akaike criterion (AIC) is LL -k and the Bayesian criterion (BIC) is LL - (k/2)· log(M) 
where k is the number of degrees of freedom and M is the size of the calibration sample. 

28 The measure p2 is the difference between the Akaike measure and the log likelihood of a 
model of random choices, normalized by the random-model log likelihood. 
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(MSD), which is defined as 

(5.3) MSD= 
T 

L 
r, I: [ P/(t) -/(sf, s/t))] 2 

.3·T·N·m; t=.7-T+l i=l j=l 

(Note that this MSD does not average observations across individuals.) Model 
fits are also compared to a random choice model in which all strategies are 
chosen equally often in each period.29 

Since out-of-sample forecasting is a tougher test than in-sample fitting, and 
levels the playing field among theories with different numbers of parameters, 
why report in-sample fits at all? One reason is that both measures of fit are 
needed to judge whether a model does much better in-sample than out-of-sam­
ple, which is the telltale sign of egregious over-fitting. Furthermore, most 
previous studies have relied solely on in-sample fits for comparing models. 
Reporting them allows readers familiar with such comparisons to weigh the 
results against their own standards. 

For each game, we describe the game and basic details of how the experi­
ments were conducted. Then we compare models and discuss parameter esti­
mates. 

Table I previews and summarizes the results. Within each game and measure, 
other than LL and p2, the best fit statistic is printed in italics and marked with 
an asterisk. In both the calibration and validation phases, EWA fits suJ>staritially 
better in four of six games; in two cases the belief models fit a little better. (If 
EWA was overfitting, it would do relatively better in calibration than in 
validation, but this isn't the case.) Belief models do better than reinforcement in 
constant-sum games and worse in the median-action game. In the beauty contest 
game, the belief model does worse than reinforcement during calibration and 
better during validation. The two-segment models generally fit a little better 
during both validation and calibration, but the improvement in fit over one-seg­
ment models is small. 

5.2. Constant-sum Games with Dominated Actions 

We fit data from four constant-sum games: two are 4 X 4 (Gland G3) and the 
others are 6 X 6 (G2 and G4) from Mookherjee and Sopher (1997). Tables Ila-b 
show the payoff matrices. 30 The 4 X 4 games essentially collapse three of the 
undominated actions (actions 3-5) of the 6 X 6 games into a single action 
(action 3). 

29 We do not compare results with Nash equilibrium, as many studies do, because it does very 
poorly in constant sum games and beauty-contest games (in which iteratively-dominated strategies 
predicted to have zero probability are often played) and does not exclude any choices in the 
coordination games. 

30 The fractional payoffs (e.g., 2/3W), denote probabilistic chances of winning W. These present a 
complication for reinforcement models, including EWA-do you reinforce the actual payoff (which 
has a one-third chance of being zero if 2/3W is the payoff) or the expected payoff? We reinforce 
according to the expected payoff. 
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TABLE I 

MODEL CALIBRATION AND VALIDATION IN MEDIAN-ACTION, CONSTANT-SUM, 
AND ?-BEAUTY CONTEST GAMES 

Game No. of Calibration Validation 

Model Parameters LL AIC BIC P' LL MSD 

Constant-sum I (M = 560) 
I-Segment 

Random 0 -803.69 -803.69 -803.69 0.0000 -332.71 0.1875 
Choice Reinforcement 5 -681.97 -686.97 -697.96 0.1452 -335.50 0.1888 
Belief-based 6 -680.23 -686.23 -699.42 0.1461 -285.60* 0.1688* 
EWA 8 -653.07 -661.07* -678.66* 0.1775 -326.38 0.1883 

2-Segment 
Random 0 -803.69 -803.69 -803.69 0.0000 - 332.71 0.1875 
Choice Reinforcement 11 -681.69 -692.69 -716.87 0.1381 -328.71 0.1905 
Belief-based 13 -680.12 -693.12 -721.70 0.1376 - 285.96 0.1689 
EWA 17 -652.46 -669.46 -706.83 0.1670 -317.66 0.1865 

Constant-sum 2 (M = 560) 
I-Segment 

Random 0 - 1003.39 - 1003.39 -1003.39 0.0000 - 430.02 0.1435 
Choice Reinforcement 7 -853.61 -860.61 -876.00 0.1423 -359.74 0.1222 
Belief-based 8 -797.72 -805.72 -823.31 0.1970 -350.09 0.1212 
EWA 10 -790.61 -800.61 -822.59* 0.2021 -341.71 0.1179* 

2-Segment 
Random 0 - 1003.39 - 1003.39 -1003.39 0.0000 - 430.02 0.1435 
Choice Reinforcement 15 -853.50 -868.50 -901.48 0.1344 -363.10 0.1513 
Belief-based 17 -790.10 -807.10 -844.47 0.1956 -347.50 0.1205 
EWA 21 -776.83 -797.83* -844.00 0.2049 -335.95* 0.1195 

Constant-sum 3 (M = 560) 
I-Segment 

Random 0 -803.69 -803.69 -803.69 0.0000 -332.71 0.1875 
Choice Reinforcement 5 -710.14 -715.14 -726.13 0.1102 -308.47 0.1801 
Belief-based 6 -681.63 -687.63 - 700.82* 0.1444 - 296.28 0.1728 
EWA 8 -678.50 -686.50* -704.09 0.1458 -301.70 0.1767 

2-Segment 
Random 0 -803.69 -803.69 -803.69 0.0000 -332.71 0.1875 
Choice Reinforcement 11 -710.14 -721.14 -745.32 0.1027 -308.30 0.1800 
Belief-based 13 -681.07 -694.07 -722.65 0.1364 -295.85* 0.1722 
EWA 17 -677.60 -694.60 -731.97 0.1357 - 302.88 0.1712* 

Constant-sum 4 (M = 560) 
I-Segment 

Random 0 - 1003.39 - 1003.39 -1003.39 0.0000 - 430.02 0.1435 
Choice Reinforcement 7 -901.60 -908.60 -923.99 0.0945 - 375.94 0.1284 
Belief-based 8 -857.19 -865.19* -882.78* 0.1377 -371.18 0.1262 
EWA 10 -855.29 -865.29 -887.27 0.1376 -362.26 0.1241 

2-Segment 
Random 0 - 1003.39 - 1003.39 -1003.39 0.0000 - 430.02 0.1435 
Choice Reinforcement 15 -901.60 -916.60 -949.58 0.0865 -375.62 0.1283 
Belief-based 17 -856.97 -873.97 -911.34 0.1290 - 372.12 0.1265 
EWA 21 -854.00 -875.00 -921.17 0.1280 -361.15* 0.1239* 
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Game No.of 
Model Parameters 

Median Action (M = 378) 
1-Segment 

Random Choice 0 
Choice Reinforcement 8 
Belief-based 9 
EWA 11 

2-Segment 
Random 0 
Choice Reinforcement 17 
Belief-based 19 
EWA 23 

p-beauty contests (M = 1372) 
1-Segment 

Random 0 
Choice Reinforcement 12 
Belief-based 13 
EWA 15 

2-Segment 
Random 0 
Choice Reinforcement 25 
Belief-based 27 
EWA 31 

TABLE I 

Continued 

Calibration 

LL AIC 

-677.29 -677.29 
-341.70 -349.70 
-438.74 -447.74 
-309.30 -320.30 

-677.29 -677.29 
-331.25 -348.25 
-379.24 -398.24 
-290.25 -313.25* 

- 6318.29 - 6318.29 
-5910.99 -5922.99 
- 6083.04 - 6096.04 
- 5878.20 - 5893.20 

-6318.29 -6318.29 
- 5910.98 - 5935.98 
- 6083.02 - 6110.02 

Validation 

BIC p2 LL MSD 

-677.29 0.0000 -315.24 0.1217 
-365.44 0.4837 -80.27 0.0301 
-465.45 0.3389 -113.90 0.0519 
-341.94* 0.5271 -41.05 0.0185 

-677.29 0.0000 -315.24 0.1217 
-381.70 0.4858 -66.32 0.0245 
-435.62 0.4120 -70.31 0.0250 
-358.51 0.5375 -34.79* 0.0139* 

-6318.29 0.0000 -2707.84 0.0099 
-5954.33 0.0626 -2594.37 0.0101 
-6129.99 0.0352 - 2554.21 0.0097 
-5932.38 0.0673 - 2381.28 0.0098 

-6318.29 0.0000 - 2707.84 0.0099 
-6001.28 0.0605 - 2594 .. 17 0.0101 
-6180.54 0.0330 - 2554.11 0.0097* 

-5771.46 -5802.46* -5883.43* 0.0816 - 2355.00* 0.0098 

Note that these games each have a weakly dominated action (action 4 in G 1 
and G3 and 6 in G2 and G4). Dominated actions are useful for model 
discrimination because belief-based models always predict these actions will be 
chosen (weakly) less frequently than dominant actions, whereas the arbitrary 
initial attractions allowed by EWA and choice reinforcement can allow frequent 
choices of dominated strategies. 

