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1 Introduction

For explaining individual decisions, rationality – in the sense of accurate belief and op-

timization – may still be an adequate approximation even if a modest percentage of

players violate the theory. But game theory is different. Players’ fates are intertwined.

The presence of players who do not have accurate belief or optimize can dramatically

change what rational players should do. As a result, what a population of players is likely

to do when some do not have accurate belief or optimize can only be predicted by an

analysis which explicitly accounts for bounded rationality as well, preferably in a precise

way. This chapter is about what has been learned about boundedly rational strategic

behavior from hundreds of experimental studies (and some field data).

In the experiments, equilibrium game theory is almost always the benchmark model

being tested. However, the frontier has moved well beyond simply comparing actual be-

haviors and equilibrium predictions, because that comparison has inspired several types

of behavioral models. Therefore, the chapter is organized around precise behavioral mod-

els of boundedly rational choice, learning and strategic teaching, and social preferences.

We focus selectively on several example games which are of economic interest and explain

how these models work.

We focus on five types of models

1. Cognitive hierarchy (CH) model which captures players’ beliefs about steps of think-

ing, using one parameter to describe the average step of strategic thinking (level-k

(LK) models are closely related). These models are designed to predict one-shot

games or initial conditions in a repeated game.

2. A noisy optimization model called quantal response equilibrium (QRE). Under

QRE, players are allowed to make small mistakes but they always have accurate

beliefs about what other players will do.

3. A learning model (called Experience-Weighted Attraction Learning (EWA)) to com-

pute the path of equilibration. The EWA learning algorithm generalizes both ficti-

tious play and reinforcement models. EWA can predict the time path of play as a

function of the initial conditions (perhaps supplied by CH model).

4. An extension of the learning models to include sophistication (understanding how

others learn) as well as strategic teaching, and nonequilibrium reputation-building.
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This class of models allows the population to have sophisticated players who actively

influence adaptive players’ learning paths to benefit themselves.

5. Models of how social preferences map monetary payoffs (controlled in an experi-

ment) into utilities and behavior.

Our approach is guided by three stylistic principles: Precision; generality; and empirical

accuracy. The first two are standard desiderata in equilibrium game theory; the third is

a cornerstone in empirical economics.

Precision: Because game theory predictions are sharp, it is not hard to spot likely

deviations and counterexamples. Until recently, most of the experimental literature con-

sisted of documenting deviations (or successes) and presenting a simple model, usually

specialized to the game at hand. The hard part is to distill the deviations into an al-

ternative theory that is similarly precise as standard theory and can be widely applied.

We favor specifications that use one or two free parameters to express crucial elements

of behavioral flexibility. This approach often embeds standard equilibrium as a para-

metric special case of general theory. It also allows sensible measures of individual and

group differences, through parameter variation. We also prefer to let data, rather than

intuition, specify parameter values.

Generality: Much of the power of equilibrium analyses, and their widespread use,

comes from the fact that the same principles can be applied to many different games.

Using the universal language of mathematics enables knowledge to cumulate worldwide.

Behavioral models of games are also meant to be general, too, in the sense that the same

models can be applied to many games with minimal customization. Keep in mind that

this desire for universal application is not held in all social sciences. For example, many

researchers in psychology believe that behavior is so context-specific that it is might be

too challenging to create a common theory that applies to all contexts. Our view is that

we can’t know whether general theories are hopeless until we try to apply them broadly.

Empirical discipline: Our approach is heavily disciplined by data. Because game

theory is about people (and groups of people) thinking about what other people and

groups will do, it is unlikely that pure logic alone will tell us what will happen. As the

Nobel Prize-winning physicist Murray Gell-Mann said, “Imagine how difficult physics

would be if electrons could think” It is even harder if we don’t watch what ‘electrons’ do

when interacting.
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Our insistence on empirical discipline is shared by others. Eric Van Damme (1999)

thought the same:

Without having a broad set of facts on which to theorize, there is a certain

danger of spending too much time on models that are mathematically elegant,

yet have little connection to actual behavior. At present our empirical knowl-

edge is inadequate and it is an interesting question why game theorists have

not turned more frequently to psychologists for information about the learning

and information processes used by humans.

Experiments play a privileged role in testing game theory. Game-theoretic predictions

are notoriously sensitive to what players know, when they move, and how they value

outcomes. Laboratory environments provide crucial control of all these variables (see

Crawford, 1997; Camerer, 2003). As in other lab sciences, the idea is to use lab control to

sort out which theories work well and which don’t, then later use them to help understand

patterns in naturally-occurring data. In this respect, behavioral game theory resembles

data-driven fields like labor economics or finance more than equilibrium game theory.

Many behavioral game theory models also circumvent two long-standing problems

in equilibrium game theory: Refinement and selection. These models “automatically”

refine sets of Bayesian-Nash equilibria because they allow all events to occur with positive

probability, and hence Bayes’ rule can be used in all information sets. Some models

(e.g. CH and LK) also automatically avoid multiplicity of equilibria by making a single

statistical prediction. Surprisingly, assuming less rationality on players therefore can

lead to more precision (as noted previously by Lucas, 1986).

2 Cognitive Hierarchy and Level-k Models

Cognitive Hierarchy (CH) and level-k (LK) models are designed to predict behavior in

one-shot games and to provide initial conditions for models of learning.

We begin with notation. Strategies have numerical attractions that determine the

probabilities of choosing different strategies through a logistic response function. For

player i, there are mi strategies (indexed by j) which have initial attractions denoted
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Aj
i (0). Denote i’s jth strategy by sj

i , chosen strategies by i and other players (denoted

−i) in period t as si(t) and s−i(t), and player i’s payoffs of choosing sj
i by πi(s

j
i , s−i(t)).

A logit response rule is used to map attractions into probabilities:

P j
i (t + 1) =

eλ·Aj
i (t)

∑mi
j′=1 eλ·Aj′

i (t)
(2.1)

where λ is the response sensitivity.1 Since CH and LK models are designed to predict

strategic behaviors in only one-shot games, we focus mainly on P j
i (1) (i.e. no learning).

We shall use the same framework for learning models too and the model predictions there

will go beyond one period.

We model thinking by characterizing the number of steps of iterated thinking that

subjects do, their beliefs, and their decision rules.2 Players using zero steps of thinking,

do not reason strategically at all. We think these players are using simple low-effort

heuristics, such as choosing salient strategies (cf. Shah and Oppenheimer, 2008). In

games which are physically displayed (e.g. battlefields) salience might be based on visual

perception (e.g. Itti and Koch, 2000). In games with private information, a strategy

choice that matches an information state might be salient– e.g. bidding one’s value

or signal in an auction). Randomizing among all strategies is also a reasonable step-0

heuristic when no strategy is particularly salient.

Players who do one step of thinking believe they are playing against step 0 types.

Proceeding inductively, players who use k steps think all others use from zero to k − 1

steps. Since they do not imagine same- and higher-step types there is missing probability;

we assume beliefs are normalized to adjust for this missing probability. Denote beliefs

of level-k players about the proportion of step h players by gk(h). In CH, gk(h) =

f(h)/
∑k−1

k′=0 f(k′) for h ≤ k − 1 and gk(h) = 0 for h ≥ k. In LK, gk(k − 1) = 1. The LK

model is easier to work with analytically for complex games.

It is useful to ask why the number of steps of thinking might be limited. One possible

answer comes from psychology. Steps of thinking strain “working memory”, because

higher step players need to keep in mind more and more about what they believe lower

1Note the timing convention– attractions are defined before a period of play; so the initial attractions
Aj

i (0) determine choices in period 1, and so forth.
2This concept was first studied by Stahl and Wilson (1995) and Nagel (1995), and later by Ho,

Camerer and Weigelt (1998).
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steps will do as they form beliefs. Evidence that cognitive ability is correlated with more

thinking steps is consistent with this explanation (Devetag and Warglien, 2008; Camerer,

Chong and Ho, 2004; Gill and Prowse, 2012).

However, it is important to note that making a step k choice does not logically imply

a limit on level of thinking. In CH, players are essentially defined by their beliefs about

others, not by their own cognitive capabilities. For example, a step 2 player believes

others use 0 or 1 steps. It is possible that such players are capable of even higher-step

reasoning (e.g. choosing Nash equilibria) if they thought their opponents were of higher

steps. CH and level-k models are not meant to permit separation of beliefs and “reasoning

skill”, per se (though see Kneeland, 2013 for evidence).

An appealing intuition for why strategic thinking is limited is that players endoge-

neously choose whether to think harder. The logical challenge in such an approach is

this: A player who fully contemplated the benefit from doing one more thinking step

would have to derive the optimal strategy after the additional thinking. Alaoui and

Penta (2013) derive an elegant axiomatization of such a process by assuming that players

compute the benefit from an extra step of thinking based on its maximum payoff. They

also calibrate their approach to data of Goeree and Holt (2001) with some success.

Of course, it is also possible to allow players to change their step k choice. Indeed, Ho

and Su (2013) and Ho et al. (2013) make CH and level-k models dynamic by allowing

players to update their beliefs of other players’ steps of thinking in sequential games. In

their dynamic level-k model, players not only choose rules based on their initial guesses of

others’ steps (like CH and level-k) but also use historical plays to improve their guesses.

Their dynamic level-k model captures two systematic violations of backward induction

in centipede games, limited induction (i.e., people violate backward induction more in

sequential games with longer decision trees) and repetition unraveling (i.e. choices un-

ravel towards backward induction outcomes over time) and explains learning in p-beauty

contests and sequential bargaining games.

The key challenge in thinking steps models is pinning down the frequencies of players

using different numbers of thinking steps. A popular nonparametric approach is to let

f(k) be free parameters for a limited number of steps k; often the three steps 0, 1, and 2

will fit adequately. Instead, we assume those frequencies have a Poisson distribution with

mean and standard deviation τ (the frequency of step k types is f(k) = e−τ τk

k!
). Then τ

is an index of aggregate bounded rationality.
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The Poisson distribution has only one free parameter (τ ); it generates “spikes” in

predicted distributions reflecting individual heterogeneity (some other approaches do not

reflect heterogeneity3); and for typical τ values the Poisson frequency of step types is

roughly similar to estimates of nonparametric frequencies (see Stahl and Wilson (1995);

Ho, Camerer and Weigelt (1998); and Nagel et al., 1999).

Given this assumption, players using k > 0 steps are assumed to compute expected

payoffs given their adjusted beliefs, and use those attractions to determine choice prob-

abilities according to

Aj
i (0|k) =

m−i∑
h=1

πi(s
j
i , s

h
−i) · {

k−1∑
c=0

[
f(c)∑k−1

k′=0 f(c)
· P h

−i(1|k′)]} (2.2)

where Aj
i (0|k) and P l

i (1|k′)) are the attraction of step k in period 0 and the predicted

choice probability of lower step k′ in period 1. Hence, the predicted probability of level

K in period 1 is given by:

P j
i (1|K) =

eλ·Aj
i (0|K)

∑mi
j′=1 eλ·Aj′

i (0|K)
. (2.3)

Next we apply CH to three types of games: dominance-solvable p-beauty contests,

market entry, and LUPI lottery choices. Note that CH and LK have also been applied

to literally hundreds of other games of many structures (including private information)

(see Crawford, et al., 2013).

2.1 P-beauty contest

In a famous passage, Keynes (1936) likens the stock market to a newspaper contest in

which people guess which faces others will judge to be the most beautiful. He writes:

It is not the case of choosing those which, to the best of one’s judgment, are

really the prettiest, nor even those which average opinion genuinely thinks the

3Alternatives include the theory of noisy expectation by Capra (1999) and the closely related theory
of “noisy introspection” by Goeree and Holt (1999b). Both models do not accommodate heterogeneity.
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prettiest. We have reached the third degree, where we devote our intelligences

to anticipating what average opinion expects the average opinion to be. And

there are some, I believe, who practice the fourth, fifth, and higher degrees [p.

156].

The essence of Keynes’s observation is captured in a game in which players are asked

to pick numbers from 0 to 100, and the player whose number is closest to p times the

average number wins a prize. Suppose p = 2/3 (a value used in many experiments).

Equilibrium theory predicts each contestant will reason as follows: “Even if all the other

players guess 100, I should guess no more than 2/3 times 100, or 67. Assuming that the

other contestants reason similarly, however, I should guess no more than 45 . . .” and

so on, finally concluding that the only rational and consistent choice for all the players

is zero. When the beauty contest game is played in experimental settings, the group

average is typically between 20 and 35. Apparently, some players are not able to reason

their way to the equilibrium value, or they assume that others are unlikely to do so. If

the game is played multiple times with the same group, the average moves close to 0.

Table 1 shows data from 24 p-beauty contest games, with various p and conditions.

Estimates of τ for each game were chosen to minimize the (absolute) difference between

the predicted and actual mean of chosen numbers. The table is ordered from top to

bottom by the mean number chosen. The first seven lines show games in which the

equilibrium is not zero; in all the others the equilibrium is zero.4

The first four columns describe the game or subject pool, the source, group size,

and total sample size. The fifth and sixth columns show the Nash equilibrium and the

difference between the equilibrium and the average choice. The middle three columns

show the mean, standard deviation, and the mode in the data. The mean choices are

generally far off from the equibrium; they choose numbers that are too low when the

equilibrium is high (first six rows) and the numbers that are too high when the equibrium

is low (lower rows). The rightmost six columns show the estimate of τ from the Poisson-

CH model, and the mean, prediction error, standard deviation, and mode predicted by

the best-fitting estimate of τ , and the 90 percent confidence interval of τ estimated from

a randomized resampling (bootstap) procedure.

[Insert Table 1 here]

4In games in which the equilibrium is not zero, players are asked to choose a number that is closest
to p times the average number + a nonzero constant.
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There are several interesting patterns in Table 1. The prediction errors of the mean

(column 13, “error”) are extremely small, less than .6 in all but two cases. This is no

surprise since τ is estimated (separately in each row) to minimize this prediction error.

The pleasant surprise is that the predicted standard deviations and the modal number

choices which result from the error-minimizing estimate of τ are also fairly close (across

rows, the correlation of the predicted and actual standard deviation is .72) even though

τ ’s were not chosen to match these moments. The values of τ have a median and mean

across rows of 1.30 and 1.61. The confidence intervals have a range of about one in

samples of reasonable size (50 subjects or more).

Note that nothing in the Poisson-CH model, per se, requires τ to be fixed across games

or subject pools, or across details of how games are presented or choices are elicited.