All these games have a unique mixed strategy equilibrium that is symmetric 
(even though the games are not symmetric). In games G 1 and G3, in equilibrium 
actions 1-4 are played with probabilities 3 /8, 2/8, 3 /8, 0 respectively. In games 
G2 and G4, equilibrium proportions are 3/8, 2/8, 1/8, 1/8, 1/8, 0 for actions 
1-6. 

Each game was played by 10 different pairs of subjects playing with the same 
partner 40 times. At the end of each period players were told their partner's 
choice and their own payoff. In games G 1 and G2 a win paid 5 rupees; in games 
G3 and G4 the payoffs were doubled to 10 rupees. (A typical student's monthly 
room and board cost 600 rupees.) 

We derived MLE parameter estimates using the first 28 periods, and validated 
by predicting the last 12 periods. Because the payoff matrix is not symmetric 
(even though the equilibrium mixed-strategy proportions are), we estimate 
separate initial attractions A{(O) and separate initial experience-weights N/(0) 
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TABLE Ila 

4 X 4 CONSTANT SUM GAMES, G 1 (W = 5 RUPEES); 
AND 03 (W = 10 RUPEES) 

Column 
Sl S2 S3 

W,L L,W L,W 

L,W L,W W,L 

S4 

W,L 

W,L 

L,W W,L l/3W,2/3W l/3W,2/3W 

L,W L,W 2/3W,l/3W W,L 

TABLEilb 

6 X 6 CONSTANT-SUM GAMES, 02 (W = 5 RUPEES) AND 04 (W = 10 RUPEES) 

Column 
Sl S2 S3 S4 ss S6 

Sl W,L L,W L,W L,W L,W W,L 

S2 L,W L,W W,L W,L W,L W,L 

S3 L,W W,L L,W L,W W,L L,W 
Row 

S4 L,W W,L W,L L,W L,W L,W 

S5 L,W W,L L,W W,L L,W W,L 

S6 L,W L,W W,L L,W W,L W,L 
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for row and column players (though we restrict the total experience weight N(O) 
to be the same for both types of players). Tables IIIa-b show the MLE 
parameter estimates of the models, and x 2 tests of the belief and reinforcement 
restrictions (along with p-values and degrees of freedom). We report only the 
one-segment results because the two-segment results do not improve much and 
offer no special insights. 

Tables IIIa-b shows that for one-segment models, belief-based models and 
choice reinforcement restrictions are weakly and strongly rejected by x2 tests, 
respectively, in the calibration phase. In the validation phase, the reinforcement 
model is worst. The belief model is better than EWA in the four-strategy games 
Gl and G3, and worse in the six-strategy games G2 and G4. These differences 
are not large, however, and seem to be due to an idiosyncracy in game Gl.31 

Tables IIIa-b report parameter estimates and jackknifed standard errors. The 
initial conditions A'j(O) are encouragingly similar in pairs of low- and high-stakes 
games (Gl-G3 and G2-G4), and put low initial attraction on the dominated 

31 In game Gl, EWA overfits the first 28 periods because it detects some upward trend in 
strategies Sl and S3, and downward trend in S2. These trends are reversed in the last 12 periods so 
EWA predicts poorly there. The belief model estimates differences in initial expected payoffs but 
has a huge value of N(O) = 300, so it doesn't predict much movement at all. 
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TABLEIIIa 

4 X 4 CONSTANT-SUM GAMES (Gl AND 03) (M = 560) 

Choice 
EWA Reinforcement Belief-Based Models 

Parameters GI G3 GI G3 GI G3 

Initial Values 
ROW 

A 1(0) [N 1(0)] 1.320 5.237 0.000 10.000 1.780 [ 107 .3 70] 3.914 [22.703] 
(0.059) (0.222) (0.012) (0.000) (0.029) [1.758] (0.073) [0.423] 

A 2(0) [N2 (0)] 1.145 1.172 0.000 0.000 1.422 [107.290] 1.739 [25.214] 
(0.092) (0.265) (0.000) (0.000) (0.070) [ 4.687] (0.290) [1.403] 

A3(0) [N 3(0)] 1.913 7.187 5.000 10.000 2.262 [85.335] 4.927 [10.084] 
(0.066) (0.300) (0.000) (0.000) (0.057) [ 4.187] (0.149) [1.682] 

A 4(0) [ N 4(0)] 0.000 0.000 0.000 0.000 0.948 [0.000] 1.159 [0.000] 
(0.000) (0.000) (0.000) (0.000) (0.04 7) [0.000] (0.193) [0.000] 

COLUMN 
A 1(0) [N 1(0)] 2.681 6.790 5.000 10.000 3.385 [96.887] 6.674 [19.294] 

(0.091) (0.640) (0.000) (0.000) (0.049) [2.923] (0.092) [0.536] 
A 2(0) [N 2 (0)] 2.583 6.859 5.000 10.000 3.079 [87.932] 6.423 [17.962] 

(0.102) (0.580) (0.000) (0.000) (0.043) [2.582] (0.089) [0.935] 
A 3(0) [N 3(0)] 2.345 5.359 5.000 8.408 2.896 [115.280] 5.711 [20.744] 

(0.092) (0.735) (0.000) (0.000) (0.040) [2.563] (0.136) [0.514] 
A 4(0) [N4(0)] 0.000 0.000 0.000 0.000 1.281 [0.001] 2.384 [0.000] 

(0.000) (0.000) (0.000) (0.000) (0.029) [0.000] (0.059) [0.000] 
N(O) 19.630 18.391 1.000 1.000 300.000 58.000 

(0.065) (0.713) (0.000) (0.000) [0.000] [0.001] 
Decay Parameters 

<p 1.040 1.005 1.012 0.978 1.000 1.000 
(0.010) (0.009) (0.006) (0.008) (0.001) (0.005) 

p 0.961 0.946 0.000 0.000 1.000 1.000 
(0.014) (0.011) (0.000) (0.000) (0.001) (0.005) 

Imagination factor 
/5 0.000 0.730 0.000 0.000 1.000 1.000 

(0.035) (0.103) (0.000) (0.000) (0.000) (0.000) 
Payoff sensitivity 

A 0.508 0.182 0.053 0.033 1.168 0.459 
(0.048) (0.015) (0.004) (0.002) (0.067) (0.063) 

Log-likelihood 
-LL 653.072 678.496 681.968 710.136 680.232 -681.632 
x2 57.792 63.280 54.320 5.328 

(p-value, dof) (0.000, 3) (0.000, 3) (0.000, 2) (0.067, 2) 

strategies. The initial experience weight N(O) varies between about 10-20 and is 
close to its steady-state value of 1 /(1 - p ). This means that initial attractions 
are weighted quite heavily, which is reasonable Agiven the slow convergence in 
t~ese 40-period games. The decay parameters cp and p are close to one, with 
cp > p. These numbers imply that attractions grow only slightly on average. By 
forcing p = 0, in contrast, the reinforcement modelA forces attractions to grow 
and 'locks in' initial behavior too quickly. Finally, 8 is between .4 and .7 and 
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TABLE Illb 

6 X 6 CONSTANT-SUM GAMES (G2 AND G4) (M = 560) 

Choice 
EWA Reinforcement Belief-Based Models 

Parameters 02 04 02 04 02 04 

Initial Values 
ROW 

A 1(0) [N 1(0)] 2.996 9.491 5.000 10.000 2.309 [41.566] 5.335 [16.005] 
(0.068) (0.145) (0.000) (0.000) (0.045) [0.810] (0.053) [0.283] 

A 2(0) [N 2(0)] 2.434 7.964 5.000 10.000 2.077 [11.048] 4.665 [0.001] 
(0.043) (0.090) (0.000) (0.000) (0.036) [0.886] (0.053) [0.000] 

A 3(0) [N3(0)] 0.000 0.027 0.000 0.000 1.122 [10.227] 0.734 [1.090] 
(0.015) (0.081) (0.000) (0.000) (0.086) [1.111] (0.050) [0.083] 

A 4(0) [N4(0)] 0.000 0.004 0.000 0.000 1.182 [18.018] 0.364 [10.704] 
(0.036) (0.001) (0.000) (0.000) (0.080) [0.850] (0.026) [0.298] 

A 5(0) [N5(0)] 1.338 6.105 0.229 8.501 1.615 [9.141] 3.568 [2,200] 
(0.034) (0.060) (0.000) (0.000) (0.030) [0.993] (0.071) [0.115] 

A 6(0) [N 6(0)] 0.000 0.000 0.000 0.000 1.076 [0.000] 0.097 [0.000] 
(0.000) (0.000) (0.000) (0.000) (0.038) [0.000] (0.040) [0.000] 

COLUMN 
A 1(0) [N 1(0)] 4.998 8.733 5.000 10.000 3.595 [25.296] 7.769 [6.692] 

(0.020) (0.198) (0.000) (0.000) (0.044) [0.797] (0.072) [0.253] 
A 2(0) [N 2(0)] 4.047 6.306 4.852 f996 3.218 [32.627] 6.383 [10.301] 

(0.046) (0.080) (0.000) (0.000) (0.034) [1.151] (0.131) [0.496] 
A 3(0}{N3(0)] 2.201 1.572 0.001 0.001 2.444 [16.539] 3.954 [5.141] 

(0.050) (0.049) (0.000) (0.000) (0.068) [0.922] (0.102) [0.352] 
A 4(0) [N4(0)] 3.852 6.565 4.973 9.832 3.068 [13.391] 6.557 [5.684] 

(0.043) (0.070) (0.000) (0.000) (0.053) [0.914] (0.150) [0.462] 
A 5(0) [N5(0)] 1.737 1.851 0.000 0.001 2.269 [2.147] 4.135 [0.028] 

(0.047) (0.267) (0.000) (0.000) (0.085) [0.389] (0.213) [0.000] 
A 6(0) [N6(0)] 0.000 0.000 0.000 0.000 1.663 [0.000] 3.608 [2.155] 

(0.000) (0.000) (0.000) (0.000) (0.034) [0.000] (0.131) [0.373] 
N(O) 15.276 9.937 1.000 1.000 90.000 30.000 

(0.009) (0.D17) (0.000) (0.000) (0.012) (0.448) 
Decay Parameters 

<p 0.986 0.991 0.960 0.962 0.989 1.000 
(0.005) (0.011) (0.005) (0.005) (0.004) (0.002) 

p 0.935 0.926 0.000 0.000 0.989 1.000 
(0.006) (0.024) (0.000) (0.000) (0.004) (0.002) 

Imagination factor 
8 0.413 0.547 0.000 0.000 1.000 1.000 

(0.082) (0.054) (0.000) (0.000) (0.000) (0.000) 
Payoff sensitivity 

A 0.646 0.218 0.098 0.046 1.812 1.501 
(0.030) (0.019) (0.005) (0.002) (0.123) (0.019) 

-LL 790.608 855.288 853.608 901.600 797.720 842.968 
xz 126.000 92.264 14.224 21.280 

(p-value, doO (0.000,3) (0.000,3) (0.001,2) (0.000,2) 
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significantly different from both zero and one, except in game G 1 where it is 
estimated to be zero. 

Notice how the EWA estimates reflect a hybridization of elements of rein­
forcement and belief learning. First, the initial EWA attractions place much less 
relative weight on the dominated strategies (the highest-numbered strategies 4 
or 6) than the corresponding expected payoffs in belief models. In the belief 
model the gap between the initial expected payoffs of strategy 2 (the dominant 
strategies) and the dominated strategies cannot be too large because the 
strategies are only weakly dominated. For example, in game Gl the estimated 
EWA attractions on row strategies 2 and 4 are 1.14 and .00, while the corre­
sponding estimated expected payoffs are 1.42 and .95, a gap less than half as 
large. Thus, EWA exploits the flexibility of initial attractions from reinforcement 
models to squash the likelihood of playing weakly dominated strategies further 
down than belief models can. Second, EWA borrows the belief-model property 
that attractions do not grow much, since 4> and p are very close. Third, the 
estimates of 8 around .5 (except G 1) reflect both the law of simulated effect 
( 8 > 0) and stronger effects of actual payoffs than foregone payoffs ( 8 < 1). 

Our conclusions about the relative performance of reinforcement and belief 
models are different from the findings of Mookerjhee and Sopher (1997). Their 
analysis differed in a couple of important ways.32 They allowed cross-effects so 
that the attraction Af(t) can affect the probability of playing other strategies 
differentially, which is more general than our approach and seems to favor 
reinforcement in their estimation. Their version of reinforcement also used 
'average achieved earnings' rather than (weighted) cumulative earnings. The fact 
that 4> was very close to p in the EWA estimates indicates that MS took the 
right tack by using average earnings rather than cumulative earnings, because 
the cumulative-earnings assumption predicts a sharpness of convergence that is 
not evident in the data. In addition, their version of the belief model (which uses 
time-averaged expected payoffs) does not begin with an initial pre-game experi­
ence count expressing prior beliefs. Our estimates of N(O) range from 30 to 300, 
which means that the belief model does best when it starts with a strong prior 
and updates very little. Thus, the difference between our results and theirs is 
either due to their use of cross-effects of attractions on other-strategy probabili­
ties, to the fact that they use averaged reinforcements rather than cumulative 
ones (which improves reinforcement relative to our method), or to the fact that 
they did not allow strong prior beliefs (which handicaps the belief model relative 
to our method). 

Finally, notice that these constant-sum games simply do not distinguish 
models empirically very well (as shown also by Erev and Roth (1997)), and the 

32 Their analysis used logit estimation of strategy choices to judge whether choices depended 
more strongly on a player's own average past earnings (a kind of choice reinforcement) or on 
expected earnings based on opponent's past history (fictitious play). They also compared models 
based on the entire previous history, weighting all observations equally, with models based on a 
five-period moving average. (The entire-history models fit better.) 
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TABLEIV 

THE MEDIAN EFFORT GAME 

Median {Xi} 
7 6 4 3 2 

7 1.30 1.15 0.90 0.55 0.10 -0.45 -1.10 
6 1.25 1.20 1.05 0.80 0.45 0.00 -0.55 
5 1.10 1.15 1.10 0.95 0.70 0.35 -0.10 

Xi 4 0.85 1.00 1.05 1.00 0.85 0.60 0.25 
3 0.50 0.75 0.90 0.95 0.90 0.75 0.50 
2 0.05 0.40 0.65 0.80 0.85 0.80 0.65 
1 -0.50 -0.05 0.30 0.55 0.70 0.75 0.70 

pseudo-R2 's are low. Coordination games, in which players converge quickly, 
may prove to be a better domain in which to distinguish theories. 