Outlying low and high values of τ are instructive about how widely τ might vary, and

why. Estimates of τ are quite low (0− .1) for the p-beauty contest game when p > 1 and,

consequently, the equilibrium is at the upper end of the range of possible choices (rows

1-2). In these games, subjects seem to have trouble realizing that they should choose

very large numbers when p > 1 (though they equilibriate rapidly by learning; see Ho,

Camerer, and Weigelt [1998]). Low τ ’s are also estimated among the PCC (Pasadena

City College) subjects playing two- and three-player games (row 8 and 10). High values

of τ (≈ 3-5) appear in games where the equilibrium in the interior, 72 (row 7-10) -

small incremental steps toward the equilibrium in these games produce high values of τ .

High τ values are also estimated in games with an equilibrium of zero when subjects are

professional stock market portfolio managers (row19), Caltech students (row 20), game

theorists (row 24), and subjects self-selecting to enter newspaper contests (row 25). The

latter subject pools show that in high analytical and educated subject pools (especially

with self-selection) τ can be much higher than in other subject pools.

A sensible intuition is that when stakes are higher, subjects will use more steps of

reasoning (and may think others will think harder too). Rows 3 and 6 compare low stakes

($1 per person per period) and high stakes ($4) in games with an interior equilibrium

of 72. When stakes are higher, τ is estimated to be twice as large (5.01 versus 2.51),

which is a clue that some sort of cost-benefit analysis may underlie steps of reasoning

(cf. Alaoui and Penta 2013).

Notwithstanding these interesting outliers, there is also substantial regularity across

very diverse subject pools and payoff steps. About half the samples have confidence

intervals that include τ = 1.5. Subsamples of corporate CEOs, high-functioning 80-year
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old spouses of memory-impaired patients, and high school students (rows 13, 15-16) all

have τ values from 1.1-1.7.

An interesting question about CH modelling is how persistent a player’s thinking step

is across games. The few studies that have looked carefully found fairly stable estimated

steps within a subject across games of similar structure (Stahl and Wilson, 1995; Costa-

Gomes et al., 2001). For example, Chong, Camerer and Ho (2004) estimated separate τ

values for each of 22 one-shot games with mixed-equilibria. An assignment procedure then

chose a most-likely step for each subject and each game (given the 22 τ estimates). For

each subject, an average of their first 11 estimated steps and last 11 estimated steps were

computed. The correlation coefficient of these two average steps was .61. This kind of

within-subject stability is a little lower than many psychometric traits (e.g. intelligence,

extraversion) and is comparable to econographic traits such as risk-aversion.

Two studies looked most carefully at within-subject step stability. Georgiadis, Healy

and Weber (2013) had subjects play variants of two structurally-different games. They

find modest stability of step choices within each game type, and low stability across the

two game types. Hyndman et al. (2013) did the most thorough study; they measured

both choices and beliefs across several baseline payoff-isomorphic games. They find that

30% of subjects appear to maintain a stable type belief (mostly step 1) across games, and

others fluctuate between lower and higher belief between games. These studies bracket

what we should expect to see about stability of step types– i.e. a mixture of stability.

Since nothing in these theories commits to how stable “types” are, this empirical result

is not surprising at all.

Finally, whether subjects maintain a single step type across games is neither predicted

by the theory nor important for most applications. The most basic applications involve

aggregate prediction, and sensitivity of predicted results to comparative static changes

in game structure. It is very rare that the scientific goal is to predict what a specific

subject will do in one game type, based on their behavior in a different game type.

2.2 Market entry games

Consider binary entry games in which there is a market with demand c (expressed as a

percentage of the total number of potential entrants). Each of the many potential entrants

decides simultaneously whether or not to enter the market. If a potential entrant thinks
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that fewer than c% will enter she will enter; if she thinks more than c% will enter she

stays out.

There are three regularities in many experiments based on entry games like this one

(see Ochs, 1999; Seale and Rapoport, 2000; Camerer, 2003, chapter 7): (1) Entry rates

across different levels of demand c are closely correlated with entry rates predicted by

(asymmetric) pure equilibria or symmetric mixed equilibria; (2) players slightly over-

enter at low levels of demand and under-enter at high levels of demand; and (3) many

players use noisy cutoff rules in which they stay out for levels of demand below some

cutoff c∗ and enter for higher levels of demand.

In Camerer, Ho, and Chong (2004), we apply the thinking model with best response

(i.e., λ = ∞) to explain subject behaviors in this game. Step zero players randomize

and enter half the time. This means that when c < .5 one step thinkers stay out and

when c > .5 they enter. Players doing two steps of thinking believe the fraction of zero

steppers is f(0)/(f(0) + f(1)) = 1/(1 + τ ). Therefore, they enter only if c > .5 and

c > .5+τ
1+τ

, or when c < .5 and c > .5
1+τ

. To make this more concrete, suppose τ = 2.

Then two-step thinkers enter when c > 5/6 and 1/6 < c < 0.5. What happens is that

more steps of thinking “iron out” steps in the function relating c to overall entry. In the

example, one-step players are afraid to enter when c < 1/2. But when c is not too low

(between 1/6 and .5) the two-step thinkers perceive room for entry because they believe

the relative proportion of zero-steppers is 1/3 and those players enter half the time.

Two-step thinkers stay out for capacities between .5 and 5/6, but they enter for c > 5/6

because they know half of the (1/3) zero-step types will randomly stay out, leaving room

even though one-step thinkers always enter. Higher steps of thinking smooth out steps

in the entry function even further.

The surprising experimental fact is that players can coordinate entry reasonably well,

even in the first period. (“To a psychologist,” Kahneman (1988) wrote, “this looks like

magic”.) The thinking steps model provides a possible explanation for this magic and

can account for the second and third regularities discussed above for reasonable τ values.

Figure 1 plots entry rates from the first block of two studies for a game similar to the one

above (Sundali et al., 1995; Seale and Rapoport, 2000). Note that the number of actual

entries rises almost monotonically with c, and entry is above capacity at low c and below

capacity at high c.

Figure 1 also shows the thinking steps entry function N(all|τ )(c) for τ = 1.25.
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The function reproduces monotonicity and the over- and under- capacity effects. The

thinking-steps models also produce approximate cutoff rule behavior for all higher think-

ing steps except two. When τ = 1.25, step 0 types randomize, step 1 types enter for all

c above .5, step 2-4 types use cutoff rules with one “exception”, and steps 5-above use

strict cutoff rules. This mixture of random, cutoff and near-cutoff rules is roughly what

is observed in the data when individual patterns of entry across c are measured (e.g.,

Seale and Rapoport, 2000).

[Insert Figure 1 here ]

This example makes a crucial point about the goal and results from CH modelling.

The goal is not (just) to explain nonequilibrium behavior. Another goal is to explain a

lack of nonequilibrium behavior– i.e. when is equilibration remarkably good, even with

no special training or experience, and no opportunities for learning or communication?

Note that in p-beauty contest games, if some players are out of equilibrium then even

sophisticated players will prefer to be out of equilibrium. However, in entry games if

some players over- or under-react to the capacity c then the sophisticated players will

behave oppositely, leading to aggregate near-equilibrium. More generally, in games with

strategic complementarity a little irrationality (e.g. step 0) will be multiplied; in games

with strategic substitutes a little irrationality will be mitigated (Camerer and Fehr, 2006).

2.3 LUPI lottery

A unique field study used a simple lottery played in Sweden by an average of 53783

players per day, over seven weeks (Ostling et al., 2010). Participants in this lottery paid

1 euro to pick an integer from 1 to 99,999. The participant who chose the lowest unique

positive integer won a prize of 10,000 euros (hence, the lottery is called LUPI). Interest-

ingly, solving for the Nash equilibrium for a fixed number of n players is computationally

intractable for large n. However, if the number of players is random and Poisson dis-

tributed across days, then the methods of Poisson games (Myerson, 1998) can be applied.

The symmetric Poisson-Nash equilibrium (PNE) has an elegant simple structure where

n is the mean number of players and pk is the probability of playing integer k. The

symmetric PNE has a striking nonlinear shape: Numbers from 1 to around 5500 are

chosen almost equally often, but with slightly declining probability (i.e., 1 is most likely,

2 is slightly less likely, etc.) (see Figure 2). A bold property of the PNE is that numbers

above 5513– a range that includes 95% of all available numbers– should rarely be chosen.
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[Insert Figure 2 here ]

Figure 3 shows the full distribution of number choices in the first week, along with

the Poisson-Nash equilibrium and a best-fitting quantal CH model (i.e., λ is finite).

Compared to the PNE, players chose too many low numbers, below 2000, and too many

high numbers. As a result, not enough numbers between 2000-5000 are chosen. CH can

fit these deviations from PNE with a value of τ = 1.80, which is close to estimates from

many experimental games. Intuitively, step 1 players choose low numbers because they

think step 0 randomizers will pick too many high numbers, step 2 numbers choose above

the step 1 choices, and so on.

[Insert Figure 3 here ]

Despite that CH can explain the deviations of the number choices in LUPI lottery,

the actual behavior is not far from the PNE prediction in general, given how precisely

bold the predicted distribution is. Recall that PNE predicts only numbers below 5513

will be played– excluding about 95% of the strategies– and overall, 93.3% of the numbers

are indeed below that threshold. Furthermore, over seven weeks almost every statistical

feature of the empirical distribution of numbers moved toward the PNE. For example,

PNE predicts the average number will be 2595. The actual averages were 4512 in the first

week and 2484 in the last week (within 4% of the prediction). A scaled-down laboratory

version of LUPI also replicated these basic patterns.

2.4 Summary

Simple models of thinking steps attempt to predict choices in one-shot games and provide

initial conditions for learning models. CH and level-k approaches incorporate discrete

steps of iterated thinking. In Poisson-CH, the frequencies of players using different num-

bers of steps is Poisson-distributed with mean τ . While these models have been applied

to hundreds of experimental data sets, and several field settings, in this chapter we fo-

cussed on data from dominance-solvable p-beauty contests, market entry, a LUPI field

lottery, and a private-information auction (See Section 3). For Poisson-CH, estimates of

τ are typically around 1-2. Importantly, CH can typically explain large deviations from

equilibrium and surprising cases in which equilibration occurs without communication

or experience (in entry games).
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3 Quantal response equilibrium

The CH and LK models explain nonequilibrium behavior by mistakes in beliefs about

what other subjects will do, due to bounded rationality in strategic thinking. A different

approach is to assume that beliefs are accurate, but responses are noisy. This approach

is called quantal response equilibrium (QRE) (McKelvey and Palfrey, 1995). QRE re-

laxes the assumption that players always choose the best actions given their beliefs by

incorporating “noisy” or ”stochastic” response. The theory builds in a sensible principle

that actions with higher expected payoffs are chosen more often; that is, players “better-

respond” rather than “best-respond”. If the response function is logit, QRE is defined

by

Aj
i (0|K) =

m−i∑
h=1

πi(s
j
i , s

h
−i) · P h

−i(1)

P j
i (1) =

eλ·Aj
i (0)

∑mi
h=1 eλ·Ah

i (0)
(3.1)

Mathematically, the QRE nests Nash equilibrium as a special case. Specifically, when

the noise parameter λ goes to infinity, QRE converges to Nash equilibrium.

The errors in the players’ QRE best-response functions are usually interpreted as

decision errors in the face of complex situations or as unobserved latent disturbances to

the players’ payoffs (i.e., the players are optimizing given their payoffs, but there is a

component of their payoffs that only they understand). In other words, the relationship

between QRE and Nash equilibrium is analogous to the relationship between stochastic

choice and deterministic choice models. Note that QRE is different from trembling hand

perfect equilibrium in that the noise parameter λ in QRE is part of the equilibrating

process and players use it to determine an action’s expected payoff as well as its choice

probability.

QRE has been used successfully in many applications to explain deviations from Nash

equilibrium in games (Rosenthal, 1981; McKelvey and Palfrey, 1995a,b; Goeree and Holt,

2001).5 The key feature of the approach is that small mistakes can occur, but if a small

5To use QRE to predict behaviors ex ante, one must know the noise parameter (λ). This can be
accomplished by first estimating λ in a similar game. Previous studies appear to show that λ does vary
from game to game. Hence, an open research question is to develop a theory that maps features of a
game to the value of λ so that one can then use QRE to predict behavior in any new game.
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mistake by player i has a large impact on player j, QRE prediction can be far from Nash

equilibrium. QRE can also be used as a tool to check robustness in designing institutions

or predicting how structural changes will change behavior.

3.1 Asymmetric Hide-and-Seek Game

Let’s see how QRE can improve equilibrium prediction by considering a game with an

unique mixed-strategy equilibrium (See Table 2 for its payoff matrix). The Row Player’s

strategy space consists of actions A1 and A2, while the Column player’s chooses between

B1 and B2. The game is a model of “hide-and-seek” in which one player wants to match

another player’s numerical choice (e.g., A1 responding to B1), and another player wants to

mismatch (e.g., B1 responding to A2). The row player earns either 9 or 1 from matching

on (A1, B1) or (A2, B2) respectively. The column player earns 1 from mismatching on

(A1, B2) or (A2, B1).

[Insert Table 2 Here ]

The empirical frequencies of each of the possible actions, averaged across many periods

of an experiment conducted on this game, are also shown in Table 2 (McKelvey and

Palfrey, 1995). What is the Nash equilibrium prediction for this game? We start by

observing that there is no pure-strategy Nash equilibrium for this game so we look for a

mixed-strategy Nash equilibrium. Let us suppose that the Row player chooses A1 with

probability p and A2 with probability 1 − p, and the Column player chooses B1 with

probability q and B2 with probability 1− q. In a mixed-strategy equilibrium, the players

actually play a probabilistic mixture of the two strategies. If their valuation of outcomes

is consistent with expected utility theory, they only prefer playing a mixture if they are

indifferent between each of their pure strategies. This property gives a way to compute

the equilibrium mixture probabilities p and q. The mixed-strategy Nash equilibrium for

this game turns out to be [(.5A1, .5A2), (.1B1, .9B2)]. Comparing this with the empirical

frequencies, we find that Nash prediction is close to actual behavior by the Row players,

whereas it under-predicts the choice of B1 for the Column players.

If one player plays a strategy that deviates from the prescribed equilibrium strategy,

then according to the optimization assumption in Nash equilibrium, the other player

must best-respond and deviate from Nash equilibrium as well. In this case, even though

the predicted Nash equilibrium and actual empirical frequencies almost coincide for the
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Row player, the players are not playing a Nash equilibrium jointly, because the Row

player should have played differently given that the Column player has deviated quite

far from the mixed-strategy Nash equilibrium (playing B1 33% of the time rather than

10%).