5.3. Median-action Games 

In median-action order-statistic coordination games, the group payoff de­
pends on the median of all players' actions. 33 Table IV shows the payoff matrix 
used by Van Huyck, Battalio, and Beil (VHBB (1990)), whose data we use. 

Players earn a payoff that increases in _the median, and decreases in the 
(squared) deviation from the median. The median-action games capture social 
situations in which conformity pressures induce people to behave like others do, 
but everyone prefers the group to choose a high median. 

We estimate EWA, choice reinforcement, and belief models using sessions 
1-6 from VHBB (game I'). In their experiments groups of nine subjects each 
play ten periods together, so the sample has 54 subjects.34 In each round players 
choose an integer from 1 to 7, inclusive. At the end of each round the median is 
announced (but not the full distribution of choices) and players compute their 
payoffs. Since the groups are large (and players do not know what the median 
would be if their own choice was different), we assume that players form beliefs 
over the median of all players, ignoring their own influence on the median and 
treating the group as a composite single player. 

Figure la shows the actual frequencies across the six sessions, pooled to­
gether. Initial choices are concentrated around 4-5, with a dip at 6 and small 
spikes at 3 and 7. Later choices move sharply toward the initial medians, which 
were always 4 or 5. A striking feature, which is masked by pooling sessions, is 
that the 10th-round median in every session was equal to the first-round median. 

33 Camerer and Ho (1999) also report estimates from 'weak-link' coordination games in which the 
group payoff depends on the minimum. The parameter estimates are similar to those reported here 
-for example p is .65 and N(O) is around two. 

34 They compared two treatments using nine-person groups and 'dual market' (dm) treatments in 
which players play with a nine-person group and a twenty-seven person group simultaneously. There 
is no apparent or statistically-significant difference between these treatments so we pool them 
together. 
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FIGURE lA.-Actual frequencies, median-effort games. 

In three sessions the median began at 4 and stayed there; in the other three 
sessions the median began at 5 and stayed there. Figure la shows three key 
features of the data that any learning model should account for: The initial 
spikes at 4-5 roughly double in size (as players converge fully toward them); 
disequilibrium choices of 3 and 7 are quickly extinguished after the first period; 
and there is a "dip" in initial choices at 6 (fewer players choose 6 than choose 
neighboring strategies 5 or 7). 

From a learning point of view, median-action games are interesting because 
the penalty for deviating is fairly small if the players are close to equilibrium. 
Yet sharp convergence occurs within a couple of periods. Learning models that 
assume choices are reinforced must explain why players move quickly to equilib­
rium despite the large reinforcement if they are close to equilibrium and the 
small extra gain from moving precisely to equilibrium. The EWA model can 
account for this swift convergence if 8 is close to one, incorporating the 
best-responsiveness inherent in belief learning. 
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Strategy 7 

FIGURE lB. -Predictive errors of EWA model. 

Table V shows estimation results for the median-action games. First we focus 
on one-segment results. EWA fits better than the reinforcement model ( x 2 = 
64.8) and much better than the belief model ( x 2 = 258.9). The sources of 
EWA's improved fit are evident from looking at the data and plots of prediction 
errors. 

Figure la shows that in the actual data, there are two large spikes in initial 
choices at 4-5, smaller spikes (about 15% of the observations) at 3 and 7, and 
few observations at 6. The estimated EWA initial attractions basically reflect 
this pattern in the data. The accuracy of the reflection can be judged from 
Figure lb, an EWA error plot. This figure shows the difference between (MLE) 
predicted frequencies of the EWA model and the actual frequencies. The 
largest error is that EWA underpredicts the frequency of choices of 3 by about 
.06; predictions of 6 and 7 are too high by .03 and .01. 

Reinforcement and belief learning cannot fit the initial conditions as well as 
EWA, but for different reasons. Reinforcement learning underpredicts the 
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FIGURE lc.-Predictive errors of choice reinforcement model. 

actual initial frequencies of 3 and 7 by about .08. Players who chose strategy 7 in 
the first period quickly switch to lower numbers in period 2, as Figure la shows. 
(The same is true for players who chose strategy 3, but this cannot be seen in 
Figure la.) Reinforcement learning cannot predict how quickly this convergence 
occurs. Since the initial medians are 4-5, choices of 3 or 7 earn between $.55 
and $.95, while ex-post best responses earn $1.00 to $1.10. Since the initial 
choices are positively reinforced, reinforcement learning cannot explain why 
subjects will abandon these strategies so quickly and switch in the direction of 
the observed median. (EWA explains convergence with a high estimate of 
§ = .85.) Since choice reinforcement does not adjust chosen strategies quickly 
enough, to maximize overall fit it deliberately misestimates the first-period 
choices by assuming the initial frequencies are close to frequencies in later 
periods, thereby underpredicting choices of 3 and 7 (and overpredicting 4-5). 

Figure le shows that the belief model underpredicts 3 and 7 also, but for a 
different reason. In the belief-based framework it is hard to explain why players 
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Strategy 7 

FIGURE lo.-Predictive errors of belief-based model. 

would play 6 less than they play 5 or 7. The problem is that initial beliefs that 
give a high expected payoff to 4-5 (expecting a median of 4-5) also give an 
expected payoff to 6 that is nearly as large, and larger than the expected payoff 
to 7. Beliefs that give a large expected payoff to 7, because there is a high 
probability that the median will be 7, will also give a high expected payoff to 6. 
Thus, it is difficult to find a single set of beliefs that can explain the spikes at 
4-5 and 7, without also predicting a spike at 6. As a result, Table V shows that 
the one-segment model generates initial expected payoffs that are higher for 6 
($.78) than for 3 or 7 ($.71 and $.60), so it overpredicts 6 and underpredicts 3 
and 7 (and also overpredicts 5). 

Adding a second segment of players improves the belief-model fit dramati­
cally. As Table V shows, the log likelihood improves a lot (the x 2 statistics for 
the two-segment results compare one- and two-segment fits within each model). 
The two belief-model segments correspond naturally to a large (78%) segment 
with high expected payoffs for 4-5 generated by high initial beliefs in 4-5, and a 



00 
TABLEV 0\ 

0 

MEDIAN EFFORT GAMES, (M = 378) 

EWA Choice Reinforcement Belief-Based Models 

Parameters !-Segment 2-Segment !-Segment 2-Segment 1-Segment 2-Segment 

Initial values/Segment Size 0.659 0.341 0.799 0.201 0.785 0.215 
(0.012) (0.012) (0.008) (0.008) (0.007) (0.007) 

A 1(0) [N 1(0)] 0.000 0.000 0.000 0.000 0.000 0.000 0.168 [0.075] 0.457 [0.096] - 0.500 [0.000] 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.007 [0.018]) (0.007 [0.010]) (0.000 [0.000]) (") 

A 2(0) [N 2(0)] 0.000 0.095 0.034 0.000 0.000 0.002 0.491 [0.049] 0 .725 [0.037] 0.050 [0.000] 0 
(0.145) (0.028) (0.175) (0.028) (0.028) (0.113) (0.005 [0.012]) (0.005 [0.005]) (0.000 [0.000]) C: 

A 3(0) [N 3(0)] 0.337 0.000 2.400 0.877 0.000 2.400 0.713 [0.059] 0.893 [0.083] 0.500 [0.000] z 
(0.144) (0.000) (0.010) (0.033) (0.020) (0.073) (0.002 [0.014]) (0.002 [0.012]) (0.000 [0.000]) ~ A4(0) [N4(0)] 0.561 2.387 2.400 2.400 2.400 0.007 0.836 [0.073] 0.961 [1.124] 0.850 [0.000] s: 
(0.143) (0.005) (0.328) (0.000) (0.000) (0.379) (0.003 [0.019]) (0.003 [0.063]) (0.000 [0.000]) tr1 

A 5(0) [N 5(0)] 0.505 2.400 0.000 2.261 ' 2.400 0.006 0.859 [0.093] 0.928 [0.490] 1.100 [0.000] :., 
tr1 

(0.143) (0.008) (0.327) (0.021) (0.050) (0.135) (0.003 [0.022]) (0.003 [0.069]) (0.000 [0.000]) :., 
A 6(0) [N 6(0)] 0.364 2.313 1.797 1.329 1.293 0.013 0.781 [0.123] 0.796 [0.126] 1.250 [0.00] > 

(0.148) (0.007) (0.255) (0.033) (0.049) (0.135) (0.006 [0.028]) (0.006 [0.017]) (0.006 [0.000]) z 
A7(0) [N7(0)] 0.431 2.348 2.000 0.986 0.000 2.400 0.604 [0.170] 0.564 [0.019] 1.300 [0.358] CJ 

(0.146) (0.008) (0.111) (0.041) (0.072) (0.072) (0.008 [0.038]) (0.008 [0.002]) (0.000 [0.051]) --l 
tr1 

N(O) 0.647 0.205 0.149 1.000 1.000 1.000 0.642 1.976 0.358 (") 

(0.059) (0.027) (0.034) (0.000) (0.000) (0.000) (0.150) (0.115) (0.051) ~ 
I 

Decay Parameters ::i:: 
</> 0.800 0.746 0.800 0.930 0.979 0.000 0.738 0.494 0.999 e 

(0.018) (0.030) (0.020) (0.009) (0.011) (0.235) (0.054) (0.030) (0.00) > 
p 0.000 0.000 0.000 0.000 0.000 0.000 0.738 0.494 0.999 ::i:: 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.054) (0.030) (0.000) 
0 

Imagination factor 
i) 0.853 0.947 0.497 0.000 0.000 0.000 1.000 1.000 1.000 

(0.005) (0.002) (0.014) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Payoff sensitivity 

,\ 6.827 17.987 2.969 1.190 1.002 0.365 16.726 43.600 5.868 
(0.251) (0.869) (0.127) (0.015) (0.032) (0.777) (0.366) (0.837) (0.448) 

-LL 309.304 290.255 341.697 331.348 438.748 379.236 
xz - 38.098 64.785 20.698 258.888 119.024 

(p-value, dof) (0.000,12) (0.000,3) (0.014,9) (0.000,2) (0.000,10) 
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smaller (22%) segment with belief only in 7, which generates the highest 
expected payoff for 7. While testing the restriction that the second segment does 
not improve fit rejects strongly ( x 2 = 119.0), the two-segment belief model still 
does not fit as well as the one- or two-segment EWA model. 

Finally, Table I shows that EWA performs much better than the other models 
in out-of-sample validation, using either the LL or MSD measure. The error 
plots show that reinforcement overpredicts the number of people choosing 6 in 
periods eight and ten, because these choices are positively reinforced and should 
persist; EWA does a little better by predicting that these late-period choices 
move toward 4-5. The belief model predicts a growth in strategies 3 and 6 over 
time, because the expected payoffs of those strategies will be almost as high as 
the expected payoffs from strategies 4-5 as equilibration occurs. Since those 
strategies are rarely used in later periods, the belief model badly overpredicts 
them in those periods. 

Besides fitting initial conditions, a good learning model must explain why 
convergence in the first couple of periods is fast and sharp. EWA does this by 
estimating a large value of 8 (.85) and <fa much larger than p, which allows 
attractions to grow rapidly so that choice probabilities move toward zero and 
one swiftly. The low value of N(O), .65, also allows players to learn quickly from 
payoff reinforcement relative to initial attractions. 

The estimates show how EWA mixes and matches the best features of belief 
and reinforcement learning: It allows near-best response (8 close to one) as in 
belief models, which explains why players choosing near-equilibrium strategies 
move quickly toward equilibrium. But as in reinforcement, it can allow arbitrary 
initial attractions, which explains the relative paucity of choices of 6 in the first 
period, and allows attractions to grow (because p = 0) to explain the sharpness 
of convergence. As a result, the EWA errors (Figure lb) are generally much 
smaller than those in reinforcement (Figure le) and belief learning (Figure ld). 

The results shown in the error plots are for one-segment models. Adding a 
second segment improves fits significantly for all three models. In EWA, the 
larger segment (with proportion 66%) has an estimate 8 = .95, very close to the 
belief restriction of one, while the smaller second segment has 8 = .50. This 
corresponds to a segment of people with belief-type equal weighting of actual 
and foregone payoffs, and another segment who weight actual payoffs twice as 
heavily. Notice that these two segments do not particularly correspond to one 
segment of reinforcement learners and another segment of belief learners, so 
EWA is not simply capturing a mixture of these two special cases. 

In reinforcement, the larger segment (80%) has parameter values which are 
similar to those in the single segment, except the estimates of initial attractions 
for 3 and 7 are zero. The smaller second segment (20%) is the opposite­
strategies 3 and 7 have the largest possible initial attractions and all the others 
are close to zero-except that <fa = 0. 35 This means the two-segment structure is 

35 The estimate of zero for cf, is the full-sample MLE estimate. The jackknifed standard error of 
.235 means that in many jackknife samples cf, is estimated to be positive. Indeed, the mean of the 
jackknife estimates is .18, but this does not substantially affect the point we make in the text. 
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trying to solve the problem of explaining first-period choices of 3 and 7 that are 
quickly extinguished by creating a second segment of players who choose only 3 
or 7 initially, then immediately decay their initial attraction. But adding this 
segment does not improve log likelihood much and the two-segment reinforce­
ment model still fits worse than the one-segment EWA model. 

The two-segment belief model improves fit substantially but still does not 
capture initial attractions flexibly enough (compared to EWA). We think the 
problem is that the belief model requires initial behavior to be consistent with 
prior beliefs and requires beliefs to be updated using weighted fictitious play. 
The latter assumption requires 8 = 1 and <p = p. In games like the median-ac­
tion game, the 8 = 1 assumption is a reasonable approximation. but <p = p does 
not allow sharp enough convergence.36 More importantly, forcing initial attrac­
tions to spring from expected payoffs does not explain behavior of players who 
use certain decision rules. For example, a player who randomizes among 
different selection principles will not necessarily choose according to expected 
payoffs given prior. 

5.4. Dominance-solvable p-Beauty Contest Games 

In a p-beauty contest game, n players simultaneously choose numbers X; in 
some interval, say. [0,100]. The average of their numbers i = E7 x;/n _is com­
puted, which establishes a target number, T, equal to p·i. The player whose 
number is closest to the target wins a fixed prize n · 'TT (and ties are broken 
randomly 37 ). 

P-beauty contest games were first studied experimentally by Nagel (1995) and 
extended by Ho, Camerer, and Weigelt (1998) and Duffy and Nagel (in press). 
These games are useful for estimating the number of steps of iterated domi­
nance players use in reasoning through games. To illustrate, suppose p = .7. 
Since the target can never be above 70, any number choice above 70 is 
stochastically dominated by simply picking 70. Similarly, players who obey 
dominance, and believe others do too, will pick numbers below 49 so choices in 
the interval (49,100] violate the conjunction of dominance and one step of 
iterated dominance. The unique Nash equilibrium is 0. 

There are two behavioral regularities in beauty contest games (see Nagel 
(1999) for a review). First, initial choices are widely dispersed and centered 
somewhere between the interval midpoint and the equilibrium. This basic result 
has been replicated with students on three continents and with several samples 
of sophisticated adults, including economics Ph.D.'s and a sample of CEOs and 

36 The fact that p = 0 in EWA (and never varies across the jackknife runs) also suggests that 
adding more segments to the belief model will not improve fit substantially compared to EWA 
models with the same number of segments, because the belief models are always constrained to have 
p= <f>. 