We now illustrate how to derive the QRE for a given value of λ in this game. Again,

suppose the Row player chooses A1 with probability p and A2 with probability 1 − p,

while the Column player chooses B1 with probability q and B2 with probability 1 − q.

Then the expected payoffs from playing A1 and A2 are q ∗ 9 + (1 − q) ∗ 0 = 9q and

q ∗ 0 + (1− q) ∗ 1 = 1− q respectively. Therefore we have p = eλ·9q

eλ·9q+eλ·(1−q) . Similarly, the

expected payoffs to B1 and B2 for the Column player are 1− p and p respectively, so we

have q = eλ·(1−p)

eλ·(1−p)+eλ·p . Notice that q is on the right hand side of the first equation, which

determines p, and p is on the right hand side of the second equation, which determines

q. For any value of λ, there is only one pair of (p, q) values that solves the simultaneous

equations and yields a QRE. If λ = 2, for example, the QRE predictions are p∗ = .646

and q∗ = .343 which are closer to the empirical frequencies than the Nash equilibrium

predictions are. If λ = ∞, the QRE predictions are p∗ = .5 and q∗ = .1, which are

identical to Nash equilibrium predictions.

Using the actual data, a precise value of λ can be estimated using maximum-likelihood

methods. The estimated λ for the QRE model for the asymmetric “hide-and-seek” game

is 1.95. The negative of the log likelihood of QRE (an overall measure of goodness of fit)

is 1721, a substantial improvement over a random model benchmark (p = q = .5) which

has a fit of 1774. The Nash equilibrium prediction has a fit of 1938, which is worse than

random (because of the extreme prediction of q = .1).

3.2 Maximum Value Auction

We describe a private-information auction which illustrates another application of QRE.

In the maximum-value second price auction, two players observe private integer signals

x1 and x2 drawn independently from a commonly known distribution in the interval

[0,10] (Bulow and Klemperer, 2002; Carrillo and Palfrey, 2011). They bid for an object

which has a common value equal to the maximum of those two signals, max(x1, x2). The

highest bidder wins the auction and pays a price equal to the second-highest bid.

How should you bid? Bidding less than your signal is a mistake because your bid
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just determines whether you win, not what you pay; so bidding less never saves money.

In fact, you might miss a chance to win at a price below the object’s value if you bid

too low and get outbid, so underbidding is weakly dominated. Second, bidding above

your signal could be a mistake: If the other bidder is also overbidding, either of you may

get stuck overpaying for an item with a low maximum-value. In the unique symmetric

(weak) Bayesian-Nash equilibrium, therefore, players simply bid their values. In fact,

the symmetric equilibrium where both players bid their signal can be solved for with two

rounds of elimination of weakly dominated strategies.

Note that the unique symmetric Bayesian-Nash equilibrium in which bidders bid their

signals, but the equilibrium is weak; indeed it is just about as weak as an equilibrium

can possibly be. If the other bidder is bidding according to the Nash equilibrium, i.e.,

bidding their signals, then every bid greater than or equal to your signal is a (weak) best

response to Nash equilibrium.

Quantal response equilibria (QRE) impose the assumption that beliefs about choices

of other players are accurate, but allow imperfect (noisy) response. A natural conjecture

is that (symmetric) regular quantal response equilibria (Goeree, Holt and Palfrey (2005))

in these auctions will typically entail frequent overbidding, because bidding a little too

high is a very small mistake.

In these experiments (Ivanov, Levin, Niederle, 2010) subjects first participated in

11 independent auctions, once for each private signal 0-10, with no feedback. For each

possible value, the rectangles in Figures 4ab show the median bid (thick horizontal line),

and the vertical boundaries of the rectangle are the first and third quartiles. The main

result is that there is substantial overbidding which has a “hockey stick” shape: Bids

when signals are below $5 are around $4 - $5 and do not change much as the signal

increases. Bids when signals are above $5 are a little above the signals, and increase as

signals increase. The Bayesian-Nash equilibrium (BNE) is just to bid the signal value

(shown by a dotted 45-degree line). To fit the data, hierarchical QRE (HQRE) and

CH-QR (with quantal response and only levels 0-2) were first fit to the bidding data

from phase I. Those best-fitting parameters were then used to predict bids in phase II.

Note that HQRE and CH-QR make probabilistic predictions– that is, they predict the

distribution of likely bids given each signal. The predictions are therefore represented

by a dot for the predicted median and small x’s and +s for the first and third quartiles.

Visually, a good fit is indicated if, for each signal, the dot is near the horizontal line and

the x’s and +s are near the rectangle boundaries.
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Both models do a reasonable job of picking up the major regularity in how bids

deviation from BNE, which is the hockey stick pattern. However, HQRE predicts bids

which are a little too low (including a substantial rate of underbidding). CH-QR fits

very nicely, except at the highest signals $8-10, where it predicts too many high bids.

In this case, the essential feature of QRE approaches is that small mistakes are ex-

pected to occur, but can predict bids far from BNE. Since low signal values are unlikely

to determine the object’s value (the other signal is likely to be the maximum), there is

only a small loss from bidding too high on low signals. However, with high signals the

bidder’s own signal is likely to be the maximum, so overbidding is a bigger mistake and

should be less common. These two intuitions generate the hockey stick shape that is

evident in the data.

This example illustrates how different best-response equilibrium analysis can be from

either CH or QRE. Curiously, Ivanov et al. conclude from their data that “Overall, our

study casts a serious doubt on theories that posit the WC [winner’s curse] is driven by

beliefs [i.e. by CH and cursed equilibrium].”(p. 1435) However, as Figure 4b shows, the

nonequilibrium belief theory CH fits the data quite well.

[Insert Figures 4a-b]

Finally, recall the LUPI lottery game described previously, in which the player with

a lowest unique positive integer wins a fixed prize. It happens that LUPI is well suited

for distinguishing CH and QRE approaches. For LUPI games with a small number of

players, for which both QRE and CH can be solved numerically, the QRE distribution

approaches NE from below, while the CH distribution predicts more low number choices

than NE. Thus, QRE cannot explain the large number of low number choices occuring

in the data, as CH can.

However, in a comparison of several other games, we have typically found that QRE

and CH make about equally accurate predictions (e.g. Rogers, Palfrey, Camerer, 2009).

Moinas and Pouget (2013) use a remarkable bubble investment game to carefully compare

models and find good fit from a heterogeneous form of QRE. A careful meta-analysis by

Wright and Leyton-Brown (2013) shows that Poisson-CH generally fits a little better

than other versions (given its parsimony) and all limited-thinking approaches do better

than equilibrium in predicting behavior.
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4 Learning

By the mid-1990s, it was well-established that simple models of learning could explain

some movements in choice over time in specific game and choice contexts.6 The challenge

taken up since then is to see how well a specific parametric model can account for finer

details of the equilibration process in a wide range of classes of games.

This section describes a one-parameter theory of learning in decisions and games

called functional EWA (or fEWA for short; also called “EWA Lite” to emphasize its

‘low-calorie’ parsimony) (Ho, et al., 2007). fEWA predicts the time path of individual

behavior in any normal-form game given the initial conditions. Initial conditions can be

imposed or estimated in various ways. We use the CH model described in the previous

section to specify the initial conditions. The goal is to predict both initial conditions and

equilibration in new games in which behavior has never been observed, with minimal free

parameters (the model uses two, τ and λ).

4.1 Parametric EWA learning: Interpretation, uses and limits

fEWA is a relative of a parametric model of learning called experience-weighted attrac-

tion (EWA) (Camerer and Ho, 1998; 1999). As in most theories, learning in EWA is

characterized by changes in (unobserved) attractions based on experience. Attractions

determine the probabilities of choosing different strategies through a logistic response

function. For player i, there are mi strategies (indexed by j) which have initial attrac-

tions denoted Aj
i (0). The best-response CH model is used to generate initial attractions

given parameter value τ .

Denote i’s j’th strategy by sj
i , chosen strategies by i and other players (denoted −i)

by si(t) and s−i(t), and player i’s payoffs by πi(s
j
i , s−i(t)).

7 Define an indicator function

I(x, y) to be zero if x �= y and one if x = y. The EWA attraction updating equation is

6To name only a few examples, see Camerer (1987) (partial adjustment models); Smith, Suchanek
and Williams (1988) and Camerer and Weigelt (1993) (Walrasian excess demand); McAllister (1991)
(reinforcement); Roth and Erev (1995) (reinforcement); Ho and Weigelt (1996) (reinforcement and belief
learning); Cachon and Camerer (1996) (Cournot dynamics).

7To avoid complications with negative payoffs, we rescale payoffs by subtracting them by the minimum
payoff so that rescale payoffs are always weakly positive.



19

Aj
i(t) =

φN(t− 1)Aj
i (t − 1) + [δ + (1 − δ)I(sj

i , si(t))]πi(s
j
i , s−i(t))

N(t − 1)φ(1 − κ) + 1
(4.1)

and the experience weight (the “EW” part) is updated according to N(t) = N(t−1)φ(1−
κ) + 1.

Notice that the term [δ +(1− δ)I(sj
i, si(t))] implies that a weight of one is put on the

payoff term when the strategy being reinforced is the one the player chose (sj
i = si(t)),

but the weight on foregone payoffs from unchosen strategies (sj
i �= si(t)) is δ.

Attractions are mapped into choice probabilities using a logit response function given

by:

P j
i (t + 1) =

eλ·Aj
i (t)

∑mi
k=1 eλ·Ak

i (t)
(4.2)

where λ is the response sensitivity.8 The subscript i, superscript j, and argument t + 1

in P j
i (t + 1) are reminders that the model aims to explain every choice by every subject

in every period.9

Each EWA parameter has a natural interpretation:

• The parameter δ is the weight placed on foregone payoffs. It presumably is affected

by imagination (in psychological terms, the strength of counterfactual reasoning or

regret, or in economic terms, the weight placed on opportunity costs and benefits)

or reliability of information about foregone payoffs.

• The parameter φ decays previous attractions due to forgetting or, more interest-

ingly, because agents are aware that the learning environment is changing and de-

liberately “retire” old information (much as firms junk old equipment more quickly

when technology changes rapidly).

8Note that we can use the same parameter λ in both equations (2.3) and (4.2). The parameter maps
attractions into probabilities.

9Other models aim to explain aggregated choices at the population level. Of course, models of this sort
can sometimes be useful. But our view is that a parsimonious model which can explain very fine-grained
data can probably explain aggregated data well too.
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• The parameter κ controls the rate at which attractions grow. When κ = 0 attrac-

tions are weighted averages and grow slowly; when κ = 1 attractions cumulate. We

originally included this variable because some learning rules used cumulation and

others used averaging. It is also a rough way to capture the distinction in machine

learning between “exploring” an environment (low κ), and “exploiting” what is

known by locking in to a good strategy (high κ) (e.g., Sutton and Barto, 1998).

• The initial experience weight N(0) is like a strength of prior beliefs in models of

Bayesian belief learning. It plays a minimal empirical role so it is set to one in our

current work.

EWA is a hybrid of two widely-studied models, reinforcement and belief learning. In

reinforcement learning, only payoffs from chosen strategies are used to update attractions

and guide learning. In belief learning, players do not learn about which strategies work

best; they learn about what others are likely to do, then use those updated beliefs

to change their attractions and hence what strategies they choose (see Brown, 1951;

Fudenberg and Levine, 1998). EWA shows that reinforcement and belief learning, which

were often treated as fundamentally different, are actually related in a non-obvious way,

because both are special kinds of a general reinforcement rule.10 When δ = 0 the EWA

rule is a simple reinforcement rule11. When δ = 1 and κ = 0 the EWA rule is equivalent

to belief learning using weighted fictitious play.12

Foregone payoffs are the fuel that runs EWA learning. They also provide an indirect

link to “direction learning” and imitation. In direction learning players move in the direc-

tion of observed best response (Selten and Stöecker, 1986). Suppose players follow EWA

but don’t know foregone payoffs, and believe those payoffs are monotonically increasing

between their choice si(t) and the best response. If they also reinforce strategies near

their choice si(t) more strongly than strategies that are further away, their behavior will

look like direction learning. Imitating a player who is similar and successful can also be

10See also Cheung and Friedman, 1997, pp. 54-55; Fudenberg and Levine, 1998, pp. 184-185; and Ed
Hopkins, 2002.

11See Bush and Mosteller, 1955; Harley, 1981; Cross, 1983; Arthur, 1991; McAllister, 1991; Roth and
Erev, 1995; Erev and Roth, 1998.

12When updated fictitious play beliefs are used to update the expected payoffs of strategies, precisely
the same updating is achieved by reinforcing all strategies by their payoffs (whether received or foregone).
The beliefs themselves are an epiphenomenon that disappear when the updating equation is written
expected payoffs rather than beliefs.
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seen as a way of heuristically inferring high foregone payoffs from an observed choice and

moving in the direction of those higher payoffs.

The relation of various learning rules can be shown visually in a cube showing con-

figurations of parameter values (see Figure 5). Each point in the cube is a triple of EWA

parameter values which specifies a precise updating equation. The corner of the cube

with φ = κ = 0, δ = 1, is Cournot best-response dynamics. The corner κ = 0, φ = δ = 1,

is standard fictitious play. The vertex connecting these corners, δ = 1, κ = 0, is the class

of weighted fictitious play rules (e.g., Fudenberg and Levine, 1998). The vertices with

δ = 0 and κ = 0 or 1 are averaging and cumulative choice reinforcement rules (Roth and

Erev, 1995; and Erev and Roth, 1998).

[Insert Figure 5]

The EWA model has been estimated by ourselves and many others on about 40 data

sets (see Camerer, Hsia, and Ho, 2002). The hybrid EWA model predicts more accurately

than the special cases of reinforcement and weighted fictitious in most cases, except in

games with mixed-strategy equilibrium where reinforcement does equally well.13 In our

model estimation and validation, we always penalize the EWA model in ways that are

known to make the adjusted fit worse if a model is too complex (i.e., if the data are

actually generated by a simpler model).14 Furthermore, econometric studies show that if

the data were generated by simpler belief or reinforcement models, then EWA estimates

would correctly identify that fact for most games and reasonable sample sizes (see Salmon,

2001; Cabrales and Garcia-Fontes, 2000). Since EWA is capable of identifying behavior

consistent with special cases, when it does not then the hybrid parameter values are

improving fit.