37 Formally, 1r(x;,x_;)=n-1r·l(x;,argminx;lxj-Tl)/[J(x;,argminx.lxj-TI) where I(x,y) is 
the indicator function that equals one if x = y and O otherwise. 1 
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corporate presidents (see Camerer (1997)). Second, when the game is repeated, 
numbers gradually converge toward the equilibrium. 

Explaining beauty contest convergence is a challenge for adaptive learning 
models. Standard choice reinforcement is likely to converge far too slowly, 
because only one player wins each period and the losers get no reinforcement. 
Belief models with low values of <P, which update beliefs very quickly, may track 
the learning process reasonably well, but earlier work suggests Cournot dynam­
ics do not converge fast enough either (Ho, Camerer, and Weigelt (1998)). 

The three models were estimated on a subsample of data collected by Ho, 
Camerer, and Weigelt (1998). Subjects were 196 undergraduate students in 
computer science and engineering in Singapore. Each seven-person group of 
players played 10 times together twice, with different values of p in the two 
10-period sequences. (One sequence used p >land is not included below.) The 
prize was .5 Singapore dollars per player each time, about $2.33 per group for 
seven-person groups. They were publicly told the target number T and privately 
told their own payoff (i.e., whether they were closest or not). 

We analyze a subsample of their data with p = .7 and .9, from groups of size 
7. This subsample combines groups in a 'high experience' condition (the game is 
the second one subjects play, following a game with a value of p > l) and the 
'low experience' condition (the game is the first they play). The experience 
conditions were pooled to create enough data.to get reliable estimates. 

Several design choices were necessary to implement the model. The subjects 
chose in_tegers in the interval [O, 100], a total of 101 strategies. If we allow 101 
possible values of Ai(O) we quickly use too many degrees of freedom estimating 
the initial attractions. Rather than imposing too many structural requirements 
on the distribution of Ai(O), we assumed initial attractions were equal in 
ten-number intervals [O, 9], [10, 19], etc.38 

To implement EWA we assumed subjects knew the winning number, w = 
argminx[lxj- Tl], and neglected the effect of their own choice on the target 
number~39 Define the distance between the winning number and the target 
number as d = IT - wl. All subjects reinforced numbers in the intervals ( T - d, T 

+ d) by 8 times the prize, and numbers in the intervals [O, T - d) and ( T + d, 100] 
received no reinforcement. Winners reinforced the boundary number they 
chose, either T - d or T + d, by the prize divided by the number of winners, and 
reinforced the other boundary number by 8 times the prize divided by the 

38 In our working paper we assumed the distribution of the values of Aj(O) came from a beta 
distribution but the basic results were not much different. We also tried fitting asymmetric triangular 
distributions, in which A100(0) = 0, A50(0) = c, A0(0) = b, and Aj(O) was piecewise linear between 0 
and 50, and 50 and 100, with slopes (c - b)/50 and -c/50, respectively, and tried normal 
distributions but the basic results were unchanged. 

39 Since subjects were not told the winning number (unless their number won), the fact that we 
must assume they do to estimate the model could be considered a handicap for the EWA and 
belief-based models, and a possible advantage for choice reinforcement, which does not require this 
assumption. 
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number of winners. Losers reinforced both boundary numbers T - d and T + d 
by 8 times the prize, divided by the number of winners plus one. 

Implementing the belief model is not straightforward because subjects were 
told only the target number, and whether they won, so they do not have enough 
information to form beliefs about what other subjects will do, and use these 
updated beliefs to calculate expected payoffs. Reinforcing numbers in some 
intervals, as in the EWA updating, will not necessarily correspond to belief 
learning based in information about all others' numbers (which they do not 
know anyway). As a result, we estimate a restricted form of EWA with belief-type 
parameters by setting 8 = l, </> = p, estimating initial belief counts in the 
ten-number intervals, and taking initial expected payoffs to be normalized belief 

· counts multiplied by the prize. Numbers in the winning interval ( T - d, T + d) are 
reinforced by one times the prize. This corresponds to a special kind of belief 
learning in which players are learning what th<:; target number will be and 
best-responding given their beliefs. 

Table I reports overall results. Generally the fit is not very impressive; p 2 

values are only around 7%. In the calibration sample, EWA is slightly better 
than reinforcement, which is better than the belief model. Out of sample, the 
belief model and EWA model are about equally good (and reinforcement is 
clearly worst); the belief model is slightly better on MSD and much worse in log 
likelihood than EWA. 

Table VI reports results of parameter estimates. 
The EWA model fits the data as best it can in an odd way: It assumes there is 

a general tendency to pick lower "numbers, which grows stronger over time. This 
can be seen in the initial attractions, which are largest for the lowest number 
intervals,40 even though the first-period choices are clustered around 40-49 (i.e., 
attraction category A5(0)). Then the model assumes these initial attractions 
'inflate' over time ( ef, = 1.33). The model is not capturing learning from experi­
ence well becauseA lagged attractions are weight~d heavily compared to payoff 
reinforcement (N(O) is 16.82), and the estimate 8 is small (.23). 

Choice reinforcement uses the same ingredients-high initial attractions for 
lower numbers, inflated by ef, = 1.38-but fits substantially worse because N(O) 
is forced to be one and there is little reinforcement from direct payoffs (since 
most players lose and get nothing). The belief model, in contrast, fits best by 
assuming initial expected payoffs are highest for choices in the interval [40, 49], 
responding to payoff experjence strongly A(8 is fixed at one), and decaying 
attractions fairly quickly (N(O) = 1.67 and <f> = .40). 

The two-segment analysis of EWA improves calibration substantially, com­
pared to the one-segment model, and improves on the validation log-likelihood 
modestly. The two-segment reinforcement and belief models add very little to 
fit, especially in validation. 

40 The exception is that attractions are high for the interval [90,100]. This is to account for the 
occasional outlying choices of 100, which are discussed at length in Ho, Camerer, and Weigelt 
(1998). 
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TABLE VI 

P-BEAUTY CONTESTS (M = 1372) 

Choice 
Parameters EWA Reinforcement Belief-Based Models 

Initial values 
A 1(0) [N 1(0)] 3.348 3.500 0.000 [0.000] 

(0.002) (0.000) (0.000) [0.000] 
A2(0) [N 2(0)] 3.311 3.240 0.000 [0.000] 

(0.002) (0.002) (0.000) [0.000] 
A 3(0) [ N 3(0)] 3.301 3.160 0.000 [0.000] 

(0.002) (0.002) (0.000) [0.000] 
A 4(0) [N4(0)] 3.269 2.891 0.000 [0.000] 

(0.001) (0.002) (0.000) [0.000] 
A5(0) [N5(0)] 3.227 2.442 0.350 [0.167] 

(0.001) (0.002) (0.000) [0.000] 
A6(0) [N6(0)] 3.180 2.006 0.000 [0.000] 

(0.001) (0.001) (0.000) [0.000] 
A7(0) [N 7(0)] 3.052 0.591 0.000 [0.000] 

(0.003) (0.001) (0.000) [0.000] 
A8(0) [N 8(0)] 2.912 0.000 0.000 [0.000] 

(0.006) (0.000) (0.000) [0.000] 
A9(0) [N9(0)] 2.871 0.000 0.000 [0.000] 

(0.005) (0.000) (0.000) [0.000] 
A 10 (0) [N 10(0)] 3.060 0.700 0.000 [0.000] 

(0.004) (0.001) (0.000) [0.000] 
N(O) 16.815 1.000 1.672 

(0.000) (0.000) [0.002] 
Decay Parameters 

cf, 1.330 1.375 0.402 
(0.004) (0.002) (0.001) 

p 0.941 0.000 0.402 
(0.000) (0.000) (0.001) 

Imagination factor 
8 0.232 0.000 1.000 

(0.013) (0.000) (0.000) 
Payoff sensitivity 

A 2.579 0.223 0.942 
(0.002) (0.002) (0.001) 

Log-likelihood 
-LL 5878.197 5910.988 6083.036 

? 65.582 409.679 x-
(p-value, dot) (0.000,3) (0.000,2) 

The two EWA segments that emerge (not reported in Table VI) are interest­
ing. The larger segment (66%) is very much like the one-segment EWA 
estimate: Estimated initial attractions increase for smaller-number intervals, (/J 
is 1.61, § is zero, and the experience weight N(O) is 16.83. The smaller segment 
(34%) is remarkably like the one-segment belief model estimate: Initial attrac­
tions are highest for choices in the middle interval [50, 59), Ji and p are small 
and very close (.SO and .43), § is estimated to be 1.0, and N(O) = 1.76. 
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None of these models captures the nature of learning well. The reinforcement 
and one-segment EWA models simply pretend that the first period is like later 
periods and inflate initial attractions to gradually reproduce the latter-period 
data. Belief models converge too slowly. 