Figure 5 also shows estimated parameter triples from twenty data sets. Each point

is an estimate from a different game. If one of the special case theories is a good ap-

proximation to how people generally behave across games, estimated parameters should

cluster in the corner or vertex corresponding to that theory. In fact, parameters tend to

be sprinkled around the cube, although many (typically mixed-equilibrium games) clus-

13In mixed games no model improves much on Nash equilibrium (and often don’t improve on quantal
response equilibrium at all), and parameter identification is poor; see Salmon, 2001)

14We typically penalize in-sample likelihood functions using the Akaike and Bayesian information
criteria, which subtract a penalty of one, or log(n), times the number of degrees of freedom from the
maximized likelihood. More persuasively, we rely mostly on out-of-sample forecasts which will be less
accurate if a more complex model simply appears to fit better because it overfits in-sample.
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ter in the averaged reinforcement corner with low δ and κ. The dispersion of estimates

in the cube raises an important question: Is there regularity in which games generate

which parameter estimates? A positive answer to this question is crucial for predicting

behavior in brand new games.

4.2 fEWA Functions

This concern is addressed by a version of EWA, fEWA, which replaces free parameters

with specific values and functions that are then used in the EWA updating equation to

determine attractions, which then determine choices probabilistically. Since the functions

also vary across subjects and over time, they have the potential to inject heterogeneity

and time-varying “rule learning”, and to explain learning better than models with fixed

parameter values across people and time. And since fEWA has only one parameter

which must be estimated (λ)15, it is especially helpful when learning models are used as

building blocks for more complex models that incorporate sophistication (some players

think others learn) and teaching, as we discuss in the section below.

As shown in Figure 5, the front face of the cube (κ = 0) captures almost all familiar

special cases except for the cumulative reinforcement model. The cumulative model has

been supplanted by the averaging model (with κ = 0) because the latter seems to be more

robust in predicting behavior in some games (See Roth and Erev, 1995). This sub-class

of EWA learning models is the simplest model that nests averaging reinforcement and

weighted ficititous play (and hence Cournot and simple fictitious play) as special cases. It

can also capture a weighted fictitious play model using time-varying belief weights (such

as the stated-beliefs model explored by Nyarko and Schotter, 2002), as long as subjects

are allowed to use a different weight to decay lagged attractions over time (i.e., move

along the top edge of the side in Figure 5). There is also an empirical reason to set κ

to a particular value. Our prior work suggests that κ does not seem to affect fit much

(e.g., Ho, Wang and Camerer, 2008). The initial experience N(0) was included in the

original EWA model so that Bayesian learning models are nested as a special case– N(0)

represents the strength of prior beliefs. We restrict N(0) = 1 here because its influence

fades rapidly as an experiment progresses and most subjects come to experiments with

weak priors anyway.

15Note that if your statistical objective is to maximize hit rate, λ does not matter and so fEWA is a
zero-parameter theory given initial conditions.
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Consequently, we are left with three free parameters– φ, δ, and λ. To make the model

simple to estimate statistically, and self-tuning, the parameters φ and δ are replaced

by deterministic functions φi(t) and δij(t) of player i’s experience with strategy j, up to

period t. These functions determine numerical parameter values for each player, strategy,

and period, which are then plugged into the EWA updating equation above to determine

attractions in each period. Updated attractions determine choice probabilities according

to the logit rule, given a value of λ. Standard maximum-likelihood methods for optimizing

fit can then be used to find which λ fits best.16

4.2.1 The change-detector function φi(t)

The decay rate φ which weights lagged attractions is sometimes called “forgetting” (an

interpretation which is carried over from reinforcement models of animal learning). While

forgetting obviously does occur, the more interesting variation in φi(t) across games,

and across time within a game, is a player’s perception of how quickly the learning

environment is changing. The function φi(t) should therefore “detect change”. When a

player senses that other players are changing, a self-tuning φi(t) should dip down, putting

less weight on distant experience. As in physical change detectors (e.g., security systems

or smoke alarms), the challenge is to detect change when it is really occurring, but not

falsely mistake small fluctuations for real changes too often.

The core of the φi(t) change-detector function is a “surprise index”, which is the dif-

ference between other players’ most recently chosen strategies and their chosen strategies

in all previous periods. First define a cumulative history vector, across the other players’

strategies k, which records the historical frequencies (including the last period t) of the

choices by other players. The vector element hk
i (t) is

∑t

τ=1
I(sk

−i,s−i(τ ))

t
.17 The immediate

‘history’ rk
i (t) is a vector of 0’s and 1’s which has a one for strategy sk

−i = s−i(t) and 0’s

for all other strategies sk
−i (i.e., rk

i (t) = I(sk
−i, s−i(t))). The surprise index Si(t) simply

sums up the squared deviations between the cumulative history vector hk
i (t) and the

16If one is interested only in the hit rate– the frequency with which the predicted choice is the same
as what a player actually picked– then it is not necessary to estimate λ. The strategy that has the
highest attraction will be the predicted choice. The response sensitivity λ only dictates how frequently
the highest-attraction choice is actually picked, which is irrelevant if the statistical criterion is hit rate.

17Note that if there is more than one other player, and the distinct choices by different other player’s
matter to player i, then the vector is an n − 1- dimensional matrix if there are n players.
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immediate history vector rk
i (t); that is,

Si(t) =
m−i∑
k=1

(hk
i (t)− rk

i (t))2. (4.3)

In other words, the surprise index captures the degree of change of the most recent

observation18 from the historical average. Note that it varies from zero (when the last

strategy the other player chose is the one they have always chosen before) to two (when

the other player chose a particular strategy ‘forever’ and suddenly switches to something

brand new). When surprise index is zero, we have a stationary environment; when it is

two, we have a turbulent environment. The change-detecting decay rate is:

φi(t) = 1 − 1

2
· Si(t). (4.4)

Because Si(t) is between zero and two, φ is always (weakly) between one and zero.

Some numerical boundary cases help illuminate how the change-detection works. If

the other player chooses the strategy she has always chosen before, then Si(t) = 0 (player

i is not surprised) and φi(t) = 1 (player i does not decay the lagged attraction at all,

since what other players did throughout is informative). The opposite case is when an

opponent has previously chosen a single strategy in every period, and suddenly switches

to a new strategy. In that case, φi(t) is 2t−1
t2

. This expression declines gracefully toward

zero as the string of identical choices up to period t grows longer. (For t = 2, 3, 5

and 10 the φi(t) values are .75, .56, .36, and .19.) The fact that the φ values decline

with t expresses the principle that a new choice is bigger surprise (and should have an

associated lower φ) if it follows a longer string of identical choices which are different

from the surprising new choice. Note that since the observed behavior in period t is

included in the cumulative history hk
i (t), φi(t) will never dip completely to zero. (which

could be a mistake because it erases all the history embodied in the lagged attraction).

For example, if a player chose the same strategy for each of 19 periods and a new strategy

in period 20, then φi(t) = 39/400 = .0975.

Another interesting special case is when unique strategies have been played in every

period up to t − 1, and another unique strategy is played in period t. (This is often

18In games with mixed equilibria (and no pure equilibria), a player should expect other players’
strategies to vary. Therefore, if the game has a mixed equilibrium with W strategies which are
played with positive probability, the surprise index defines recent history over a window of the last
W periods (e.g., in a game with four strategies that are played in equilibrium, W = 4). Then

rk
i (t) =

∑m−i

k=1 [
∑t

τ=t−W +1
I(sk

−i,s−i(τ))

W ].
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true in games with large strategy spaces.) Then φi(t) = .5 + 1
2t

, which starts at .75 and

asymptotes at .5 as t increases. Comparing the case where the previous strategy was the

same, and the previous strategies were all different, it is evident that if the choice in period

t is new, the value of φi(t) is higher if there were more variation in previous choices, and

lower if there were less variation. This mimicks a hypothesis-testing approach in which

more variation in previous strategies implies that players are less likely to conclude there

has been a regime shift, and therefore do not lower the value of φi(t) too much.

Note that the change-detector function φi(t) is individual and time specific and it

depends on information feedback. Nyarko and Schotter (2002) show that a weighted

fictitious play model that uses stated beliefs (instead of empirical beliefs posited by the

fictitious play rule) can predict behavior better than the original EWA model in games

with unique mixed-strategy equilibrium. One way to intrepret their result is that their

model allows each subject to attach a different weight to previous experiences over time.

In the same vein, the proposed change-detector function allows for individual and time

heterogeneity by positing them theoretically.

4.2.2 The attention function, δij(t)

The parameter δ is the weight on foregone payoffs. Presumably this is tied to the attention

subjects pay to alternative payoffs, ex-post. Subjects who have limited attention are

likely to focus on strategies that would have given higher payoffs than what was actually

received, because these strategies present missed opportunities, which show that such a

regret-driven rule converges to correlated equilibrium (Hart and Mas-Colell, 2001). To

capture this property, define19

δij(t) =

⎧
⎨
⎩

1 if πi(s
j
i , s−i(t)) ≥ πi(t),

0 otherwise.
(4.5)

That is, subjects reinforce chosen strategies and all unchosen strategies with (weakly)

better payoffs by a weight of one. They reinforce unchosen strategies with strictly worse

payoffs by zero.

19In games with unique mixed-strategy equilibrium, we use δij(t) = 1
W

if πi(sj
i , s−i(t)) ≥ πi(t) and 0

otherwise. This modification is driven by the empirical observation that estimated δ’s are often close to
zero in mixed games (which might also be due to misspecified heterogeneity). Using only δij(t) without
this adjustment produces slightly worse fits in the two mixed-equilibrium games examined below where
the adjustment matters (patent-rate games and the Mookerjhee-Sopher games).
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Note that this δij(t) can transform the self-tuning rule into special cases over time.

If subjects are strictly best-responding (ex post), then no other strategies have a higher

ex-post payoff. Hence δij(t) = 0 for all strategies j which were not chosen, reducing

the model to choice reinforcement. However if they always choose the worst strategy,

then δij(t) = 1, which corresponds to weighted fictitious play. If subjects neither choose

the best nor the worst strategy, the updating scheme will push them (probabilistically)

towards those strategies that yield better payoffs, as is both characteristic of human

learning and normatively sensible.

The updating rule is a natural way to formalize and extend the “learning direction”

theory of Selten and Stöecker, 1986. Their theory consists of an appealing property of

learning: Subject move in the direction of ex-post best-response. Broad applicability of

the theory has been hindered by defining “direction” only in terms of numerical properties

of ordered strategies (e.g., choosing ‘higher prices’ if the ex-post best response is a higher

price than the chosen price). The self-tuning δij(t) defines the “direction” of learning

set-theoretically, as shifting probability toward the set of strategies with higher payoffs

than the chosen ones.

The self-tuning δij(t) also creates the “exploration-exploitation” shift in machine

learning (familiar to economists from multi-armed bandit problems). In low-information

environments, it makes sense to explore a wide range of strategies, then gradually lock in

to a choice with a good historical relative payoffs. In self-tuning EWA, if subjects start

out with a poor choice, many unchosen strategies will be reinforced by their (higher)

foregone payoffs, which shifts choice probability to those choices and captures why sub-

jects “explore”. As equilibration occurs, only the chosen strategy will be reinforced,

thereby producing an “exploitation” or “lock-in”. This is behaviorally very plausible.

The updating scheme also helps to detect any change in environment. If a previously

optimal response becomes inferior because of an exogenous change, other strategies will

have higher ex-post payoffs, triggering higher δij(t) values (and reinforcement of superior

payoffs) and guiding players to re-explore better strategies.

The self-tuning δij(t) function can also be seen as a reasonable all-purpose rule which

conserves a scarce cognitive resource– attention. The parametric EWA model shows that

weighted fictitious play is equivalent to generalized reinforcement in which all strategies

are reinforced. But reinforcing many strategies takes attention. As equilibration occurs,

the set of strategies which receive positive δij(t) weights shrinks so attention is conserved

when spreading attention widely is no longer useful. When an opponent’s play changes
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suddenly, the self-tuning φi(t) value drops. This change reduces attractions (since lagged

attractions are strongly decayed) and spreads choice probability over a wider range of

strategies due to the logit response rule. This implies that the strategy chosen may

no longer be optimal, leading δij(t) to allocate attention over a wider range of better-

responses. Thus, the self-tuning system can be seen as procedurally rational (in Herbert

Simon’s language) because it follows a precise algorithm and is designed to express the

basic features of how people learn– by exploring a wide range of options, locking in when

a good strategy is found, but re-allocating attention when environmental change demands

such action.

A theorist’s instinct is to derive conditions when flexible learning rules choose pa-

rameters optimally, which is certainly a direction to explore in future research. However,

broadly-optimal rules will likely depend on the set of games an all-purpose learning agent

encounters, and also may depend sensitively on how cognitive costs are specified (and

should also jibe with data on the details of neural mechanisms, which are not yet well-

understood). So it is unlikely to find a universally optimal rule that can always beat

rules which adapt locally.

Our approach is more like the exploratory work in machine learning. Machine learning

theorists try to develop robust heuristic algorithms which learn effectively in a wide

variety of low-information environments. Good machine learning rules are not provably

optimal but perform well on tricky test cases and natural problems like those which

good computerized robots need to perform (navigating around obstacles, hill-climbing

on rugged landscapes, difficult pattern recognition, and so forth).

Before proceeding to estimation, it is useful to summarize the properties of the self-

tuning model. First, the use of simple fictitious play and reinforcement theories in em-

pirical analysis is often justified by the fact that they have only a few free parameters.

The self-tuning EWA is useful by this criterion because it requires estimating only one

parameter, λ (which is difficult to do without in empirical work). Second, the functions

in self-tuning EWA naturally vary across time, people, games, and strategies. The po-

tential advantage of this flexibility is that the model can predict across new games better

than parametric methods. Whether this advantage is realized will be examined below.

Third, the self-tuning parameters can endogenously shift across rules. Early in a game,

when opponent choices vary a lot and players are likely to make ex-post mistakes, the

model automatically generates low values of φi(t) and high δij(t) weights– it resembles

Cournot belief learning. As equilibration occurs and behavior of other players stabilizes,
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φi(t) rises and δij(t) falls– it resembles reinforcement learning. The model therefore keeps

a short window of history (low φ) and pays a lot of attention (high δ) when it should,

early in a game, and conserves those cognitive resources by remembering more (high φ)

and attending to fewer foregone strategies (low δ) when it can afford to, as equilibration

occurs.

fEWA has three advantages. First, it is easy to use because it has only one free

parameter (λ). Second, parameters in fEWA naturally vary across time and people (as

well as across games), which can capture heterogeneity and mimic “rule learning” in which

parameters vary over time (e.g., Stahl, 1996, 2000, and Salmon, 1999). For example, if φ

rises across periods from 0 to 1 as other players stabilize, players are effectively switching

from Cournot-type dynamics to fictitious play. If δ rises from 0 to 1, players are effectively

switching from reinforcement to belief learning. Third, it should be easier to theorize

about the limiting behavior of fEWA than about some parametric models. A key feature

of fEWA is that as a player’s opponents’ behavior stabilizes, φi(t) goes toward one and

(in games with pure equilibria) δi(t) does too. Since κ = 0, fEWA automatically turns

into fictitious play; and a lot is known about theoretical properties of fictitious play.