We think the results suggest two possible kinds of misspecification which we 
plan to remedy in future research (and have been studied by others). 

One possibility is that players detect trends and so, for example, use an 
extrapolative rule of the form "expect that x(t + 1) is the same multiple of x(t) 
that x(t) was of x(t - l)." (Our model does not explicitly allow this since players 
are assumed to use stage-game strategies only.) Such a model could be adaptive, 
in the sense of using only past observations and neglecting information about 
payoffs of others, but could allow subjects to choose strategies that are best 
responses to behavior they have not observed before. 

Another possibility is this: Since these models are adaptive, they only use 
information about previous payoffs (including previous foregone payoffs). Adap­
tive models of this sort cannot account for learning when players sophisticatedly 
realize that other players are learning as well (cf. Milgrom and Roberts (1991)). 
Our earlier work (Ho, Camerer, and Weigelt (1998)) and Stahl (1996) showed 
that a fraction of players seems to 'iteratively best-respond' in the sense that 
they choose numbers that are not best responses to observed history (as in 
weighted fictitious play), but instead choose numbers that are best responses to 
anticipated best-responding by others. Because the belief and reinforcement 
models do not have this kind of sophistication, the hybrid EWA does not either. 
Including sophistication in some parsimonious way may improve the fit. 

We are agnostic about whether the extrapolative or sophisticated approach is 
generally better. There are empirical reasons to pursue both: Some experiments 
have shown that players behave differently when they know the payoffs of others 
(e.g., Partow and Schotter (1993)), indicating sophistication. Still other experi­
ments (besides p-beauty contests) suggest sensitivity to time trends or differ­
ences in previous results (Huck, Normann, and Oechssler (1997)). 

5.5. Identification of Parameters and Model Diagnostics 

The results generally show that EWA fits better than either of the special 
cases, both adjusting for extra parameters and predicting out of sample. A 
further test for model specification is to ask whether there are regular correla­
tions among the three added parameters, S N(O), and p, and other parameters. 
Because the EWA model is highly nonlinear, it is possible that certain parame­
ters covary so closely that it is difficult to identify them econometrically. (By 
definition, a nonidentified parameter could be dropped from the model without 
reducing fit.) It is easy to show algebraically that the parameters are identified, 
in the sense that for arbitrary data sets and MLE parameter estimates, no other 
set of parameter values would fit equally well. However, it is possible that 
parameters are nearly nonidentified in some data sets. 
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One way to check the severity of nonidentifiability is to compute correlations 
among parameter estimates across jackknife runs. Two parameters that cannot 
be disentangled will be perfectly correlated across runs. Low or modest correla­
tions across runs indicate that parameters have detectably separate influences. 
By inspecting the intercorrelations of the three important added parameters we 
can check whether each parameter contributes to predictive power. 

A good overall statistic is the mean absolute correlation of the estimates of a 
parameter with all the other parameters with which it might be misidentified. 
We exclude initial attractions and compute correlations among <p, o, p, N(O), 
and A. 

For o the mean absolute correlation with the other parameters is .31, .39, and 
.23 across the constant-sum, median-action, and beauty-contest games. None of 
the correlations with a specific parameter are consistent in magnitude and sign 
across games. This indicates that o is well-identified. The same statistics for 
N(O) are .19, .22, and .32. The latter number excludes the correlation between 
N(O) and p in the beauty-contest game, which is nearly one because the 
declining-effect constraint is binding.41 These figures show that N(O) is well­
identified too (except when the constraint binds). The mean absolute correla­
tions for p are .48, .30, and .32 (the latter again excludes the high correlation 
with N(O)). These correlations are somewhat higher than for o and N(O), 
especially in constant-sum games, indicating.. possible identification problems. 
The most systematic large correlation is between p and <p, which have an 
averagt;.correlation of .88 in the constant-sum games (and the correlations are 
nearly equal in all four games). They are also correlated .50 in the median-ac­
tion game and uncorrelated ( - .03) in the beauty contest game. This pattern of 
correlations is a hint that the two depreciation parameters may be fundamen­
tally related, in some games, in a way we hope to explore in further research. 

The fact that the intercorrelations among estimates are modest and unsystem­
atic (with noted exceptions) confirms that the parameters added in EWA 
contribute separately to its fit. We can also ask whether adding these parameters 
helps solve identification problems that arise in the belief and reinforcement 
special cases. For the reinforcement model, A and <p are correlated - .79, - .68, 
and .05 in the three classes of games. The large negative correlations arise 
because when <p is lower attractions decay more rapidly, so A must be larger to 
magnify small differences in attractions into large differences in choice probabil­
ities. (The same effect does not seem to happen across runs of the beauty-con­
test game, where J is 1.38 and none of the models captures learning well.) 
Therefore, it is difficult to identify separate influences of the two parameters. 

41 When the declining-effect constraint N(O) :s; 1/(1 - p) is binding, N(O) and pare not identified 
separately. (The same is true in the belief model.) We regard this as a shred of evidence about the 
way in which parameters may vary systematically across classes of games (see Cheung and Friedman 
(1997)). It may be that dominance-solvable games in which observed strategy choices are constantly 
shifting location have this general property so the restriction N(O) = 1/(1 - p) can be safely 
imposed. 
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Adding p and N(O) in the EWA model reduces the correlations between A and 
</> in magnitude, to.15, - .40, and - .20, eliminating any possible identification 
problem. 

In the belief model the only apparent identification problem is between N(O) 
and </>, which are correlated .20, - .86, and .99 in the three games. When p is 
included in the EWA model, these correlations become .23, .31, and .99, so the 
identification problem is partly eliminated. 

Overall, there are modest identification problems in all three models. Prob­
lems in the reinforcement and belief models are largely alleviated by introducing 
p, N(O), and 8, in EWA These new parameters are fairly well identified, except 
for modest-to-strong correlation between p and </> in two of three games. EWA 
therefore solves minor identification problems in the simpler models at the 
expense of creating another minor one, which could be explored in further 
research. 

6. DISCUSSION AND CONCLUSION 

We proposed a general 'experience-weighted attraction' (EWA) learning 
model in which the probability of choosing a strategy is determined by its 
relative attraction. A strategy's attractions are updated by weighting lagged 
attractions by the number of periods of 'experience-equivalence' they contain, 
adding the payoffs actually received or a fraction of the payoffs that would have 
been received, then normalizing by an experience weight. 

The paper makes two basic col'ltributions. 
First, we show that belief learning is not fundamentally different from 

reinforcement learning because both are special examples of one general 
learning rule-EWA By showing their common basis, EWA lays bare the 
essential components of reinforcement and belief learning, and shows how those 
components can be combined to make a better model. Comparing choice 
reinforcement to EWA makes it clear that reinforcement assumes players 
ignore foregone payoffs, and attractions either cumulate as quickly as possible 
(in some models) or average past reinforcements (in other models). Comparing 
weighted fictitious play to EWA makes it clear that belief models assume initial 
attractions are consistent with prior beliefs, foregone and actual payoffs are 
equally reinforcing, and attractions are weighted averages of past attractions and 
payoffs. 