4.3 fEWA predictions

In this section we compare in-sample fit and out-of-sample predictive accuracy of dif-

ferent learning models when parameters are freely estimated, and check whether fEWA

functions can produce game-specific parameters similar to estimated values. We use

seven games: Games with unique mixed strategy equilibrium (Mookerjhee and Sopher,

1997); R&D patent race games (Rapoport and Amaldoss, 2000); a median-action order

statistic coordination game with several players (Van Huyck, Battalio, and Beil, 1991);

a continental-divide coordination game, in which convergence behavior is extremely sen-

sitive to initial conditions (Van Huyck, Cook, and Battalio, 1997); dominance-solvable

p-beauty contests (Ho, Camerer, and Weigelt, 1998); and a price-matching game (called

“travellers’ dilemma” by Capra, Goeree, Gomez and Holt, 1999).

The estimation procedure for fEWA is sketched briefly here (see Ho, Camerer, and

Chong, 2007 for details). Consider a game where N subjects play T rounds. For a given

player i, the likelihood function of observing a choice history of {si(1), si(2), . . . , si(T −
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1), si(T )} is given by:

ΠT
t=1P

si(t)
i (t) (4.6)

The joint likelihood function L of observing all players’ choice is given by

L(λ) = ΠN
i [ ΠT

t=1P
si(t)
i (t) ] (4.7)

Most models use first-period data to determine initial attractions. We also compare all

models with burned-in attractions with a model in which the thinking steps model from

the previous section is used to create initial conditions and combined with fEWA. Note

that the latter hybrid uses only two parameters (τ and λ) and does not use first-period

data at all.

Given the initial attractions and initial parameter values20, attractions are updated

using the EWA formula. fEWA parameters are then updated according to the functions

above and used in the EWA updating equation. Maximum likelihood estimation is used

to find the best-fitting value of λ (and other parameters, for the other models) using

data from the first 70% of the subjects. Then the value of λ is frozen and used to

forecast behavior of the entire path of the remaining 30% of the subjects. Payoffs were

all converted to dollars (which is important for cross-game forecasting).

In addition to fEWA (one parameter), we estimated the parametric EWA model (five

parameters), a belief-based model (weighted fictitious play, two parameters) and the two

-parameter reinforcement models with payoff variability (Erev, Bereby-Meyer and Roth,

1999; Roth et al., 2000), and QRE.

The first question we ask is how well models fit and predict on a game-by-game basis

(i.e., parameters are estimated separately for each game). For out-of-sample validation

we report both hit rates (the fraction of most-likely choices which are picked) and log

likelihood (LL). Recall that these results forecast a holdout sample of subjects after

model parameters have been estimated on an earlier sample and then “frozen” for holdout.

If a complex model is fitting better within a sample purely because of spurious overfitting,

it will predict more poorly out of sample. Results are summarized in Table 3.

The best fits for each game and criterion are printed in bold; hit rates that are

statistically indistinguishable from the best (by the McNemar test) are also in bold.

20The initial parameter values are φi(0) = .5 and δi(0) = φi(0)/W . These initial values are aver-
aged with period-specific values determined by the functions, weighting the initial value by 1

t and the
functional value by t−1

t .
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Table 3: Out of sample accuracy of learning models (Ho, Camerer and Chong, 2007)

Thinking Weighted Reinf.
+fEWA fEWA EWA fict. play with PV QRE

game %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL
Cont’l divide 45 -483 47 -470 47 -460 25 -565 45 -557 5 -806
Median action 71 -112 74 -104 79 -83 82 -95 74 -105 49 -285
p-BC 8 -2119 8 -2119 6 -2042 7 -2051 6 -2504 4 -2497
Price matching 43 -507 46 -445 43 -443 36 -465 41 -561 27 -720
Mixed games 36 -1391 36 -1382 36 -1387 34 -1405 33 -1392 35 -1400
Patent Race 64 -1936 65 -1897 65 -1878 53 -2279 65 -1864 40 -2914
Pot Games 70 -438 70 -436 70 -437 66 -471 70 -429 51 -509
Pooled 50 -6986 51 -6852 49 -7100 40 -7935 46 -9128 36 -9037
KS p-BC 6 -309 3 -279 3 -279 4 -344 1 -346

Note: Sample sizes are 315, 160, 580, 160, 960, 1760, 739, 4674 (pooled), 80.

Across games, parametric EWA is as good as all other theories or better, judged by hit

rate, and has the best LL in four games. fEWA also does well on hit rate in six of seven

games. Reinforcement is competitive on hit rate in five games and best in LL in two.

Belief models are often inferior on hit rate and never best in LL. QRE clearly fits worst.

Combining fEWA with CH model to predict initial conditions (rather than using the

first-period data) is only a little worse in hit rate than EWA and slightly worse in LL.

The bottom line of Table 3, “pooled”, shows results when a single set of common

parameters is estimated for all games (except for game-specific λ). If fEWA is capturing

parameter differences across games effectively, it should predict especially accurately,

compared to other models, when games are pooled. It does: When all games are pooled,

fEWA predicts out-of-sample better than other theories, by both statistical criteria.

Some readers of our functional EWA paper were concerned that by searching across

different specifications, we may have overfitted the sample of seven games we reported.

To check whether we did, we announced at conferences in 2001 that we would analyze all

the data people sent us by the end of the year and report the results in a revised paper.

Three samples were sent and we analyzed one so far– experiments by Kocher and Sutter

(2005) on p-beauty contest games played by individuals and groups. The KS results are

reported in the bottom row of Table 3. The game is the same as the beauty contests we
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studied (except for the interesting complication of group decision making, which speeds

equilibration), so it is not surprising that the results replicate the earlier findings: Belief

and parametric EWA fit best by LL, followed by fEWA, and reinforcement and QRE

models fit worst. This is a small piece of evidence that the solid performance of fEWA

(while worse than belief learning on these games) is not entirely due to overfitting on our

original 7-game sample.

The Table also shows results (in the column headed “Thinking+fEWA”) when the

initial conditions are created by the CH model rather than from first-period data and

combined with the fEWA learning model. Thinking plus fEWA are also a little more

accurate than the belief and reinforcement models in five of seven games. The hit rate

and LL suffer only a little compared to the fEWA with estimated parameters. When

common parameters are estimated across games (the row labelled “pooled”), fixing initial

conditions with the thinking steps model only lowers fit slightly.

Note that all learning models have a low hit-rate in p-beauty contests (p-BC). This

is so for three reasons. First, the p-BC has many strategies (101 altogether) and as a

consequence it is much harder to predict behavior correctly in this game. Second, some

subjects may be sophisticated and their behavior may not be captured by learning models

(see Section 5 for details). Finally, subjects may exhibit increasing sophistication over

time (i.e., subjects increase their depth of reasoning) and adaptive learning models do

not allow for this dynamic rule shift (see Ho and Su (2013) for a dynamic model that

explicitly accounts for such behavior).

4.4 Example: Mixed strategy games

Some of the first games studied experimentally featured only mixed-strategy equilibria.21

These games usually have a purely competitive structure in which one person wins and

21The earliest studies were conducted in the 1950s, shortly after many important ideas were consol-
idated and extended in Von Neumann and Morgenstern’s (1944) landmark book. John Nash himself
conducted some informal experiments during a famous summer at the RAND Corporation in Santa
Monica, California. Nash was reportedly discouraged that subjects playing games repeatedly did not
show behavior predicted by theory: ”The experiment, which was conducted over a two-day period, was
designed to test how well different theories of coalitions and bargaining held up when real people were
making the decisions... For the designers of the experiment...the results merely cast doubt on the pre-
dictive power of game theory and undermined whatever confidence they still had in the subject” (Nasar,
1998))
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Table 4: Asymmetric mixed-strategy hide-seek games in Martin et al. (2013)

L R Nash mse
L X,0 0,2 1

2

R 0,2 Y,0 1
2

Nash Y
X+Y

X
X+Y

another loses for each strategy combination (although they are not always zero-sum).

This section summarizes the discussion in Camerer (2003, chapter 3) and updates it.

The earliest results were considered to be discouraging rejections of mixed equilib-

rium. Most lab experiments do show non-independent over-alternation of strategies (i.e.

subjects use fewer long runs than independence predicts). However, the conclusion that

actual mixture frequencies were far from equilibrum proved to be too pessimistic. A

survey of many experimental studies in Camerer (2003, chapter 3) comparing actual ag-

gregate choice frequencies with predicted frequencies shows they are highly correlated

across all games (r=.84); the mean absolute deviation between predictions and data is

.067. Fitting QRE instead of Nash mixtures improves the actual-predicted correlation a

bit (r=.92)...and there is little more room for improvement because the correlation is so

high!

Careful experiments by Binmore et al. (2001) and some field data on tennis and

soccer (e.g. Walker and Wooders, 2001; Palacio-Huerta and Volij, 2008) draw a similarly

positive conclusion about overall accuracy of mixed equilibrium.22 So does an unusual

example we describe next.

In the example study Martin et al (2013) used three variants of asymmetric matching

pennies (Table 4).

Subjects simultaneously chose L or R by pressing a touch screen display of a left

22The Palacios-Huerta and Volij study is unique because they are able to match data from actual play
on the field from one group of players (in European teams) with laboratory behavior of some players
from that group (although not matching the same players’ field and lab data). Importantly, PHV also
found that high school students as a group behaved less game theoretically than the soccer pros, except
that high school students with substantial experience playing soccer were much closer to game-theoretic.
However, a reanalysis by Wooders (2010) later showed a higher degree of statistical dependence than
shown by PHV.
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or right box (like an iPad). The “Matcher” player wins either X or Y if both players

match their choices on L or R, respectively. The “Mismatcher” player wins if they

mismatch. Subjects participated in multiple sessions with 200 trials in each, switching

matcher/mismatcher roles after each session. The games used (X,Y) matcher payoff pairs

of (2,2), (3,1) and (4,1). NE makes the highly counterinitutive prediction that while the

matcher payoffs change across the three games, the predicted Pmatch(R) = .50 does not

change, but predicted Pmismatch(R) does change, from .50 to .75 to .80. Data averaged

over trials are shown in Figure 6 shows the averaged results from each of the three

games, choosing over several hundred trials. The actual frequencies of Pmismatch(R) The

frequencies are remarkably close to the NE predictions. In five of the six comparisons,

the absolute deviations are 0-.03.

[insert Figure 6 here]

The experiments used six chimpanzees housed in the Kyoto PRI facility, playing in

three mother-child pairs for apple cube payoffs delivered immediately. Also, we used a

no-information protocol in which the chimpanzees were not told what the payoffs were;

instead, they learned them from trial and error.

We can compare the chimpanzee behavior with two human groups, which separately

played one of the three games, with (X, Y ) = (4, 1) (called “inspection game”), also

using the low-information protocol. The chimpanzees are clearly closer to NE than the

humans. The two human groups’ data are close together, despite large differences in the

two groups (Japanese vs. African workers at a reserve in Boussou earning the equivalent

of US $134). The human subjects’ deviations are also similar in magnitude to many

earlier experiments.

Why are the chimpanzees so close, and closer than humans? The apparent reason is

that they learn better. Martin et al. estimated a weighted fictitious play model in which

beliefs update according to p(t +1)∗ = p∗t + ηδp
t where δp

t = Pt − p∗t is the prediction error

(the difference between observed play, 0 or 1, and belief). The mismatcher choice proba-

bility in each trial is f(V L−V R)Mismatcher = f([π(L, L)p∗+π(R, L)(1−p∗)]−[π(L, R)p∗+

π(R, R)(1−p∗)]) where f()̇ is the logit function f(V a−V b) = 1/(1+e−ρ(V a−V b+α)) (where

α allows for bias toward L or R). When fictitious play (or reinforcement learning23) models

are fit to the chimpanzee and human data, the chimpanzees show an enhanced sensitiv-

23Note that EWA was not fit because in these types of games reinforcement, fictitious play and EWA
are difficult to separate statistically
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ity to past reward and opponent play (higher learning weight η, and to payoff structure

(changing behavior between the Matcher and Mismatcher roles), compared to humans.

Martin et al. (2013) speculate that the chimpanzees are as good as the human sub-

jects in mixing strategically (or perhaps even better in general), because chimpanzees

may have retained the cognitive capacity to detect patterns in competitive games, and

practice it more often in childhood, than humans do (Matsuzawa 2007). Winning re-

peated competitions is important in the chimpanzees’ natural ecology, in the form of

hide-and-seek (predator-prey) games and winning physical competitions to establish sta-

tus dominance. The learning model results suggest the chimpanzees learn better than

the humans do. In general, the results strikingly supports the interpretation of Binmore

(2001) of game theory as often “evolutive”– that is, describing the result of an adaptive,

perhaps biological process, rather than introspection and analysis.24

4.5 Summary

Learning is clearly important for economics. Equilibrium theories are useful because

they suggest a possible limit point of a learning process and permit comparative static

analysis. But if learning is slow, or the time path of behavior selects one equilibrium out

of many, a precise theory of equilibration is crucial for knowing which equilibrium will

result, and how quickly.

The theory described in this section, fEWA, replaces the key parameters in the pa-

rameteric EWA learning models with functions that change over time in response to

experience. One function is a “change detector” φ which goes up (limited by one) when

behavior by other players is stable, and dips down (limited by zero) when there is surpris-

ing new behavior by others. When φ dips down, the effects of old experience (summarized

in attractions which average previous payoffs) is diminished by decaying the old attrac-

tion by a lot. The second “attention” function δ is one for strategies that yield equal or

better than actual payoff and zero otherwise. This function ties sensitivity to foregone

24This is a plausible explanation. However, there are other differences between the chimpanzee and
human experiments. The most obvious difference is that chimpanzees receive instant gratification (e.g.,
they eat the apple cubes right away) and human subjects earn money that can only be traded for a
delayed gratification. Such differences between the two experiments could also explain the observed
differences in behaviors.
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payoffs to attention, which is likely to be on strategies that give equal or better than ac-

tual payoff ex post. Self-tuning EWA is more parsimonious than most learning theories

because it has only one free parameter– the response sensitivity λ.

We report out-of-sample prediction of data from several experimental games using

fEWA, the parameterized EWA model, and quantal response equilibrium (QRE). Both

QRE and self-tuning EWA have one free parameter, and EWA has five. We show that

fEWA predicts slightly worse than parametric EWA in these games. Since fEWA gen-

erates functional parameter values for φ and δ, which vary sensibly across games, it

predicts better than other QRE and parametric EWA when games are pooled and com-

mon parameters are estimated. fEWA therefore represents one solution to the problem

of flexibly generating EWA-like parameters across games.

5 Sophistication and teaching

The learning models discussed in the last section are adaptive and backward-looking:

Players only respond to their own previous payoffs and knowledge about what others did.

While a reasonable approximation, these models leave out two key features: Adaptive

players do not explicitly use information about other players’ payoffs (though subjects

actually do25); and adaptive models ignore the fact that when the same players are

matched together repeatedly, their behavior is often different than then they are not

rematched together, generally in the direction of greater efficiency (e.g., Andreoni and

Miller (1993), Clark and Sefton (1999), Van Huyck, Battalio and Beil (1990)).

In this section adaptive models are extended to include sophistication and strategic

teaching in repeated games (see Stahl, 1999; and Camerer, Ho and Chong, 2002, for

details). Sophisticated players believe that others are learning and anticipate how others

will change in deciding what to do. In learning to shoot a moving target, for example,

soldiers and fighter pilots learn to shoot ahead, toward where the target will be, rather

than shoot at the current target. They become sophisticated.

Sophisticated players who also have strategic foresight will “teach”– that is, they

choose current actions which teach the learning players what to do, in a way that benefits

the teacher in the long-run. Teaching can be either mutually-beneficial (trust-building

25Partow and Schotter (1993), Mookerjee and Sopher (1994), Cachon and Camerer (1996).
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in repeated games) or privately-beneficial but socially costly (entry-deterrence in chain-

store games). Note that sophisticated players will use information about payoffs of others

(to forecast what others will do) and will behave differently depending on how players

are matched, so adding sophistication can conceivably account for effects of information

and matching that adaptive models miss.26

5.1 Sophistication

Let’s begin with myopic sophistication (no teaching). The model assumes a population

mixture in which a fraction α of players are sophisticated. To allow for possible overcon-

fidence, sophisticated players think that a fraction (1−α′) of players are adaptive and the

remaining fraction α′ of players are sophisticated like themselves.27 Sophisticated play-

ers use the fEWA model to forecast what adaptive players will do, and choose strategies

with high expected payoffs given their forecast and their guess about what sophisticated

players will do. Denoting choice probabilities by adaptive and sophisticated players by

P j
i (a, t) and P j

i (s, t), attractions for sophisticates are

Aj
i (s, t) =

m−i∑
k=1

[α′P k
−i(s, t + 1) + (1 − α′) · P k

−i(a, t + 1)] · πi(s
j
i , s

k
−i) (5.1)

Note that since the probability P k
−i(s, t + 1) is derived from an analogous condition

for Aj
i (s, t), the system of equations is recursive. Self-awareness creates a whirlpool of

recursive thinking which means QRE (and Nash equilibrium) are special cases in which

all players are sophisticated and believe others are too (α = α′ = 1).

An alternative model links steps of sophistication to the steps of thinking used in

the first period. For example, define zero learning steps as using fEWA; one step is

best-responding to zero-step learners; two steps is best-responding to choices of one-step

sophisticates, and so forth (see Ho, Park and Su, 2013). This model can produce results

similar to the recursive one we report below, and it replaces α and α′ with τ from the

theory of initial conditions so it reduces the entire thinking-learning-teaching model to

26Sophistication may also potentially explain why players sometimes move in the opposite direction
predicted by adaptive models (Rapoport, Lo and Zwick, 1999), and why measured beliefs do not match
up well with those predicted by adaptive belief learning models (Nyarko and Schotter, 2002).

27To truncate the belief hierarchy, the sophisticated players believe that the other sophisticated players,
like themselves, believe there are α′ sophisticates.
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Table 5: Sophisticated and adaptive learning model estimates for the p-beauty contest

game (Camerer, Ho, and Chong, 2002) (standard errors are in parentheses)

inexperienced subjects experienced subjects

sophisticated adaptive sophisticated adaptive

EWA EWA EWA EWA

φ 0.44 0.00 0.29 0.22

(0.05)2 (0.00) (0.03) (.02)

δ 0.78 0.90 0.67 0.99

(0.08) (0.05) (0.05) (0.02)

α 0.24 0.00 0.77 0.00

(0.04) (0.00) (0.02) (0.00)

α′ 0.00 0.00 0.41 0.00

(0.00) (0.00) (0.03) (0.00)

LL

(in sample) -2095.32 -2155.09 -1908.48 -2128.88

(out of sample) -968.24 -992.47 -710.28 -925.09

only two parameters. In addition, this model allows players to become more or less

sophisticated over time as they learn about others’ thinking steps.

We estimate the sophisticated EWA model using data from p-beauty contests in-

troduced above. Table 5 reports results and estimates of important parameters (with

bootstrapped standard errors). For inexperienced subjects, adaptive EWA generates

Cournot-like estimates (φ̂ = 0 and δ̂ = .90). Adding sophistication increases φ̂ and

improves LL substantially both in- and out-of-sample. The estimated fraction of sophis-

ticated players is 24% and their estimated perception α̂′ is zero, showing overconfidence

(as in the thinking-steps estimates from the last section).28

Experienced subjects are those who play a second 10-period game with a different

p parameter (the multiple of the average which creates the target number). Among

28The gap between apparent sophistication and perceived sophistication shows the empirical advantage
of separating the two. Using likelihood ratio tests, we can clearly reject both the rational expectations
restriction α = α′ and the pure overconfidence restriction α′ = 0 although the differences in log-likelihood
are not large.
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experienced subjects, the estimated proportion of sophisticates increases to α̂ = 77%.

Their estimated perceptions increase too but are still overconfident (α̂′ = 41%). The

estimates reflect “learning about learning”: Subjects who played one 10-period game

come to realize an adaptive process is occurring; and most of them anticipate that others

are learning when they play again.

5.2 Strategic teaching

Sophisticated players matched with the same players repeatedly often have an incentive

to “teach” adaptive players, by choosing strategies with poor short-run payoffs which will

change what adaptive players do, in a way that benefits the sophisticated player in the

long-run. Game theorists have showed that strategic teaching could select one of many

repeated-game equilibria (teachers will teach the pattern that benefits them) and could

give rise to reputation formation without the complicated apparatus of Bayesian updating

of Harsanyi-style payoff types (see Fudenberg and Levine, 1989; Watson, 1993; Watson

and Battigali, 1997). This section of the paper describes a parametric model which

embodies these intuitions, and tests it with experimental data. The goal is to show how

the kinds of learning models described in the previous section can be parsimoniously

extended to explain behavior in more complex games which are, perhaps, of even greater

economic interest than games with random matching.

Consider a finitely-repeated trust game. A borrower B wants to borrow money from

each of a series of lenders denoted Li (i = 1, . . . , N). In each period a lender makes

a single lending decision (Loan or No Loan). If the lender makes a loan, the borrower

either (repays or defaults). The next lender in the sequence, who observed all the previous

history, then makes a lending decision. The payoffs used in experiments are shown in

Table 6.

There are actually two types of borrowers. As in post-Harsanyi game theory with

incomplete information, types are expressed as differences in borrower payoffs which the

borrowers know but the lenders do not (though the probability that a given borrower

is each type is commonly known). The honest (Y) types actually receive more money

from repaying the loan, an experimenter’s way of inducing preferences like those of a

person who has a social utility for being trustworthy (see Camerer, 2003, chapter 3 and

references therein). The normal (X) types, however, earn 150 from defaulting and only
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Table 6: Payoffs in the borrower-lender trust game, Camerer & Weigelt (1988)

lender borrower payoffs to payoffs to borrower

strategy strategy lender normal (X) honest (Y)

loan default -100 150 0

repay 40 60 60

no loan (no choice) 10 10 10

60 from repaying. If they were playing just once and wanted to earn the most money,

they would default.29

In the standard game-theoretic account, paying back loans in finite games arises

because there is a small percentage of honest types who always repay. This gives normal-

type borrowers an incentive to repay until close to the end, when they begin to use mixed

strategies and default with increasing probability.

Whether people actually play these sequential equilibria is important to investigate for

two reasons. First, the equilibria impose consistency between optimal behavior by bor-

rowers and lenders and Bayesian updating of types by lenders (based on their knowledge

and anticipation of the borrowers’ strategy mixtures); whether reasoning or learning can

generate this consistency is an open behavioral question (cf. Selten, 1978). Second, the

equilibria are very sensitive to the probability of honesty (if it is too low the reputational

equilibria disappear and borrowers should always default), and also make counterintu-

itive comparative statics predictions which are not confirmed in experiments (e.g., Neral

and Ochs, 1992; Jung, Kagel and Levin, 1994).

In the experiments subjects play many sequences of 8 periods. The eight-period

game is repeated to see whether equilibration occurs across many sequences of the entire

game.30 Surprisingly, the earliest experiments showed that the pattern of lending, de-

fault, and reactions to default across experimental periods within a sequence is roughly

in line with the equilibrium predictions. Typical patterns in the data are shown in Fig-

29Note that player types need not be stage game types. They can also be repeated game types where
players are preprogrammed to play specific repeated game strategies. We do not allow repeated game
types in this Section.

30Borrower subjects do not play consecutive sequences, which removes their incentive to repay in the
eighth period of one sequence so they can get more loans in the first period of the next sequence.
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ures 7a-b. Sequences are combined into ten-sequence blocks (denoted “sequence”) and

average frequencies are reported from those blocks. Periods 1,...,8 denote periods in each

sequence. The figures show relative frequencies of no loan and default (conditional on

a loan). Figure 7a shows that in early sequences lenders start by making loans in early

periods (i.e., there is a low frequency of no-loan), but they rarely lend in periods 7-8.

In later sequences they have learned to always lend in early periods and rarely lend in

later periods. Figure 7b shows that borrowers rarely default in early periods, but usu-

ally default (conditional on getting a loan) in periods 7-8. The within-sequence pattern

becomes sharper in later sequences.

[Insert Figure 7a-d]

The teaching model is a boundedly rational model of reputation formation in which

the lenders learn whether to lend or not. They do not update borrowers’ types and do

not anticipate borrowers’ future behavior (as in equilibrium models); they just learn. In

the teaching model, some proportion of borrowers are sophisticated and teach; the rest

are adaptive and learn from experience but have no strategic foresight.

A sophisticated teaching borrower’s attractions for sequence k after period t are spec-

ified as follows (j ∈ {repay, default} is the borrower’s set of strategies):

Aj
B(s, k, t) =

NoLoan∑
j′=Loan

P j′
L (a, k, t + 1) · πB(j, j′)+

max
Jt+1

{
T∑

v=t+2

NoLoan∑
j′=Loan

P̂ j′
L (a, k, v|jv−1 ∈ Jt+1) · πB(jv ∈ Jt+1, j

′)}

The set Jt+1 specifies a possible path of future actions by the sophisticated borrower

from round t +1 until end of the game sequence. That is Jt+1 = {jt+1, jt+2, . . . , jT−1, jT}
and jt+1 = j.31 The expressions P̂ j′

L (a, k, v|jv−1) are the overall probabilities of either

getting a loan or not in the future periods v, which depends on what happened in the

past (which the teacher anticipates).32 P j
B(s, k, t + 1) is derived from Aj

B(s, k, t) using a

logit rule.

31To economize in computing, we search only paths of future actions that always have default following
repay because the reverse behavior (repay following default) generates a lower return.

32Formally, P̂ j′
L (a, k, v|jv−1) = P̂ Loan

L (a, k, v − 1|jv−1) · P j′
L (a, k, v|(Loan, jv−1)) + P̂ NoLoan

L (a, k, v −
1|jv−1) · P j′

L (a, k, v|(NoLoan, jv−1)).
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The updating equations for adaptive players are the same as those used in fEWA with

two twists. First, since lenders who play in later periods know what has happened earlier

in a sequence, we assume that they learned from the experience they saw as if it had

happened to them.33. Second, a lender who is about to make a decision in period 5 of

sequence 17, for example, has two relevant sources of experience to draw on– the behavior

she saw in periods 1-4 in sequence 17, and the behavior she has seen in the period 5’s of

the previous sequences (1-16). Since both kinds of experience could influence her current

decision, we include both using a two-step procedure. After period 4 of sequence 17, for

example, attractions for lending and not lending are first updated based on the period 4

experience. Then attractions are partially updated (using a degree of updating parameter

σ) based on the experience in period 5 of the previous sequences.34 The parameter σ is

a measure of the strength of “peripheral vision”– glancing back at the “future” period

5’s from previous sequences to help guess what lies ahead.

Of course, it is well-known that repeated-game behavior can arise in finite-horizon

games when there are a small number of “unusual” types (who act like the horizon is

unlimited), which creates an incentive for rational players to behave as if the horizon

is unlimited until near the end (e.g., Kreps and Wilson, 1982). But specifying why

some types are irrational, and how many they are, makes this interpretation difficult

to test. In the teaching approach, which “unusual” type the teacher pretends to be

arises endogenously from the payoff structure: They are Stackelberg types, who play the

strategy they would choose if they could commit to it. For example, in trust games,

they would like to commit to repaying; in entry-deterrence, they would like to commit

to fighting entry.

The model is estimated using repeated game trust data from Camerer and Weigelt

(1988). In Ho, Camerer and Chong (2007), we used parametric EWA to model behavior

in trust games. That model allows two different sets of EWA parameters for lenders

and borrowers. In this paper we use fEWA to model lenders and adaptive borrowers so

the model has fewer parameters.35 Maximum likelihood estimation is used to estimate

33This is called “observational learning”; see Duffy and Feltovich, 1999) Without this assumption the
model learns far slower than the lenders do so it is clear that they are learning from observing others

34The idea is to create an “interim” attraction for round t, Bj
L(a, k, t), based on the attraction

Aj
L(a, k, t − 1) and payoff from the round t, then incorporate experience in round t + 1 from previ-

ous sequences, transforming Bj
L(a, k, t) into a final attraction Aj

L(a, k, t). See Ho, Camerer and Chong
(2007) for details.