Indeed, as an empirical matter there is no reason to think that the clusters of 
parametric restrictions embodied in cumulative choice reinforcement and 
weighted fictitious play are the clusters most likely to arise in human behavior. 
For example, there is no empirical reason to think that players who ignore 
foregone payoffs also cumulate reinforcements, or that players who weight 
foregone payoffs necessarily use weighted averages of past attractions. EWA 
shows that there are many more clusters of parameter values than the two 
special kinds embodied in cumulative reinforcement and weighted fictitious play. 
For this reason, perhaps EWA should be studied more extensively in modern 
empirical work before these special cases. 
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Second, by estimating the more general EWA model, along with reinforce­
ment and belief-learning restrictions, our study combines methodological 
strengths of earlier studies while avoiding weaknesses. All earlier studies did one 
or more of the following: concentrated on only one or two models, focussed on 
one class of games, ignored player heterogeneity, restricted the generality of 
models, derived parameter values using methods that do not guarantee best-fits, 
or did not report inferential statistics testing relative fit. Our paper had none of 
these limits because we compared three general models, on three classes of 
games, allowed some heterogeneity, derived parameter values optimally, and 
reported both test statistics (adjusting for free parameters three ways) and 
out-of-sample predictive accuracy (measured two ways). 

EWA fits better than the reinforcement models in all cases, and better than 
belief learning in most cases, both adjusting for degrees of freedom within-sam­
ple and in out-of-sample prediction. Belief models are more accurate than 
reinforcement in some games, and by some measures, and less accurate in 
others. 

The foregone payoff weight o is estimated to be .42 (averaging across the four 
constant-sum games), .85 in median-action games, and .23 in beauty contests. 
The raw average of these numbers, .50, suggests that players generally weight 
foregone payoffs about half as much as actual payoffs. This result incorporates 
the intuitions underlying both reinforcement (actual payoffs are stronger) and 
belief learning (foregone payoffs matter). Put differently, players seem to obey 
both thelaw of actual effect and a corollary law of simulated effect. 

In the three games, the decay parameters <f> and p average 1.00 and .94, .80 
and 0, and 1.33 and .94. The first two games indicate that sometimes attractions 
are approximately averages (as in belief models) and other times they cumulate 
as rapidly as possible (as in reinforcement). The value of </> above one in beauty 
contests, as discussed above, reflects a likely misspecification because the 
adaptive models with stage-game strategies do not allow players to extrapolate 
trends or have sophisticated beliefs (a shortcoming the weighted fictitious play 
and reinforcement models also share). 

The initial experience weight N(O) averages 15.80, .65, and 16.82. The large 
values in constant-sum and beauty-contest games imply that players learn slowly, 
because they give much more weight to lagged attractions than to payoffs. The 
low value of .65 in median-action games means players respond more strongly to 
payoffs, learning faster. 

EWA also exploits the flexibility of initial attractions shared by reinforcement 
models, compared to belief models in which initial attractions must be expected 
payoffs based on some prior. This flexibility is particularly helpful in the 
coordination games. 

The results show how EWA is able to 'gene-splice' the best features of belief 
and reinforcement learning while avoiding their weaknesses. For example, in the 
median-action games players begin with dispersed choices that seem to reflect 
different selection principles, and converge quickly. Explaining this pattern well 
requires initial attractions that are flexible and cumulate (as in reinforcement), 
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rather than belief-based initial attractions that are averages, but also requires 
players to respond strongly to foregone payoffs (as in belief learning). 

The fact that parameter values vary widely across the data sets is not 
surprising, because all studies that have looked for differences in parameters 
across games have found them (e.g., Crawford (1995), Cheung and Friedman 
(1997), Erev and Roth (1997), Chen and Tang (1998)). Furthermore, the parame­
ters capture different features of the data-speed of learning and sharpness of 
convergence. Since these features are different across games, parameter values 
should differ. Nonetheless, our understanding of learning will not be complete 
until there is a theory of how parameter values depend on game structure and 
experimental conditions (see Cheung and Friedman (1997) for important 
progress). Our estimates provide raw material for such theorizing. 

6.l. EWA Extensions 

There are many directions for future research. 
Theorizing about the kinds of equilibria to which EWA learning rules con­

verge would be extremely useful. Hart and Mas-Colell (1996) provide a clue. 
They study a process in which players shift probability toward strategies they 
wish they had played, in proportion to the difference between foregone and 
actual payoffs ("regret"). This process is similar to EWA learning because EWA 
also shifts probability toward high-regret strategies when o is close to one. Hart 
and Mas-Collel prove that their process converges almost surely to correlated 
equilibrium for finite normal-form games. Similar results might be derived for 
EWA (perhaps for a restricted class of games). Interested theorists might keep 
in mind that mapping attractions into probabilities using the ratio form means 
the denominator of the updating equation vanishes, so p disappears and the 
experience weight only enters if the scale of the initial attractions is restricted. 
Then the model can be sensibly reduced to two parameters-8 and </> (which 
can be set to one for some theoretical purposes)-which should make theorizing 
easier. 

An empirical direction for further research is measurement of model parame­
ters using psychological methods. For example, if o is interpreted as attention to 
foregone payoffs from unchosen alternatives, then values of o should correlate 
with direct measures of attention, such as the amount of time subjects spend 
looking at different numbers in a payoff matrix (see Camerer et al (1993)). On 
general, measuring attention to information provides a direct way to test 
theories that assume certain kinds of information are not used.42 ) Or if N(O) is 

42 For example, choice reinforcement predicts that players do not use information other than their 
own payoff history. Experiments that· vary the information subjects are given have shown this 
prediction is clearly wrong (Mookerjhee and Sopher (1994), Van Huyck, Battalio, and Rankin (1996), 
Huck, Normann, Oechssler (1997)). Direct measures of attention provide a more direct test: if 
players look at foregone payoffs frequently, then reinforcement models have some explaining to do. 
Similarly, all adaptive models predict that players do not use information about others' payoffs; 
looking at those payoffs is evidence of sophistication. 



ATIRACTION LEARNING 871 

the number of pregame 'trials' a player simulates that form prior beliefs, then 
N(O) should be related to the ratio of initial response times to later-period 
response times. 

EWA will also have to be upgraded to cope with three modelling 
challenges-sophistication, imperfect payoff information, and specification of 
strategies-before it is generally applicable. 

Incorporating sophistication is important because EWA players only use 
information about their opponents' past choices, ignoring information about 
payoffs of others. Using this information in an expanded learning rule that 
incorporates sophistication could help explain data like those from the beauty­
contest games. Iterating sophistication might also link sophisticated-EWA to 
equilibrium theories like quantal-response equilibrium. 

Incorporating imperfect payoff information is important because any general 
model should be able to explain learning in low-information environments, 
where players do not know everything about their own payoffs, opponents' 
strategies, etc. EWA can obviously be applied in these settings by fixing 8 = 0 
(which means EWA can apply to any environment choice to which reinforce­
ment applies). A more general approach would use imperfect information in 
some other way, rather than just giving it zero weight. 

Incorporating a richer specification of strategies is important because stage­
game strategies are not always the most natural candidates for the ·strategies 
that players learn about. For example, players may learn by extrapolating from 
sequences of observations, or learn about history-dependent repeated-game 
strategies'or a wide variety of decision rules (like minimax, Nash equilibrium, or 
imitation; e.g., Stahl (1997)). Once a set of richer strategies is specified, of 
course, EWA can still model learning about those strategies. The open question, 
therefore, is what rules to specify a priori, and how a model can winnow down a 
very large set of possible rules as quickly as humans probably do. 

Adding these difficult extensions to EWA, and a theory of first-period play to 
supply initial attractions, might eventually create a unified way to predict how 
people play games in the lab and, eventually, how they play outside as well. 
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