35We use four separate λ’s, for honest borrowers, lenders, normal adaptive borrowers, and teaching
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Table 7: Model parameters and fit in repeated trust games

model

fEWA+ Agent

statistic teaching QRE

in-sample hit rate (%) 76.5% 73.9%

calibration (n=5757) log-likelihood -2975 -3131

out-of-sample hit rate (%) 75.8% 72.3%

validation (n=2894) log-likelihood -1468 -1544

parameters estimates

cross-sequence learning σ 0.93 -

% of teachers α 0.89 -

homemade prior p(honest) θ - 0.91

parameters on 70% of the sequences in each experimental session, then behavior in the

holdout sample of 30% of the sequences is forecasted using the estimated parameters.

As a benchmark alternative to the teaching model, we estimated an agent-based ver-

sion of QRE suitable for extensive-form games (see McKelvey and Palfrey, 1998). Agent-

QRE is a good benchmark because it incorporates the key features of repeated-game

equilibrium– strategic foresight, accurate expectations about actions of other players,

and Bayesian updating– but assumes stochastic best-response. We use an agent-based

form in which players choose a distribution of strategies at each node, rather than using

a distribution over all history-dependent strategies. We implement agent QRE with four

parameters– different λ’s for lenders, honest borrowers, and normal borrowers, and a

fraction θ, the percentage of players with normal-type payoffs who are thought to act as

if they are honest (reflecting a “homemade prior” which can differ from the prior induced

by the experimental design36). (Standard equilibrium concepts are a special case of this

model when λ’s are large and θ = 0, and fit much worse than AQRE does).

The models are estimated separately on each of the eight sessions to gauge cross-

session stability. Since pooling sessions yields similar fits and parameter values, we report

borrowers, an initial attraction for lending A(0), and the spillover parameter σ and teaching proportion
α.

36see Camerer and Weigelt (1988), Palfrey and Rosenthal (1988), and McKelvey and Palfrey (1992).
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only those pooled results in Table 6 (excluding the λ values). The interesting parameters

for sophisticated borrowers are estimated to be α̂ = .89 and σ̂ = .93, which means most

subjects are classified as teachers and they put a lot of weight on previous sequences. The

teaching model fits in-sample and predicts better out-of-sample than AQRE by a modest

margin (and does better in six of eight individual experimental sessions), predicting about

75% of the choices correctly. The AQRE fits reasonably well too (72% correct) but the

estimated “homemade prior” θ is .91, which is absurdly high. (Earlier studies estimated

numbers around .1-.2.) The model basically fits best by assuming that all borrowers

simply prefer to repay loans. This assumption fits most of the data but it mistakes

teaching for a pure repayment preference. As a result, it does not predict the sharp

upturn in defaults in periods 7-8, which the teaching model does.

Figures 7c-d show average predicted probabilities from the teaching model for the

no-loan and conditional default rates. No-loan frequencies are predicted to start low and

rise across periods, as they actually do, though the model underpredicts the no-loan rate

in general. The model predicts the increase in default rate across periods reasonably

well, except for underpredicting default in the last period.

The teaching approach as a boundedly-rational alternative to type-based equilibrium

models of reputation-formation.37 It has always seemed improbable that players are

capable of the delicate balance of reasoning required to implement the type-based models,

unless they learn the equilibrium through some adaptive process. The teaching model

is one parametric model of that adaptive process. It retains the core idea in the theory

of repeated games– namely, strategic foresight– and consequently, respects the fact that

matching protocols matter. And since the key behavioral parameters (α and σ) appear

to be near one, restricting attention to these values should make the model workable for

doing theory.

37One direction we are pursuing is to find designs or tests which distinguish the teaching and equilib-
rium updating approaches. The sharpest test is to compare behavior in games with types that are fixed
across sequences with types that are independently “refreshed” in each period within a sequence. The
teaching approach predicts similar behavior in these two designs but type-updating approaches predict
that reputation formation dissolves when types are refreshed.
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5.3 Summary

In this section we introduced the possibility that players can be sophisticated– i.e., they

believe others are learning. Sophistication links learning theories to equilibrium ones

if sophisticated players are self-aware. Adding sophistication also improves the fit of

data from repeated beauty-contest games. Interestingly, the proportion of estimated

sophisticates is around a quarter when subjects are inexperienced, but rises to around

three-quarters when they play an entire 10-period game a second time, as if subjects learn

about learning. Sophisticated players who know they will be rematched repeatedly may

have an incentive to “teach”, which provides a boundedly rational theory of reputation

formation. We apply this model to data on repeated trust games. The model adds only

two behavioral parameters, representing the fraction of teachers and how much “periph-

eral vision” learners have (and some nuisance λ parameters), and predicts substantially

better than a quantal response version of equilibrium.

6 Sociality

Some of the simplest economic games have proved to be useful as ways to measure

sociality– departures from pure self-interest– and test specific models of social prefer-

ences. By far the most popular examples are prisoner’s dilemma (or multiplayer “com-

mons” dilemmas) and public goods contribution games (PGG). While these games are

trivial from a strategic point of view, at first blush, explaining behavioral regularities has

required fundamental developments and applications in game theory. Since the literature

is large, we will discuss selective results from PGG, along with ultimatum and dictator

games.

Before proceeding, however, it is crucial to clarify what sociality means in game theory.

As every reader should know, game theory makes predictions about behavior conditional

on a proper specification of utilities for outcomes. Rejecting money in an ultimatum

game, for example, is definitely not a rejection of game theoretic rationality if the utility

of having nothing is greater than the utility of having a small amount when a proposer

has a much larger amount (due to fairness preferences, for example). However, since we

typically do not have independent measurement of utilities for outcomes, in testing game

theory predictions we are almost always testing the joint hypothesis of a particular utility
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specification– usually, selfishness– along with a theory of behavior given those specified

utilities. The evidence discussed in this section shows systematic ways in which people

do not appear to be selfish, and new ideas about what utility specifications can explain

the data. In a sense, the goal of this approach is very “conservative”– the hope is that a

reasonable utility specification will emerge so that data can be reasonably explained by

standard analysis given that new type of utility.

It is also notable that the tendency of economists to be skeptical about human proso-

ciality conflicts with the prevailing view of exceptional human prosociality, compared to

other species, in biology and anthropology. Scientists in those fields have amassed much

evidence that humans are more prosocial toward non-kin than all other species. For

example, Boyd and Richerson wrote: “Humans cooperate on a larger scale than most

other mammals.....The scale of human cooperation is an evolutionary puzzle”. [Boyd and

Richerson, 2009: 3281].

6.1 Public goods

In a typical linear public goods game experiment, four players are endowed with 20

tokens. A number ci of tokens can be contributed to a public pool where they earn

M , which is distributed equally. The rest of the tokens, 20 − ci, earn a private return

of 1. The fraction M
4

is called the marginal per capita return (MCPR). Assumptions

1 < M < 4 are imposed so that M is above the private return but the MCPR is below

the private return. Player i’s payoff is ui(ci, ck) = 20 − ci + M
4

∑4
j=1 cj. The collec-

tive payoff of 80 − (M − 1)
∑4

j=1 cj is maximized if ci = 20∀i. Then each person earns

(20M ∗ 4)/4 = 20M . If everyone is selfish they contribute ci = 0 and everyone earns 20.

Notice that under selfish preferences, keeping all tokens is a dominant strategy, so

the predictions do not depend on the depth of strategic thinking, Therefore, the PGG is

mostly interesting as a way to study social (nonselfish) preferences, and the interaction

of such preferences with structural variables.

In most experiments, contributions begin with a bimodal distribution of many 100%

and 0% contributions, averaging around 50% of the tokens. Given feedback about over-

all contributions, within 10 periods or so the average contribution erodes to about 10%.
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Contribution is substantially higher in a “partner” protocol in which the same people are

matched each period, compared to a random-matching stranger protocol. If subjects are

surprised and the entire experimental sequence is repeated, initial contributions jump

back up near 50%. This “restart effect” (Andreoni, 1988) is clear evidence that subjects

who contribute are not just confused but need experience to learn to give nothing, since

they would give more after a restart.

What seems to be going on in the PGG is that some people are selfish, and give

nothing no matter what. Another large fraction of people are “conditionally coopera-

tive”, and give in anticipation that others will give. If they are too optimistic, or choose

to punish the selfish free-riders, these conditional cooperators only recourse is to give

less. These combined forces lead to a steady decline in contribution. The best evidence

for conditional cooperation is an elegant experiment that asked subjects how much they

would contribute, depending on how much other subjects did (and enforced actual con-

tribution in this way; Fischbacher and Gachter, 2010). In this protocol, a large number

of subjects choose to give only when others give.

6.2 Public goods with punishment

An interesting variant of PGG includes costly punishment after players contribute. The

idea is that in natural settings players can often find out how much others contributed

to a public good, and can then punish or reward other people based on their observed

contributions, typically at a cost to themselves.

These punishments range from gossip, scolding, and public shaming (Guala, 2010)–

now magnified by the internet– to paralegal enforcement (vigilantism, family or neigh-

borhood members sticking up for each other), or organized legal enforcement through

policing and taxation.

Yamagishi (1986) was the first to study punishment in the form of sanction. Since

then, a paradigm introduced by Fehr and Gachter (2000) has become standard. In their

method, after contributions are made a list of the contribution amounts is made public

(without identifying identity numbers or other information about contributors, to avoid

repeated-game spillovers). Each player can then spend 1 token to subtract 3 tokens from

one other participant, based only on the punished participants contribution.
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The first wave of studies showed that punishment was effective in raising contributions

close to the socially-optimal step (although total efficiency suffers a bit since punishments

reduce total payoff). When punishment is available, early punishment of free riders

causes them to increase their contributions, and punishment is more rare in later trials

as a result. Punishment works when some of those who contribute greatly to the public

good also act as social police, using personal resources to goad low contributors to give

more.

However later studies complicated this simple finding in several ways:

1. Some of the effect of punishment can be created by symbolic shaming, without any

financial cost or penalty (Masclet et al., 2013)).

2. Players have a choice with whom they wish to play the game (Page, Putterman,

and Unel, 2005), what type of sanctions are allowed (Markussen, Putterman, and

Tyran, 2014), or whether or not to allow punishment in a community (Gurerk,

Irlenbusch, and Rockkenbach, 2006).

3. What happens if those who are punished can then punish the people who punish

them? (Note that in natural settings, there is likely to be no way to allow informal

punishment without retaliation against punishers.) One study showed that in this

scenario, it is easy for efficiency-reducing punishment feuds to arise (Nikoforakis

and Engelmann, 2011).

4. Herrmann et al. (2008) and Gachter et al. (2010) found an empirical continuum

of punishment in an amazing study across 16 societies, sampling a wider variety

of cultures than previously studied. In countries with English-speaking, Confu-

cian, or Protestant histories, those who punish a lot are typically high contributors

punishing low contributors (punishment is prosocial in intent). However, in sev-

eral Arabic, Mediterranean, and former Communist block countries they sampled,

there were also high rates of “antisocial” punishment– i.e., low contributors often

punish high contributors! When antisocial punishment is common, giving rates do

not increase across trials, and efficiency is reduced because punishments are costly

for both parties involved.
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6.3 Negative reciprocity: Ultimatums

In a typical ultimatum game, a proposer offers a specific division of a known amount of

money to a responder. The responder can accept it, and the money amounts are paid to

both sides, or reject it, and both sides get nothing.

This simple game was first studied experimentally by Guth et al. (1982) and has been

replicated hundreds of times since then (including offers of water to very thirsty people;

Wright et al., 2012). If players are self-interested, then the subgame perfect equilibrium

is to offer zero (or the smallest divisible amount) and for responders to accept. This joint

hypothesis about strategic thinking is typically rejected because average offers are around

37%, and offers below 20% or so are often rejected. (The overall rejection rate was 16%, in

a survey of 75 studies by Ooesterbeek et al., 2004). Since the responders rejection choice

does not involve any strategic thinking at all, these stylized facts are clear evidence that

many players deciding whether to reject or accept offers are not purely self-interested.

One explanation that emerged prominently early on is that rejections are simple

monetary mistakes which selfish players learn to avoid over time (e.g. Erev and Roth,

1998). This learning explanation is clearly incomplete: It does not specify the time scale

over which learning takes place, and cannot explain why fewer rejection “mistakes” are

made when unequal offers are generated exogenously by a computer algorithm or when

rejections do not hurt the proposer. Evidence for learning across repeated experimental

trials is also not strong (e.g., Cooper and Stockman, 2002).

The leading current explanation for ultimatum rejections is “negative reciprocity”:

Some players trade off money with a desire to deprive a player who has treated them

unfairly from earning money. Summarized from strongest to weakest, evidence for a

negative reciprocity explanation comes from the facts that: Players reject offers less fre-

quently if an unequal offer is created by a computerized agent (Blount, 1995; Sanfey et al.,

2003); rejections are rare if rejecting the offer does not deprive the proposer of her share

(Bolton and Zwick, 1995); low offers and rejections are associated with brain activity in

insula, a bodily discomfort region (Sanfey et al. 2003), and with wrinkling facial muscles

associated with felt anger and disgust (Chapman et al. 2009) or exogeneously-induced

disgust (Moretti and di Pellegrino, 2010); and rejections are associated with self-reported

anger (Pillutla and Murnighan, 1996).
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Many studies have changed the amount of money being divided, over substantial

ranges including days or weeks of wage equivalents (beginning with Cameron, 1995).

Offers generally go down as the stakes go up (Oosterbeek 2004). As stakes go up, the

absolute amounts players will reject increase, but the percentages they reject decrease.

Note that this pattern does not imply responders are becoming “more rational” as stakes

increase, because the money amounts they will reject increase in magnitude. In fact, such

a pattern is predicted to arise if responders care both about their own earnings and about

their relative share (or if equality is an inferior good).

Several formalizations of social preference have been developed to explain rejected

offers. The simplest of these propose utility functions that include aversion to unequal

outcome differences (Fehr and Schmidt (1999)) or unequal shares (Bolton and Ockenfels

(2000). However, these theories cannot explain acceptance of low offers generated exo-

geneously (which create equal inequity). Therefore, other theories model ultimatums as

psychological games in which beliefs enter the utility function (Rabin, 1993).

An interesting empirical strategic question is whether proposers have accurate beliefs

about how much responders are willing to accept, and make payoff-maximizing offers

given those beliefs. Early findings in four countries from Roth et al. (1991) support this

“rational proposer” hypothesis, but without formal statistical testing or adjustment for

risk-aversion. This hypothesis is an attractive one for game theory because it suggests

players have equilibrium beliefs and choose best responses (or noisy quantal responses)

given their beliefs. If so, after adjusting for social preferences or negative reciprocity,

equilibrium analysis is an accurate description of offers and rejection rates.

However, several later studies found domains in which proposers appear to offer too

much or too little, as evidenced by apparent gaps between actual offers and profit-

maximizing offers given accurate beliefs.

For example, many small-scale societies show generous near-equal offers along with

extremely low rejection rates at all offer steps, suggesting that proposer beliefs are pes-

simistic (Henrich et al., 2001). Offers in a study in the Khasi-speaking part of India

(Andersen et al., 2011) are half as large in most samples (12-23%) but rejection rates
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are higher than in any country ever studied, around (34%). Either the Khasi proposers’

beliefs about acceptance are too optimistic, or they are extremely risk-seeking.

6.4 Impure altruism and social image: Dictator games

A dictator game is a simple decision about how to allocate unearned money between the

dictator and some recipient(s). It is an ultimatum game with no responder rejection.

Dictator games were first used to see whether ultimatum offers are altruistic (if so, dic-

tator and ultimatum offers will be the same) or are selfishly chosen to avoid rejection (if

so, case dictator offers will be lower). Dictator offers are clearly lower.

However, dictator game allocations are sensitive to many details of procedure and

(likely) personality. In psychological terms, the dictator game is a weak situation be-

cause norms of reasonable sharing can vary with context, may not be widely shared, and

compete with robust self-interest.

In initial dictator game experiments some subjects give nothing but a small majority

do allocate some money to recipients; the average allocation is typically 10-25%. Subjects

clearly give much less when the money to be allocated was earned by the dictator rather

than unearned and randomly allocated by the experimenter (Camerer and Thaler, 1995,

p. 216; cf. Hoffman and Spitzer, 1982). Therefore, it should be clear that experimental

dictator giving in lab settings is likely to be much more generous than natural charitable

giving out of wealth. Allocations are also sensitive to the range of what can be given

or taken (Bardsley, 2008; List 2007), and to endogenous formation of norms about what

others give (Krupka and Weber 2009).

In the canonical dictator game, the total allocation amount is fixed, so there is no

tradeoff between giving more and giving more equally. However, if the possible total allo-

cations vary, then it is useful to know how much people will sacrifice efficiency (choosing

a higher total allocation) for equity (choosing a more equal allocation). Several experi-

ments explored this tradeoff (Charness and Rabin, 2002; Engelmann and Strobel, 2006).
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There is substantial evidence for efficiency-enhancing motivations, which appears in some

studies to depend on subjects academic background and training (Fisman et al. 2007).

The last several years have seen a correction to the language used to describe dictator

game allocations imply. Some early discussions of these results called dictator giving ”al-

truistic”, because of the contrast to strategic offers in ultimatum games (which are not

generous, per se, but instead meant to avoid rejections). Of course, the term “altruism”

means something specific in public finance: Pure altruism is a desire to make another

person better-off on that person’s own terms. Impure altruism means having a private

motive to help another person, such as a “warm glow” from giving.) In addition, Camerer

and Thaler (1995) described allocations as reflecting “manners”, meaning adherence to

an accepted social norm of giving.

The idea of “manners” was made precise in formal theories of “social image”. In these

theories, people give in dictator games because they have a utility for believing that others

think they are a generous type (i.e., have good manners) or to avoid disappointing the

expectations that they think other people have (guilt-aversion; Smith et al). Andreoni

and Bernheim adapted a strategic theory of rational conformity to this setting. It predicts

that if there is a P chance a dictator allocation will be stopped, so the recipient gets zero,

then dictators will be more inclined to give 0 if P is higher. (The intuition is that if

recipients are likely to get nothing anyway, the dictators won’t feel as unfairly judged if

they give zero also.) Indeed, they find such an effect in their experiment. Berman and

Small (2012) also find that when the selfish choice is imposed exogeneously, subjects are

happier. Tonin and Vlassopoulos (2013) found that a third of subjects who initially gave

a positive amount change their minds when asked if they want to keep all the money.

Malmendier, Lazear and Weber (2012) found that many subjects would rather opt out

of a $10 ultimatum game, to get $9, provided the potential recipient subject would not

know about their choice.38

These studies indicate that in simple dictator allocations, a major motivation for dic-

tator giving is wanting to appear generous, in order to believe that a recipient subject

think the dictator is being generous. (In formal terms, people have a preference for an

iterated belief that another person believes their type is generous.) Disrupting any ele-

ment of this complicated chain of perception and cognition can easily push giving toward

38There are also studies showing that dictators may take away other player’s money in order to equalize
payoffs between them and others (Zizzo, 2003, and List, 2007).
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zero. Interesting biological evidence also supports the social image view: Contributing

when others are watching activates reward areas (Izuma et al. 2008), and autistic adults

do not adjust giving when being watched (which control subjects do).

It is always useful to ask how well findings from lab experiments correlate with field

data when relevant features such as incentives, subject pools, choice sets etc. are closely

matched (Camerer, in press) . For prosociality, lab-field correlation is overwhelmingly

positive and often very impressive in magnitude (comparable to other kinds of psychomet-

ric reliability). For example, Brazilians who catch fish and shrimp exhibit lab prosociality

and patience which is associated with more cooperative behavior in their fishing (Fehr

and Liebbrandt, 2011). Boats of Japanese fishermen who disapprove of how much oth-

ers keep selfishly tend to catch more collectively (Carpenter and Seki 2011). Students

who are generous in the (lab) dictator game are also more inclined to return a (field)

misdirected letter containing money (Franzen and Pointner, 2013).

6.5 Summary

There is now massive evidence of various kinds of prosocial behavior. The challenge is

to distill this evidence into a minimal set of workable, psychologically plausible models

that can be used in public finance, game theory, political science and other applications.

Leading theories assume simple kinds of adjustment to outcome utility based on inequity

of payoff differences or shares, reciprocity, or social image. All theories are backed by

various kinds of data. Notably, the data comparing lab measures of prosociality and field

measures (holding as many lab-field factors constant as possible) shows a substantial

correspondence of behavior in the lab and field.

7 Conclusion

This chapter presented experimental evidence motivating behavioral models based on

limited rationality, stochastic choice, learning and teaching, and prosocial preferences.

These models are intended to explain behavior in many different games with a single

general specification (sometimes up to one or more free parameters).
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Please note that not all examples illustrate how deviations from conventional equilib-

rium are explained by behavioral game theory. In some cases, the fact that equilibrium

concepts predict surprisingly well can be explained by behavioral models. One exam-

ple is entry games, which approximately equilibrate with no learning at all because, we

suggest, higher-step thinks fill in deviations from equilibrium that result from lower-step

thinkers. Another example is how responsive learning by highly trained chimpanzees in

hide-and-seek games (perhaps a conserved cognitive capacity due to its important for

fitness in their competitive societies) leads to near-perfect frequencies of Nash play.

While these behavioral models are actively researched and applied, we are struck

by how little attention is currently paid to them in typical game theory courses and

textbooks. If a student asks, “What happens when people actually play these games?”,

equilibrium analysis should be part of any explanation, but it will typically not provide

the best currently available answer to the student’s question. Many of the behavioral

ideas are also easy to teach and easily grasped by students– partly because the intu-

itions underlying the models correspond to students’ intuitions about they would do or

expect. And there are plenty of experimental data to contrast equilibrium predictions

with intuitions (or to show they may match surprisingly well).

Many interesting behavioral and experimental topics were excluded in this chapter to

save space. One set of models are boundedly rational solutions concepts which predict

stationary strategy distributions (typically using one free parameter.) These include

action sampling, payoff sampling, and impulse-balance theory (Chmura et al. 2008)

Note that those solution concepts were not derived a priori from any specific evidence

about cognitive limits (and have not been tested by eyetracking or fMRI data). There is

also no robust evidence that these concepts improve on QRE when errors in Chmura et

al. (2008) were corrected (see Brunner et al. 2011).

We also acknowledge cursed equilibrum (CE, Eyster and Rabin, 2008) and analogy-

based expectational equilibrum (ABEE, Jehiel 2005). There are very few new data

testing these theories and, despite their potential, their current scope and applicability

are limited. CE is specifically designed only to explain deviations in Bayesian-Nash

equilibrium with private information, so it coincides with Nash equilibrium in games

with complete information. As a result, it is not a serious candidate for a general theory

of deviation from Nash equilibrium across all types of games. ABEE predictions depend

on how analogies are created, which requires auxiliary assumptions.
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Frontiers of behavioral and experimental game theory are pushing far out of conven-

tional lab choices, to tests with field data. They are also pushing far in and down, to

show cognitive and neural mechanisms. We believe it is possible to have theories, such

as CH, which makes specific predictions about mental processes and can be abstracted

upward to make predictions about price, quantity and quality in markets.
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Figure 1: How entry varies with demand (D), experimental data 
and thinking model 
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Figure 2: Poisson-Nash equilibrium for the LUPI game (the 
average number of players is 53,783). 
  

I
If probability is above 1/53783, the curve is concave.

I 

If probability is below 
1/53783, the curve is convex, 
asymptotes to zero. 



Figure 3: The full distribution of actual choices 
 
 
  

Poisson‐Nash Equilibrium 

Best fitted CH Model 



Figure 4a and 4b: Bids by Signal, MinBid Treatment 
 
 

  

 

 
 
 



Figure 5: EWA Cube 
 

 
 
  



Figure 6: Actual relative frequencies of chimpanzee choices and 
predictions of Nash equilibrium, in three games 
 

 
  



Figure 7a: Empirical Frequency for 
No Loan 

Figure 7b: Empirical Frequency for 
Default conditional on Loan 

 
 

 

 
Figure 7c: Predicted Frequency for 
No Loan 

 
Figure 7d: Predicted Frequency for 
Default conditional on Loan 

  

 
 



Table 1: Data and CH estimates of  in various p-beauty contest games

subject pool group sample Nash pred'n data fit of CH model bootstrapped
or game source1 size size equil'm error mean std dev mode  mean error std dev mode 90%  c.i.
p=1.1 HCW (98) 7 69 200 47.9 152.1 23.7 150 0.10 151.6 -0.5 28.0 165 (0.0,0.5)
p=1.3 HCW (98) 7 71 200 50.0 150.0 25.9 150 0.00 150.4 0.5 29.4 195 (0.0,0.1)
high $ CHW 7 14 72 11.0 61.0 8.4 55 4.90 59.4 -1.6 3.8 61 (3.4,4.9)
male CHW 7 17 72 14.4 57.6 9.7 54 3.70 57.6 0.1 5.5 58 (1.0,4.3)
female CHW 7 46 72 16.3 55.7 12.1 56 2.40 55.7 0.0 9.3 58 (1.6,4.9)
low $ CHW 7 49 72 17.2 54.8 11.9 54 2.00 54.7 -0.1 11.1 56 (0.7,3.8)
.7(M+18) Nagel (98) 7 34 42 -7.5 49.5 7.7 48 0.20 49.4 -0.1 26.4 48 (0.0,1.0)
PCC CHC (new) 2 24 0 -54.2 54.2 29.2 50 0.00 49.5 -4.7 29.5 0 (0.0,0.1)
p=0.9 HCW (98) 7 67 0 -49.4 49.4 24.3 50 0.10 49.5 0.0 27.7 45 (0.1,1.5)
PCC CHC (new) 3 24 0 -47.5 47.5 29.0 50 0.10 47.5 0.0 28.6 26 (0.1,0.8)
Caltech board Camerer 73 73 0 -42.6 42.6 23.4 33 0.50 43.1 0.4 24.3 34 (0.1,0.9)
p=0.7 HCW (98) 7 69 0 -38.9 38.9 24.7 35 1.00 38.8 -0.2 19.8 35 (0.5,1.6)
CEOs Camerer 20 20 0 -37.9 37.9 18.8 33 1.00 37.7 -0.1 20.2 34 (0.3,1.8)
German students Nagel (95) 14-16 66 0 -37.2 37.2 20.0 25 1.10 36.9 -0.2 19.4 34 (0.7,1.5)
70 yr olds Kovalchik 33 33 0 -37.0 37.0 17.5 27 1.10 36.9 -0.1 19.4 34 (0.6,1.7)
US high school Camerer 20-32 52 0 -32.5 32.5 18.6 33 1.60 32.7 0.2 16.3 34 (1.1,2.2)
econ PhDs Camerer 16 16 0 -27.4 27.4 18.7 N/A 2.30 27.5 0.0 13.1 21 (1.4,3.5)
1/2 mean Nagel (98) 15-17 48 0 -26.7 26.7 19.9 25 1.50 26.5 -0.2 19.1 25 (1.1,1.9)
portfolio mgrs Camerer 26 26 0 -24.3 24.3 16.1 22 2.80 24.4 0.1 11.4 26 (2.0,3.7)
Caltech students Camerer 17-25 42 0 -23.0 23.0 11.1 35 3.00 23.0 0.1 10.6 24 (2.7,3.8)
newspaper Nagel (98) 3696, 1460, 2728 7884 0 -23.0 23.0 20.2 1 3.00 23.0 0.0 10.6 24 (3.0,3.1)
Caltech CHC (new) 2 24 0 -21.7 21.7 29.9 0 0.80 22.2 0.6 31.6 0 (4.0,1.4)
Caltech CHC (new) 3 24 0 -21.5 21.5 25.7 0 1.80 21.5 0.1 18.6 26 (1.1,3.1)
game theorists Nagel (98) 27-54 136 0 -19.1 19.1 21.8 0 3.70 19.1 0.0 9.2 16 (2.8,4.7)

mean 1.30
median 1.61

Note 1: HCW (98) is Ho, Camerer, Weigelt AER 98; CHC are new data from Camerer, Ho, and Chong;
CHW is Camerer, Ho, Weigelt (unpublished); Kovalchik is unpublished data collected by Stephanie Kovalchik



 

 
Table 2 

 Asymmetric Hide-and-Seek Game 
 B1 

q 
B2 
1-q 

Empirical 
Frequency 

(N=128) 

Nash 
Equilibrium 

QRE  
 

A1      p 9, 0 0,1 .54 .50 .65 
  A2    1-p 0,1 1,0 .46 .50 .35 
Empirical 
Frequency 

.33 .67    

Nash 
Equilibrium 

.10 .90    

QRE  .35 .65    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




